
                          Ranjbar, M., Boldrin, L., Scarpa, F., Neild, S. A., & Patsias, S. (2016).
Vibroacoustic optimization of anti-tetrachiral and auxetic hexagonal
sandwich panels with gradient geometry. Smart Materials and
Structures, 25(5), [054012]. https://doi.org/10.1088/0964-
1726/25/5/054012

Peer reviewed version

Link to published version (if available):
10.1088/0964-1726/25/5/054012

Link to publication record in Explore Bristol Research
PDF-document

This is an author-created, un-copyedited version of an article accepted for publication in Smart Materials and
Structures. The publisher is not responsible for any errors or omissions in this version of the manuscript or any
version derived from it. The Version of Record is available online at DOI: 10.1088/0964-1726/25/5/054012

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1088/0964-1726/25/5/054012
https://doi.org/10.1088/0964-1726/25/5/054012
https://doi.org/10.1088/0964-1726/25/5/054012
https://research-information.bris.ac.uk/en/publications/cd8787b7-2909-4b59-b59c-7625ba2dac88
https://research-information.bris.ac.uk/en/publications/cd8787b7-2909-4b59-b59c-7625ba2dac88


	

	

1	

Vibroacoustic Optimization of Anti-Tetrachiral and Auxetic Hexagonal 

Sandwich Panels with Gradient Geometry 
 

Mostafa Ranjbar
1,2,*

, Luca Boldrin
2
, Fabrizio Scarpa

2,3
, Simon Neild

3
, Sophoclis Patsias

4
  

 

1
Department of Mechanical Engineering, Eastern Mediterranean University, TRNC via Mersin 10, 

Turkey 
2
Advanced Composites Centre for Innovation and Science (ACCIS), University of Bristol, BS8 1TR, 

Bristol, UK 
3
Dynamics and Control Research Group, University of Bristol, BS8 1TR Bristol, UK. 

4
Mechanical Methods, Rolls-Royce plc, PO Box 31, DE24 8BJ Derby, UK 

 

E-mail: mostafa.ranjbar@	bristol.ac.uk , luca.boldrin@bristol.ac.uk, f.scarpa@bristol.ac.uk,    

simon.neild@bristol.ac.uk, sophoclis.patsias@rolls-royce.com (*Corresponding author) 

               

Abstract 

The work describes the vibroacoustic behavior of anti-tetrachiral and auxetic hexagonal 

gradient sandwich panels using homogenized finite element models to determine the mechanical 

properties of the auxetic structures, the natural frequencies and radiated sound power level of 

sandwich panels made by the auxetic cores. The mechanical properties and the vibroacoustic 

behavior of auxetic hexagonal sandwich panels are investigated as a benchmark. The radiated 

sound power level of the structure over the frequency range of 0 to 1000 Hz is minimized by 

modifying the core geometry of the gradient auxetic sandwich panels. Several excitation cases 

are considered. First-order and random optimization methods are used for the minimization of 

radiated sound power level of the structures. The results of this study present significant insights 

into the design of auxetic structures with respect to their vibroacoustical properties.    
 

Keywords: auxetic; anti-tetrachiral; hexagonal; gradient; sandwich panel; vibroacoustic; optimization. 
 

1. Introduction 

Cellular structures have lightweight characteristics with significant tuneable mechanical 

properties [1], and are used in a wide range of aerospace, automotive and general transport 

applications [2, 3]. Honeycomb structures are a typical and common example of cellular core 

configurations [4]. Over-expanded centresymmetric cellular configurations can also be 

developed by internal geometry modification of their cell wall aspect ratio and cell angle [4, 5]. 

Classical honeycombs exhibit anticlastic curvatures when subjected to out-of-plane bending [6-

8], increasing therefore the manufacturing complexity of sandwich structures that posess 

geometries departing from the rectangular one [9]. To this end, negative Poisson’s ratio solids [7] 

(also known as auxetics) can be used to produce dome-shaped surfaces because of their 

synclastic curvature, and show at the same time a series of interesting multifunctional properties , 

[10-12]. Lim has recently presented an overview about auxetic materials and structures, 

including a brief survey related to the vibration and the acoustic properties of auxetic solids from 

late 1980s to end of 2014 [13].  

