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Abstract. Wind turbine structures are long slender columns with a rotor and blade assembly placed on
the top. These slender structures vibrate due to dynamic environmental forces and its own dynamics.
Analysis of the dynamic behavior of wind turbines is fundamental to the stability, performance, operation
and safety of these systems. In this paper a simplied approach is outlined for free vibration analysis of
these long, slender structures taking the soil-structure interaction into account. The analytical method is based
on an Euler-Bernoulli beam-column with elastic end supports. The elastic end-supports are considered to
model the flexible nature of the interaction of these systems with soil. A closed-form approximate expression
has been derived for the first natural frequency of the system. This new expression is a function of
geometric and elastic properties of wind turbine tower and properties of the foundation including soil. The
proposed simple expression has been independently validated using an exact numerical method, laboratory
based experimental measurement and field measurement of a real wind turbine structure. The results obtained
in the paper shows that the proposed expression can be used for a quick assessment of the fundamental
frequency of a wind turbine taking the soil-structure interaction into account.
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1. Introduction

It has been estimated that the world will require 50% more energy in 2030 than today (IEA,

2005). With the current policies on fossil fuels, greenhouse gas emissions will be 55% higher

driving irreversible climate change and potentially triggering more extreme events such as floods,

cyclones, heat waves, change in wind speed. A strategy is required to deliver both energy and

climate security without compromising economic growth. Of all the sustainable sources of energy

large offshore wind turbines have the proven potential to produce reliable quantities of renewable

energy. Potential advantages of offshore turbines include: (a) Limited environmental impacts and out

of sight; (b) High wind speed; (c) Available wave/current loading can also be harvested.

Offshore wind turbine can be described as high slenderness low stiffness dynamical system

involving complex interaction between the wind, wave and the soil. Due to the variety of cyclic and
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dynamic loadings (arising from the rotor dynamics, out-of-balance masses, varying wind loading

intensity, wave loading), cyclic loads are induced in the foundations which are three dimensional in

nature. These are relatively new structures and there are no track record of long term performances

i.e., 20 years or beyond. Clearly, it is necessary to predict the long term performance of these

structures for the energy security from renewable sources. 

The design of the foundations for offshore wind turbines remains a challenging task. Fig. 1 shows

a schematic diagram of an offshore wind turbine supported on a mono-pile, a particular type of

foundation. Mono-pile is a single slender member inserted deep into the ground to support the structure.

Typical mono-pile supporting a wind turbine is 3 to 4 m in diameter and 35 to 40 m long. Piles are

currently a popular choice for foundations possibly due to its long success in supporting offshore oil

platforms. Other forms of foundations that can be used to support wind turbines include suction

caissons i.e., an inverted bucket. The performance of suction caissons under the action of static,

cyclic and transient has been extensively researched; see for example Byrne and Houlsby (2003).

Currently, monopile foundation design for offshore wind turbines closely follows the pile design

for offshore fixed platforms. However, the offshore pile design concepts cannot be directly applied

to mono-pile design. There are signicant dierences between the two pile types:

(a) Offshore oil platform piles are longer (typically 60 m to 110 m), so degradation effects in the

upper soil layers due to cyclic loading are less severe. 

(b) Offshore piles are also signicantly restrained from pile head rotation, whereas mono-piles are

free-headed. 

The issue of cyclic strength degradation of the soil is taken empirically in offshore pile design. In

contrast, this is one of the important considerations in mono-pile design. Thus the two loading cases

Fig. 1 Mono-pile foundation to support offshore wind turbines and the proposed mathematical model for analysis.
The translational spring constant kt and the rotational spring constant kr are used to model the soil-
structure interaction. Experimental methods to obtain these two constants are discussed later in the paper
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are signicantly dierent, and it is not possible to rely on offshore pile design methods, since these

might produce an over-conservative or un-conservative design for mono-piles. 

A similar problem on cyclic degradation of the soil surrounding a relatively short pile was

encountered while designing the next generation offshore FPSO platforms. Fig. 2 shows the degradation

concepts due to post-holing as well possibly jetting action due to the one-way cyclic loading on the

anchoring piles. These piles are short (typically 20 to 30 m) and the analysis carried out concluded

that offshore pile concepts cannot be directly applied. Offshore wind turbine systems (i.e., the

combination of rotor-blade-tower-foundation-soil system) are low frequency structures (typical

values range between 0.5 Hz to 1.5 Hz) and various loading frequencies from wind, wave and the

rotor are also in same orders of magnitude. For example, the predominant frequencies of wind and

wave are about 0.1 Hz and the rotor frequencies are in the range of 0.15 to 0.5 Hz. The obvious

design issues that stems out of the discussion are as follows:

1. Due to the change in soil characteristics and under the action of cyclic loading, the natural

frequency response of the wind turbine system will change constantly. Any change in frequency

of the system will call for changes in bending moment and deflection of the top of the tower.

This may affect the performance of the overall system and in extreme cases may lead to

resonance type failure.

Fig. 2 FPSO Pile-soil interaction subjected to cyclic lateral loading
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2. Due to climate change, there may be a change in the wave loading, wind speed and more

extreme events (such as erratic wind gusts). It is necessary to predict the impact of these short

term extreme events.

An obvious solution is to design the wind turbine system so that the natural frequency of the

system does not come close to the forcing frequencies. The forcing frequencies are: 

1. The frequency due to the wind and the wave 

2. The rotor frequency often denoted by 1P 

3. The blade passing frequency which is denoted by 2P or 3P depending on the number of blades.

These are shown in Fig. 3. It is of interest to review the DnV code of practice on wind turbines

(DnV 2001). The code suggests to design the wind turbine so as to avoid the +/-10% zone on either

side of the frequencies. 

2 Motivation behind the present study

A damped dynamical system with rotating components such as the wind turbine system may lead

to nonsymmetric (Adhikari 1999a) and nonproportionally damped (Adhikari 2004) systems. There

are specialised software available to carry out the natural frequency analysis of the wind turbines,

modal damping and mode shapes at any operating conditions. Some example include GHBLADED

(2009) and SAMTECH (2009). Examples of numerical work which includes soil structure

interaction can be found in Dash et al. (2009). The aim of this paper is to provide a simplied

analytical solution which can be used to determine the first natural frequency of the wind turbine

system based on back of the envelope calculations. This can help the designer for option

engineering i.e., choosing the tower stiffness or the foundation stiffness without the recourse of

running a software program. This can also help to physically understand the output from a software

program. Tempel and Molenaar (2002) studied the problem by idealising the wind turbine as a

flagpole of length L, mass per length m having an average bending stiffness EI with a top mass M.

The first natural frequency is given by

Fig. 3 Various frequencies acting on the wind turbine system
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(1)

Although they have proposed a simple equation for the first natural frequency, it does not

incorporate the flexibility of the foundation. In the previous work Adhikari and Bhattacharya (2011)

proposed an exact approach based on the numerical solution of transcendental frequency equation.

In this paper we aim to derive simplified approximate expression similar to Eq. (1) by taking the

soil-structure interaction into account. Our method evolves from the analytical solution based on

idealisation of axially loaded Euler-Bernoulli beam supported on one end by two supports. The

beam carries a mass at the free end. This method idealises the wind turbine system by 5 non-

dimensional groups and each of which has a physical meaning: 

1. Non-dimensional axial load on the tower: To compute this parameter, we need the mass of the blades,

rotor and the generator and this differentiates one type of generator/ turbine/blades from the other.

2. Non-dimensional rotary moment of inertia of the system. 

3. Non-dimensional overall lateral stiffness of the system: This parameter considers the flexural

rigidity of the tower, length of the tower and the lateral stiffness of the foundation. It must be

mentioned that the lateral stiffness of the foundation is a function of the soil type and the

stiffness of the pile. 

4. Non-dimensional rotational stiffness of the system: This parameter considers the flexural rigidity

of the tower, length of the tower and the rotational stiffness of the foundation. It must be

mentioned that the rotational stiffness of the foundation is a function of the soil type and the

stiffness of the pile. 

5. Non-dimensional mass ratio: This parameter considers the ratio of the mass of the assembly at

the top with that of the tower. 

Based on the above non-dimensional values, the first natural frequency of the system can be

evaluated based on simple equations to be derived in the paper. 

3. Equation of motion and boundary conditions 

We consider a typical wind turbine structure as shown in Fig. 1. This system is idealized by an

Euler Bernoulli beam. The bending stiffness of the beam is EI (x) and it is resting against the soil.