Hexagonal centresymmetric honeycombs with negative internal cell angles are not the 

only example of auxetic cellular structures. Between the different microstructure topologies that 

possess a negative Poisson’s ratio behavior, the chiral honeycomb configuration is an example of 

geometry that has received significant attention within the cellular materials community. Chiral 

honeycombs are effectively micropolar materials with in-plane Poisson’s ratios close to -1, 
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showing at the same time a substantial decoupling between the transverse shear and flatwise 

compressive properties [14-16]. For a view on the mechanics of various chiral honeycomb 

configurations that Reader can refer, for example, to the work of Grima and co-workers [17]. As 

an example of application of chiral structures in vibroacoustics, Ma et al. have used anti-

tetrachiral cellular platforms to host metal rubber particles as a nonlinear metamaterial damper to 

reduce the level of vibration of a structure [18]. 

Lim has pioneered the concept of cellular structures with gradient topology in his 2002 

seminal work [19]. The microstructure configurations cited above tessellate periodically in the 

plane, and therefore create cellular panels with assemblies of cells having equal geometry in any 

location of the structure. However, it is possible to produce cellular panels with gradient 

configurations, in which the structure is made by a continuous distribution of unit cells with 

compatible geometry but a single variable parameter (like the internal cell angle or aspect ratio). 

Scarpa and Tomlinson were between the first to study the vibration characteristics of re-entrant 

honeycombs [20]. Scarpa et al. also investigated the acoustic properties of auxetic open cell 

resilient polyurethane foams [21]. These papers (and other produced by different research teams) 

contributed to the creation of a later body of research about the vibration and the acoustics of 

auxetic solids. 

In a separate work, Lira et al. have adopted a gradient cellular core with auxetic 

configurations to design aeroengine fan blades with optimized modal mass displacements [22]. 

Gradient auxetic cores have also been evaluated to engineer damage tolerant sandwich panels 

and static indentation [23]. Very recent work on the vibration of auxetic plates has also been  

performed by Maruszewski et al. [24], and by Lim [25]. Ruzzene and Scarpa also investigated 

the wave propagation in sandwich panel plates with periodic auxetic core [26]. Furthermore, 

Airoldi et al. presented a work related to the application of chiral topologies to composite 

morphing aerostructures designs [27]. The periodic and gradient trichiral configurations have 

been evaluated as dynamic impedance absorbers in vibration transmissibility applications [28]. 

The numerical optimization of structures versus various acousto-structural properties 

(such as root mean square level of the structural velocity, radiated sound power) is an integral 

part of the design of passive noise control structures. A survey of methods and applications of 

structural acoustic optimization for passive noise control can be found in the review paper by 

Marburg [29]. Auxetic cellular cores and their gradient versions may offer some significant 

tailoring of their mechanical and density properties, through the geometry of their unit cells and 

selection of specific core materials. They may therefore constitute a suitable platform to design 

structural panels with optimized mechanical and vibroacoustics performance over a range of 

frequency bandwidths. 

This paper is focused on the evaluation of the vibroacoustics response of sandwich panels 

with auxetic anti-tetrachiral and hexagonal cores in gradient configurations. The radiated sound 

power level of these auxetic sandwich panels has been minimized with respect to their core 

geometries. In the following sections, the mechanical behavior of anti-tetrachiral and hexagonal 

cores is firstly investigated using a numerical homogenization. Also, the minimization of 

radiated sound from such structures is intensively reported. The paper is organized as follows. 

The mechanical properties of anti-tetrachiral auxetic core are first introduced, followed by 

presentation of the modelling and vibroacoustic optimization of anti-tetrachiral gradient auxetic 

sandwich panel for various loading conditions. A similar modeling approach is also applied to 
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the auxetic hexagonal sandwich panel model. Final conclusions about the importance of these 

results are discussed at the end of the paper. 

 

1. Mechanical properties of the anti-tetrachiral auxetic core 

An analytical model has been used to calculate the mechanical properties of anti-

tetrachiral lattices. Figure 1 shows a typical panel with a Representative Unit Cell (RUC) of the 

anti-tetrachiral lattice.  

 

Figure 1. Anti-tetrachiral plate and its representative unit cell [30] 

Chen et al. [30] have developed an analytical approach based on strain energy methods to 

calculate mechanical properties of the anisotropic anti-tetrachiral lattice. The in-plane 

mechanical properties of these anti-tetrachiral lattices can be defined using four non-dimensional 

parameters: 

, , ,
yx

x y

LL t b

r r r r
α = α = β = γ =  (1) 

The in-plane Poisson’s ratios and uniaxial moduli Ex, Ey and Ez can be formulated on the basis of 

these nondimensional parameters and the material properties of the core (Young’s modulus Ec 

and density ρc). For details of these formulas please refer to [30]. The shear modulus is 

particularly important for the mechanics of sandwich structures. Theoretically, the transverse 

shear modulus of general honeycomb structures is limited within an upper (Voigt) and a lower 

(Reuss) bound. Those bounds can be obtained by using the theorems of the minimum potential 

and minimum complementary energies [30]. Lorato et al. have to this end [31] proposed the 

formula for the calculation of the lower bound for the transversely isotropic lattice. In this work 

the formulations described in References [30] and [31] are adopted for the homogenization 

approach of the core. 