Here x is the spatial coordinate along the height of the structure. The interaction of the structure

with the surrounding soil is modeled using two springs. The rotational spring with spring stiffness kr
and the translational spring with spring stiffness kt constrains the system at the bottom (x = 0). The

beam has a top mass M with rotary inertia J with respect to the axis through the center of mass.

This top mass is used to idealise the rotor and bladed system. The mass per unit length of the beam

is m(x), r is the radius of gyration and the beam is subjected to a constant compressive axial load P.

The equation of motion of the beam is given by 

(2)

Here w(x, t) is the transverse deflection of the beam, t is time, ( ) denotes derivative with respect

to time and f(x, t) is the applied time depended and distributed load on the beam. The height of the
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structure is considered to be L. An Euler-Bernoulli beam with rotary inertia in Eq. (2) is also known

as the Rayleigh beam (Sheu and Yang 2005). Eq. (2) is a fourth-order partial differential equation

(Kreyszig 2006) and has been used extensively in literature for various problems, see for example,

Abramovich and Hamburger (1991), Adhikari and Bhattacharya (2008), Bhattacharya et al. (2009,

2008), Chen (1963), Elishakoff and Johnson (2005), Elishakoff and Perez (2005), Gurgoze (2005a),

Gurgoze and Erol (2002), Hetenyi (1946), Huang (1961), Laura and Gutierrez (1986), Oz (2003), Wu

and Chou (1998, 1999), Wu and Hsu (2006). Our aim is to obtain the natural frequencies of the system.

Here we develop an approach based on the non-dimensionalisation of the equation of motion (2).

Eq. (2) is a quite general equation. It is possible to consider any variation in the bending stiffness

EI(x) and mass density m(x) of the structure with height (such as a tapered column). Consideration

of such variation normally leads to the case where closed-form solutions are impossible to obtain

due to the complex nature of the resulting equations. For simplicity, we therefore assume a special

case where all properties are constant along the height of the structure. Noting that the properties

are not changing with x, Eq. (2) can be simplied as 

(3)

The four boundary conditions associated with this equation can be expressed as 

· Bending moment at x = 0

 or (4)

· Shear force at x = 0

(5)

or 

· Bending moment at x = L

 or (6)

· Shear force at x = L

(7)

Assuming harmonic solution (the separation of the variables) we have

,  (8)

Substituting this in the equation of motion and the boundary conditions, Eqs. (3) - (7), results 
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(9)

(10)

(11)

(12)

(13)

It is convenient to express these equations in terms of non-dimensional parameters by elementary

rearrangements as 

(14)

(15)

(16)
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(18)

where
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For most columns µ =  so that . As a result for low frequency vibration one expects

. For notational convenience we dene the natural frequency scaling parameter 

(27)

Using this, from Eq. (23) the natural frequencies of the system can be obtained as 

;  j = 1,2,3,··· (28)

4. Exact equation of the natural frequencies 

Natural frequencies of the system can be obtained from the ‘free vibration problem’ by

considering no force on the system. Therefore, we consider f(x, t) = 0 in the subsequent analysis.

Assuming a solution of the form 

(29)

and substituting eq. (14) results

(30)

This equation is often known as the frequency equation or dispersion relationship. This is the

equation governing the natural frequencies of the beam. Solving this equation for λ2 we have 
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W(ξ) = a1 sin λ1ξ + a2 cos λ1ξ + a3 sinh λ2ξ + a4 cosh λ2ξ

or W(ξ) = sT(ξ)a (36)

where the vectors 

s(ξ) = {sinλ1ξ, cos λ1ξ, sinh λ2ξ, cosh λ2ξ }T (37)

and a = {a1, a2, a3, a4}
T

(38)

are defined as above.

Applying the boundary conditions in Eqs. (15) - (18) on the expression of W (ξ) in (36) we have

Ra = 0 (39)

where the matrix R is defined as

R = 

(40)

Substituting functions sj (ξ), j = 1, ···, 4 from Eq. (37) and simplifying we obtain 

R = 
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coefficients matrix should be zero, leading to the frequency equation

 = 0 (42)

The natural frequencies can be obtained by solving Eq. (42) for Ω. Due to the complexity of this

transcendental equation it should be solved numerically. The details of the above can be found in

Adhikari and Bhattacharya (2011).