 3. Modeling of the anti-tetrachiral gradient (ATG) sandwich panel 

An anti-tetrachiral gradient (ATG) plate is defined by the constant dimension L in the x 

and y directions, but possesses various cell radiuses (Figure 2).  
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Figure 2. Gradient geometry for the unit cell with varying radius and constant length L 

In gradient-shaped structures, the mechanical properties can be modeled as a continuous 

function distributed over the length of the panel. The equivalent mechanical properties are 

however function of the relative size between the cell dimensions and the width of cell 

assemblies having the same cell parameters [28]. The geometry of the original ATG plate 

configuration is replaced by an equivalent orthotropic material using a compliance matrix [S] 

defined in [4], and mechanical properties defined in [30] and [31]. The out-of-plane Poisson’s 

ratios 
xz

υ and
yz

υ  are assumed to be near zero, consistently with the assumptions of the Cellular 

Material Theory [4]. Similarly, the other transverse Poisson’s ratios are assumed to satisfy the 

relation 
zx zy c

υ = υ ≈ υ  where 
c
υ  is the Poisson’s ratio of the core material [4].  

Figure 3.a shows an example of the sensitivity exhibited by the in-plane modulus along 

the x direction with respect to the radius of a single antitetrachiral unit cell. In this figure, only 

one anti-tetrachiral cell is considered. The Young’s modulus has been normalized against the 

tensile modulus of the core material EABS, which is represented by acrylonitrile butadiene styrene 

(ABS) [30]. As the radius of the nodes increases, the longitudinal stiffness has a decrement 

proportional to r
-1

. 

 

  
(a) (b) 

Figure 3. Variation of in-plane Young’s modulus ratio in x direction (a), and transverse shear 

stiffness Gxz or Gyz and out-of-plane stiffness Ez (b) with respect to the radius of a single 

antitetrachiral cell with fixed dimension as Lx = Ly = 24 mm, t = 1mm and b = 12mm 
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Figure 3.b shows the out-of-plane stiffness Ez is linearly dependent over the radius of the nodes r. 

The out-of-plane Young’s modulus scales as the density of the honeycomb structure [4, 30]. 

Also, this figure shows the variation of out-of-plane transverse shear stiffness Gxz or Gyz with 

respect to r. For increasing values of the radius of the nodes, the out-of-plane shear modulus has 

a nonlinear behavior, with an initial minima and a steep increase at higher values of r. 

Theoretically, the transverse shear modulus of general centresymmetric and chiral honeycomb 

structures is limited within an upper (Voigt) and a lower (Reuss) bound [30]. Those bounds can 

be obtained by using the theorems of minimum potential energy and minimum complementary 

energy. For isotropic regular hexagonal lattices, the upper bound does coincide with the lower 

bound. Although anti-tetrachiral isotropic honeycombs are in-plane isotropic, two different 

bounds for the transverse shear modulus exist. In this case, 
xz
G 	and	

xz
G  are a nonlinear function 

of r [31]. 

 

3.1 Homogenization of FE model for auxetic sandwich panel 

To perform the modal analysis for the anti-tetrachiral sandwich panel with the uniform 

cell distribution the ANSYS Rel. 11.0 commercial FE analysis package has been used [32].  

 

Figure 4. Full scale sandwich panel with anti-tetrachiral auxetic core 

Figure 4 shows a full scale sandwich panel model with a core made from 6 5×  anti-

tetrachiral unit cells. The skins of the sandwich make two 288 240 2× ×  mm plates. The 

geometry parameters of the anti-tetrachiral core are listed in table 1. The elastic properties of the 

core material, i.e. ABS, are considered from Ref. [22]. As indicated by Alderson et al. for anti-

tetrachiral systems [2,3], the in-plane Poisson’s ratio calculated through finite element (FE) 

modeling and experimental analyses provide a similar result (-0.98), and in general show a quite 

good correlation between simulations and test data. The compliance matrix [S] typical of 

centresymmetric honeycomb structures [4] is used to represent the asymptotic homogenized 

mechanical properties, with the engineering constants from [2, 3, 30, 31] and υ
xy
= −0.98  used 

for the in-plane Poisson’s ratio. 
 