5. Approximate expression of the natural frequency 

In the previous section exact expressions for the equation of the natural frequencies of the

combine wind turbine-soil system have been derived. Since only numerical solutions to these

transcendental equations are available, in this section we aim to derive approximate closed-form

solution with the aim of gaining more physical insights. For this application, the first mode of

vibration is the most signicant. As a result, we focus our attention on the first mode only. 

In the first mode we can replace the distributed system by a single-degree-of-freedom system with

equivalent stiffness ke and equivalent mass Me as shown in Fig. 4. The first natural frequency is

given by

(43)

Following Table 8-8, case 1, page 158 of (Blevins 1984) for a cantilever beam carrying a tip mass

M, one has

Me = M + 0.24Mb = (α + 0.24)mL (44) 

Representation of a cantilevered beam carrying a tip mass by an equivalent spring-mass system

has been discussed by Gurgoze (2005b). For our case the beam is resting on elastic foundation and

also have an end force. Therefore the cofficient 0.24 needs to be modied to take these effects into

account. We suppose that the equivalent mass can be represented by 

Me = (α + γm)mL (45) 

where γm is the mass correction factor.

R

ω1
2

ke

Me

------=

Fig. 4 Equivalent single-degree-of-freedom system for the first bending mode of the wind turbine
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It is often useful to express ke in terms of the equivalent end stiffness of a cantilever beam, kCL =

3EI/L3 . Therefore, the first natural frequency can be expressed as

(46)

or (47)

where the stiffness correction factor γk is defined as

(48)

We only need to obtain γk and γm in order to apply the expression of the first natural frequency in

eq. (46). 

5.1 Determination of the stiffness correction factor

The equivalent stiffness in the first-mode is calculated by applying a unit static load to the free

end of the wind turbine and calculating the deflection under this load. For the static problem the

rotary inertia of the end-mass and the wind turbine can be neglected. The static equation and the

associated boundary conditions can be obtained as special cases of Eqs. (3)-(7). Considering a

constant static lateral force F is applied at x = L on the beam, the equation of static equilibrium can

be expressed as 

(49)

The four boundary conditions associated with the above equation can be expressed as 

· Bending moment at x = 0

 or (50)

· Shear force at x = 0

 or (51)
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 or (52)

· Shear force at x = L
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Using the non-dimensional length variable ξ and following the procedure outlined in the previous

section the governing equation boundary conditions can be expressed as 

(54)

(55)

(56)

(57)

(58)

Considering a trial solution of the form in eq. (29) and substituting in the governing eq. (54)

results

 or (59)

Solving this equation for λ2 we have

λ2 = 0 and λ = (60)

In view of the roots in in eq. (60) the solution W(ξ) can be expressed as

 or (61)

where the vectors
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Q = . (66)

The expression of Q is obtained by substituting the functions sj (ξ), j = 1, ··· , 4 from eq. (62). The

constants cj can be obtained from eq. (64) as

c = Q
-1
f (67) 

The deflection at the free end δL can be obtained by substituting ξ = 1 in eq. (61) as

(68)

The equivalent stiffness ke can be obtained using

(69)

and consequently the stiffness correction factor defined in eq. (48) can be calculated as

(70)

The above expression of γk is quite general as it considers both the affect of axial load and

support stiffness. It is interesting to consider some special cases

· No axial force, ν = 0: 

(71)

· The system is completely restrained against rotation

(72)

· The system is completely restrained against translation

(73)

The value of γk calculated from eq. (70) can be substituted into eq. (47) to obtain the first natural

frequency of the coupled wind turbine-soil system. The value of γk given by eq. (70) cover the

complete parametric space of ηr, ηt and ν. 

In Fig. 5, the overall variation of the stiffness correction factor γk of the wind turbine with respect
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to both nondimensional rotational soil stiffness and axial load is shown in a 3D plot. Four fixed

values of the nondimensional translational stiffness ηt are considered in the four subplots. The

interesting feature to observe from this plot are (a) the rapid and sharp ‘fall’ in the natural frequency

for small values of ηr and relative flatness for values of ηr approximately over 50, and (b) extremely

high sensitivity for lower values of ν. The parameter ηt has an overall ‘scaling effect’ of the natural

frequency. Higher values of the stiffness corresponds to higher values of the natural frequency as

expected. In Fig. 6, the overall variation of the stiffness correction factor γk with respect to both the

nondimensional soil stiffness parameters is shown in a 3D plot. Four fixed values of the

nondimensional axial load ν are considered in the four subplots. It can be seen that lower values of

ν corresponds to higher values of the natural frequency as seen in the previous figures. These plots

can be used to understand the overall design of the system. 

Fig. 5 The variation of the stiffness correction factor γk of the wind turbine with respect to the nondimensional
axial load ν and nondimensional rotational soil stiffness ηr. Four fixed values of the nondimensional
translational stiffness η t are considered in the four subplots
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5.2 Determination of the mass correction factor 

From the physics of the problem we note that the axial force within the beam will have very little

inuence on the equivalent mass. Therefore, neglecting the axial load, the equation of dynamic

equilibrium can be expressed as 

(74)

To obtain the equivalent mass, we perturb the system by unit displacement amplitude at the free

end so that w(L, t) = 1. This choice of unity is for mathematical convenience in the calculation of

the kinetic energy. The results derived in the section is independent of this choice. Assuming

EI
∂4w x t,( )

∂x4
-------------------- m

∂2w x t,( )
∂t2

--------------------+ 0=

Fig. 6 The variation of the stiffness correction factor γk of the wind turbine with respect to the nondimensional
translational stiffness η t and nondimensional rotational soil stiffness ηr. Four fixed values of the
nondimensional axial load ν are considered in the four subplots
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standard harmonic solution as in eq. (8), the equation of motion and the four associated boundary

conditions can be expressed as

(75)

(76)

(77)

(78)

W(1) = 1 (79)

We use the static deflection shape as the trial solution. Therefore, W(ξ) can be expressed as

W(ξ) = sT(ξ)c (80)

where the vectors

(81)

and (82)

Applying the boundary conditions in eqs. (76) - (79) on the expression of W(ξ) in (80) 

we have 

Q c = f (83)

where

(84)

and the matrix

(85)

The expression of Q is obtained by substituting the functions sj (ξ), j = 1, ···, 4 from eq. (81). The

constants cj can be obtained from eq. (83) as 

c= Q−1
f (86)
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Considering harmonic motion as in eq. (8), the kinetic energy of the beam can be obtained as

(87)

where the mass correction factor is given by 

(88)

Evaluating this integral we have

(89)

In Fig. 7 the parametric variation of of the mass correction factor γm of a cantilever wind turbine

with respect to both the nondimensional soil stiffness parameters is shown in a 3D plot. It is

interesting to consider the special case when the support is completely restrained. Taking the 
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Fig. 7 The variation of the mass correction factor γm of the wind turbine with respect to the nondimensional
translational stiffness η t and nondimensional rotational soil stiffness ηr.
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(90)

which agrees exactly with Table 8-8, case 1, page 158 of Blevins (1984). This analysis shows that

the expression of γm is the generalization of the classical case so that it considerers the effect of

elastic foundation. 

6. Validation and practical applications of the proposed approach

6.1 Numerical validation

In this section we aim to validate the approximate expressions developed against the exact results.

First we determine the relevant non-dimensional parameters in the equations derived here. We focus

our attention on the affect of ν and the non-dimensional foundation rotational stiffness ηr on the

first-natural frequency. For this reason, the numerical results are presented as a function of ν and ηr.

These two parameters are considered because the boundary condition and the load of the turbine are

the crucial design issues for the overall system.

The non-dimensional mass ratio can be obtained as

(91)

We consider the rotary inertia of the blade assembly J = 0. This is not a very bad assumption if

there is very less misalignment. 

In this example we have used the data of a wind turbine given by Tempel and Molenaar (2002).

The numerical values of the main parameters are summarised in Table 1. The moment of inertia of

the circular cross section can be obtained as

(92)
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Table 1 Material and geometric properties of the turbine structure

Turbine Structure Properties Numerical values

Length (L) 81 m 

Average diameter (D) 3.5 m 

Thickness (th) 0.075 mm 

Mass density (ρ) 7800 kg/m3 

Young’s modulus (E) 2.1×1011 Pa 

Mass density (ρt) 7800 kg/m3 

Rotational speed ( ) 22 r.p.m = 0.37 Hz

Top mass (M) 130,000 kg 

Rated power 3 MW 

ϖ
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The mass density per unit length of the system can be obtained as 