Table1. Geometrical parameter values of the core of sandwich panel 

Parameter r Lx Ly t b 

Value in [mm] 4 24 24 1 12 
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The application of unit cell homogenization in the calculation of the vibroacoustic 

behavior of auxetic structures has been already proposed by Chekkal et al. [33]. The 

homogenization of the sandwich plate is performed by using shell elements to represent the 

skins, while the homogenized core of the anti-tetrachiral cells is represented by two solid 

element per gauge thickness, with their properties defined by the compliance matrix [S] (Fig. 5). 

This homogenized structure represents a single core unit cell-two skins unit, which is then 

propagated as solid and FE model along the two x and y directions to make the full-scale 

sandwich panels with overall dimensions cited above.  

 

 
 

Figure 5. The FEM sample of a homogenized auxetic sandwich panel with SHELL63 elements 

for its skins and two SOLID45 elements per gauge thickness in its core 

 

To find the appropriate finite element types for the modelling and the homogenization of 

the auxetic sandwich panel a sensitivity analysis on the full-homogenized model is done with 

respect to its natural frequencies. At this regard, various element types are considered for the 

modelling of skin and core of auxetic sandwich panel. Element like SHELL63 for the skin and 

SOLID45 have been selected after this benchmark. The modal performance of the full-scale 

homogenized model is then compared against the one of a full scale FE model that represents the 

detailed geometry of the core and the skin of the panel (Figure 4). In the full-scale detailed model 

both face skins and the cells are represented by SHELL63 elements, with constant elements size 

equal to b/4, corresponding to a minimum length of 12 mm has been selected for the elements 

after a convergence tests on the first five modes. The skins and the cell walls were modeled using 

the ABS plastics material properties. Both in the homogenized and full-scale detailed FE models 

the simply supported boundary conditions have been applied by clamping the translational 

degrees of freedom (DOF) ux, uy and uz at nodes located at the geometric half-plane of the core 

[34]. These nodes are located on the neutral plane of the sandwich, and correspond in the 

homogenized model to the geometric half of the core when two solid elements per core thickness 

are adopted.  

Table 2 shows the natural frequencies of the ATG sandwich panel for the homogenized 

and full scale FE sandwich panels. The sandwich panel exhibit the classical (m,n)-type of 

flexural modes, with the peculiarity that the (2,2) modeshape has a lower frequency than the 

(1,3) one. Furthermore, the homogenized model shows to be an excellent approximation to the 

full-scale finite element representation. These results confirm the degree of fidelity that the 

homogenized core approach provides for the analysis of the modal behavior of sandwich panel 

ruled by flexural modeshapes. 
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Table 2. Natural frequencies of Anti-tetrachiral sandwich panel on the frequency range of 0 to 

1000 Hz for the homogenized and full scale FE models  
 

Frequency 

(Hz) 

Model type Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Homogenized 285.23 572.13 687.82 894.61 956.24 

Full scale FE 285.71 572.45 688.02 895.13 958.12 

 

Two different loading conditions (Figure 6) are considered to excite all the modes of the 

model within a frequency range covering the first five global modes, and this is represented 

by.the non-symmetric harmonic pressure excitation at z direction, as previously proposed by 

Ranjbar et al. [35] is considered. The pressure loadings in the various areas are all in phase and 

have the same amplitude. Figure 6 also shows in clearer terms the distribution of homogenized 

anti-tetrachiral unit cells with same assembled to each other and forming the whole sandwich 

panel. The gradient (or graded) cell distribution is composed by five distinct regions (R1, R2, R3, 

R4, R5). Each region is shown with a different color.  
 

 
 

(a) (b) 

Figure 6.  Various external pressure loadings (dashed areas) on the homogenized FEM of auxetic 

sandwich panel regions with different core cell radiuses R1 to R5. 

 

In next section, the dynamical behavior of the auxetic sandwich anti-tetrachiral panel 

model will be investigated. The main objective is to determine the radiated noise from the model. 

Then, the geometry of model will be modified to reduce the radiated noise. 

 

4. Vibroacoustic optimization of the ATG sandwich panel 

In this section, the minimization process of the radiated sound power level over the 

frequency range of 0 to 1000 Hz is discussed. In this regard, the objective function for the 

optimization process is the root mean square level of radiated sound power level (RMSL) of the 

ATG model. Here, the radiuses of the unit cells are considered as the design variables. The 

general optimization problem is defined as:  

 

Minimize RMSL(
1 2 3 4 5
R ,R ,R ,R ,R )  when 

1 2 3 4 5
3 R ,R ,R ,R ,R 9mm mm≤ ≤                         (2) 

In the following subsection the calculation of the RMSL is presented, followed by the 

discussion of the optimization of the model with respect to its vibroacoustics performance.  
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4.1 Calculation of the radiated sound power  

A good metric to quantify the emitted noise from a structure or a machine part is the level 

of radiated sound power ( )pL f , or sound power level for short, defined as: 

0

( )
( ) 10 lg ,s

P f
L f

P
= ×            (3) 

Where ( )P f  is the radiated sound power and 
0
P  = 10

-12
 W is a standardized reference value. 