(93)

Using these, the mass ratio α = 0.2495 and the nondimensional axial force ν = 0.0652. We also

obtain the natural frequency scaling parameter can be obtained as 

(94)

Since no information on the rotary inertia of the blade assembly is given, we consider J = 0. This

approximation is likely cause insignicant error for the first natural frequency. The radius of gyration

of the wind turbine is given by

(95)

Therefore, the nondimensional radius of gyration µ = r/L = 0.0151. From Eq. (19) we therefore have

(96)

The values of the soil stiffness parameters were not given. For the fixed support, the values of ηr

and ηt will be infinity. Therefore, we will use ηr and ηt as variable parameters and try to

understand how they affect the overall approximation obtained using the proposed approach. 

We substitute the derived constants in Eqs. (33) and (34) to obtain λ1 and λ2. Substituting them in

Eq. (42) we solve for the nondimensional first natural frequency Ω1 in Matlab®. For most applications

the first natural frequency is the most important as the excitation frequency is generally between 0.1

- 0.9 Hz. Higher natural frequencies can however be obtained by solving Eq. (42). 

Approximation of the first natural frequency of the wind turbine with respect to the axial load

for different values of nondimensional rotational soil stiffness and four fixed values of the

nondimensional translational stiffness are shown in Fig. 8. A similar plot, showing the approximation

of the first natural frequency with respect to the nondimensional translational soil stiffness for

different values of axial force and four fixed values of the nondimensional rotational stiffness is given

by Fig. 9. 

6.2 Experimental validation 

Numerical results in the previous section shows the validity of the proposed approximate

expression for the natural frequency. In this section we validated this expression against laboratory

based experimental results. In order to validate the proposed method, one needs to obtain ηr, ηt and

the natural frequency for the experimental wind turbine structure. We outline an experimental approach

to obtain these quantities. 

A 1:100 scale model of a Vestas V90 3 MW wind turbine which has a swept area diameter of

90 m and a nacelle height of 105 metres has been developed in BLADE laboratory of the

University of Bristol (see Fig. 10 for details). The model wind turbine blades are constructed from a
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lightweight wood and are attached to a 24 v electric motor powered by a DC power supply which is

then attached to the tower. The effect of rotor frequency (1P) is simulated through the revolutions of

the blades powered by the motor. A displacement controlled actuator has been employed which acts

at a point in the tower to simulate the wind loading on the structure: mainly the blade passing

frequency (3P). Monopile type of foundation has been used as shown in Fig. 1. The lateral

foundation stiffness (kt) and the rotational foundation stiffness (kr) are evaluated by direct

measurements as discussed below. The wind turbine was founded on clay. The test procedures

adopted to obtain kr and kt are as follows:

· Static moment test to measure kr: The rotational stiffness of the foundation (kr) was measured by

applying a moment at the pile head and measuring the slope caused by it. 

Fig. 8 Approximation of the first natural frequency of the wind turbine with respect to the nondimensional
axial load ν for different values of nondimensional translational soil stiffness ηt. Four fixed values of
the nondimensional rotational stiffness ηr are considered in the four subplots
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The pile was carefully installed in the soil by pushing and was allowed sufficient time to reach

steady state. For practical implications see Bhattacharya et al (2009). A known moment was applied

at the top of the pile and the rotation of the pile head was obtained by measuring the lateral

displacements of two 40 mm spaced dial gauges. Typical results from a test are shown in Fig. 11.

The initial tangent is considered as the stiffness as we are interested in small amplitude vibration. 

· Static test to measure kt: The horizontal stiffness of the foundation (kt) was measured by carrying a

lateral push over test on the embedded pile in the soil. Lateral load was applied at the top of the pile

and the lateral displacements of the pile were measured using a dial gauge. The load displacement

curve is plotted and the initial tangent gives the value of kt. Fig. 12 shows typical test results.

The natural frequency of the wind-turbine system was measured through the free vibration test.

This was carried out by applying a small excitation to the system and consequently recording the

Fig. 9 Approximation of the first natural frequency of the wind turbine with respect to the nondimensional
translational stiffness ηt for different values of nondimensional axial load ν. Four fixed values of the
nondimensional rotational soil stiffness ηr are considered in the four subplots
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acceleration. 

The values of the soil-structure interaction parameters ηr and ηt can be obtained by normalizing kr
and kt. The nondimensional groups for this experiment are shown in Table 2: Using the non-

dimensional parameters in Table 2, the correction factors can be determined using Eqs. (70) and

(89) as

 and (97)γk 0.0547= γm 0.3637=

Fig. 10 The model wind turbine embedded in clay. The properties are -EI (Tower): 2.125×109 Nmm2; EI
(Pile): 3.18×108 Nmm2; Length of the tower: 1.0 m; Length of the pile (in the clay): 0.5 m

Fig. 11 Experimentally obtained values of kr for wind turbine founded on clay; linearized value kr = 0.428
MN/mm
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Considering the EI of the Tower as 2.125×109 Nmm2 we have

(98)

Using these, the natural frequency can be obtained form Eq. (47) as

(99)

The measured value of the first natural frequency is 2.35 Hz, which is quite close to the one

obtained from the proposed approximate expression. 

c0
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---------

2.125 109×
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-------------------------- 60.72rad s⁄= = =
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2π
------

3γk
α γm+
-------------- 2.3717 Hz=≈

Table 2 Non-dimensional groups obtained from the experiment

Non-dimensional group Value Remarks 

ν = 0.006 
Because the value is small, this factor is not very sensitive to
the first natural frequency

0.201 The value of kr is measured as 0.428MNmm/rad, see Fig. 11.

1.65 The value of kt is measured as 3.5N/mm, see Fig. 12

2.34 

PL2

EI
---------

ηr

krL

EI
-------=

ηt

ktL
3

EI
---------=

α
M

mL
-------=

Fig. 12 Experimentally obtained values of kt for wind turbine founded on clay; linearized value kt = 3.5 N/mm
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6.3 Practical application: Lely A2 (500 kW) wind turbine

This has been reported by Zaaijer (2006). The wind turbine is NM41 type having 32,000 kg top

mass, 41.5 m (L) high and is in with water depth of 4.6 m. The pile is 3.7 m diameter and 20.9 m

long with 35 mm wall thickness. The tower is conical having 3.2 m at the base with 1.9 m at the top

and is 12 mm thickness. It has been reported that the pile passes through soft layer to stiffer sandy

layer. 

The tower in the current case is tapered and as the natural frequency formulation is based on

uniform tower, an equivalence calculation is necessary to convert the conical tower to a uniform

tower. To find out the non-dimensional groups, flexural rigidity (EI) of the tower is necessary for

two types of calculations: 

1. For the calculation of non-dimensional axial force (ν) : This parameter can be replaced by the ν =

 =  where Pcr is the Euler’s elastic critical load. Therefore, this is a buckling type calculation.

A closed form solution can be easily obtained to find the buckling load of a conical cantilever.

For the problem in hand, P is 32,000 kg force which is 313.6 MN. The buckling load of this

tower (Pcr) has been estimated as 17.6 GN. 

2. For the calculation of EI for the ηr and ηt i.e., the foundation parameters, the equivalence is

based on stiffness. It can be easily shown that the equivalent second moment of area of a tapering

tower (3.2 m base diameter and 1.9 m top diameter and 41.5 m long) of uniform thickness of

12 mm can be replaced by an equivalent 41.5 m long tower of 12 mm thick 2.812 m diameter.

The equivalent second I in the calculation is given by 

(100)

The method to compute the foundation spring constants kt and kr can be obtained following

Baguelin (1977) and presented by Randolph and Steward (1999). It can be appreciated that the

values of kt and kr are non-linear and for the natural frequency analysis, only initial values are

necessary i.e., the initial slope of the force-pile head displacement graph or the moment-pile head

rotation graph. For the current case, as the pile passes through soft layer to stiff layer, a

characteristic shear wave velocity of 180 m/s is taken for the soil stiffness calculations. To use the

method, it is necessary to find the non-dimensional groups, as evaluated in Table 3. Using the non-

dimensional parameters in Table 3, the correction factors can be determined using Eqs. (70) and

(89) as

γk = 0.9274 and γm = 0.2417 (101)

Considering the EI of the Tower as 2.125×109 Nmm2 we have 

(102)

Using these, the natural frequency can be obtained form Eq. (47) as
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(103)

The measured natural frequency of the system is 0.634 Hz, which quite close to the predicted one.

7. Conclusions

The dynamics of flexible turbine towers considering soil-structure interaction have been

investigated. The consideration of elastic end supports, used to take account of the soil-structure

interaction, is crucial for offshore wind turbines and have received little attention in literature. A

distributed parameter based linear dynamic model using the Euler-Bernoulli beam theory with axial

load, elastic support stiffness and top mass with rotary inertia is considered. The non-dimensional

parameters necessary to understand the dynamic behavior have been identied. These parameters are

nondimensional axial force (ν), nondimensional rotational foundation stiffness, (ηr), nondimensional

translational foundation stiffness, (ηt), mass ratio between the rotor-blade assembly and the turbine

tower (α), nondimensional radius of gyration of the turbine tower (µ). A new closed-form

approximate expression for the fundamental frequency of the system has been derived using the

energy principles. This expression is a function of two factors, namely the stiffness correction factor

(γk) and the mass correction factor (γm). These two factors in turn are influenced by the soil-

structure interaction parameters ηr and ηt. A detailed study has been conducted on the effect of ηr

and ηt on the two correction factors. 

All the input parameters necessary to use the proposed expression can be obtained from the

geometry and material properties of the wind turbine, foundation and soil. Novel experimental

methods have been developed to obtain the soil-structure interaction parameters ηr and ηt. Experimental

study on clay foundation show that the linear model assumed for ηr and ηt can be used when the

rotation and the deflection of the pile-head is small. The proposed closed-form expression is

validated using three independent approaches, namely: (a) comparing with the exact numerical

solution of the governing characteristic equation, (b) comparing with laboratory-based experiential

results and (c) comparing with the measurements from a real wind turbine. Based on the study

reported in the paper, we conclude that the proposed closed-form expression can be used as a first

f1
c0

2π
------

3γk
α γm+
-------------- 0.7404 Hz=≈

Table 3 Non-dimensional groups obtained for the Lely A2 wind turbine

Non-dimensional group Value Remarks

nu =  = 0.00005 
This factor is not very sensitive to the
first natural frequency

ηr = 
38.88. The following values has been
taken: kr = 20.6 GNm/rad, L = 41.5 m, E
= 210 GPa, I =0.1047m4

The value of kr is taken as 20.6 GNm/
rad

ηt = 
2698. The following values has been
taken: kt = 830 MN/m L = 41.5 m, E
= 210 GPa, I = 0.1047m4

The value of kt is taken as 830 MN/m

α = 1.0178. M = 32,000 kg, mL = 31346 kg
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krL
3
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3
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step to obtain the fundamental frequency of wind turbine towers considering the soil-structure

interaction into account. 
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CC

Nomenclature

α mass ratio, α =

β nondimensional rotary inertia, β =

ηr nondimensional rotational end stiffness, ηr =

η t nondimensional translational end stiffness, η t =

γk stiffness correction factor, γk =

γm mass correction factor

µ nondimensional radius of gyration, µ =

M

mL
-------

J

mL3
---------

krL

EI
-------

krL
3

EI
---------

ke

kCL
-------

r

L
---
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ν nondimensional axial force, ν =

Ω nondimensional frequency parameter, Ω2 = ω2

ω angular frequency (rad/s)

ξ non-dimensional length parameter, ξ = x/L

c0 natural frequency scaling parameter (s-1), c0 =

EI bending stiffness of the beam

F(ξ) transverse force on the beam

f(x, t) applied time dependent distributed load on the beam

fi natural frequency (Hz)

J rotary inertia of the rotor system

ke equivalent end stiffness of the beam

kr rotational end stiffness of the elastic support

kt translational (linear) end stiffness of the elastic support

kCL equivalent end stiffness of a cantilever beam, kCL = 

L length of the beam

M mass of the rotor system

m mass per unit length of the beam, m = ρA

Mb mass of the beam, Mb = mL

Me equivalent mass of the SDOF system

P constant axial force in the beam

r radius of gyration of the beam

t time

W(ξ) transverse deflection of the beam 

w(x, t) time depended transverse deflection of the beam

x spatial coordinate along the length of the beam

( ) derivative with respect to the spatial coordinate

( )T matrix transposition

( ) derivative with respect to time

( ) determinant of a matrix

PL2

EI
---------

mL4

EI
---------

EI

mL4
---------

3EI

L3
---------

 •'
•
•·

•