Here f is the frequency (in Hz). The radiated sound power ( )P f  can be calculated as [36]: 

2
( ) ( )( ) a a rms f fP f c Sv σ⊥= ρ .           (4) 

The parameters 
a
ρ  [ 3kg m ] and 

a
c  [m s ] are the density and the speed of sound of the 

surrounding fluid (in this case air), respectively. Also, S is the area of the sound-radiating surface 

in [ 2
m ], 2 ( )rmsv f

⊥
 is the mean squared normal velocity of the surface averaged over the radiating 

surface, and ( )fσ  is the radiation efficiency factor. The quantity 
a a a
Z c= ρ  is the so-called 

specific impedance of air. Fritze et al. [37] indicated that for exterior acoustics the solution of the 

fluid part of the structural acoustic problem is the ‘bottle-neck’ during the optimization process 

because of the large computing times required for this part of the analysis. This remark is valid 

for fluid structure interaction problems, as well as for one-way coupled sequential evaluations, 

i.e. when the structure excites the fluid but the fluid does not act back on the structure. Several 

methods are known to circumvent the solution of the acoustic boundary value problem, but 

because of the intrinsic simplicity and efficiency of calculation the radiated sound power 
s
L  can 

be approximated by the equivalent radiated sound power (ERP) [36] when the radiation 

efficiency is set to be 1.0. The ERP does not contain any local acoustic effect, since all sources 

(herein: all finite elements) have the same radiation efficiency of σ = 1. Therefore, the ERP will 

usually overestimate the radiation, but will however give a qualitatively good approximation for 

the structure–induced acoustical fields, especially as an upper bound estimation [37, 38].  

The closed analytical solution value of the in-plane shear modulus of the anti-tetrachiral 

systems has not been determined yet in open literature. To assess the possible effects that the 

variation of the in-plane shear modulus has upon the radiated sound pressure response of a panel, 

a FE model is developed based on the original sandwich model (core with SOLID45 elements 

and skins with SHELL63), but with a linear variation of the shear modulus 
xyG . The results of 

the sensitivity of the radiated sound power at the first natural frequency are shown in Figure 7. 

As it can be observed, the variation of the ERP versus the value of the in-plane shear modulus is 

negligible, and therefore a first-order shear deformation analysis of sandwich panel is applicable 

in this case.  
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Figure 7. Variation of radiated sound power level with respect to Gxy for the ATG sandwich 

panel 

 

Finally, the mean-squared level of radiated sound power (RMSL in dB) over a frequency 

range between 
min
f  to 

max
f can be calculated as: 

          

max

min

2

max min

( )
f

s
f
L f df

RMSL
f f

=
−

∫
                          (5) 

The RMSL is considered as the objective function to be minimized. 

First-order (gradient-based) and random optimization tools of ANSYS are used for the 

minimization of the RMSL. The random optimization tool calculates the objective function in 

various randomly selected design points and reports the lowest one as the best optimum result. 

The first-order method uses derivative information, that is, gradients of the dependent variables 

with respect to the design variables. It is highly accurate and works well for problems having 

dependent variables that vary widely over a large range of design space [32]. However, this 

method can be computationally intense. At the beginning of the iteration the gradient 

calculations are performed to determine a search direction, and a line search strategy is adopted 

to minimize the unconstrained problem. The gradients are calculated numerically by finite 

difference method. The forward difference step, i.e. changes in the radius of auxetic unit cell, is 

considered to be 0.2%. The maximum number of iterations is considered to be 20. 

 

 

 

4.2 Minimization of the RMSL for the ATG sandwich panel   

 

At first, the effect of the thickness variation on the RMSL performance of the ATG 

sandwich panel with a constant cell radius of 4 mm is evaluated. The results for the two loading 

cases indicate that the radiated sound power decreases with the increase of the ATG core 

thickness (Fig. 8). The optimum thickness for the two loading cases is identified to be at 18 mm, 

while the radiuses of the cells are unchanged during the optimization. 
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Figure 8. Root mean square of the radiated sound power level with respect to ATG thickness, 

with constant cell radius of 4 mm 

The gradient sandwich plate is considered to be composed of five different sectors with 

five different radiuses {R1, R2, R3, R4, R5}
T
. Each sector is modeled with the homogenized 

approach (core with SOLID45 elements having the homogenized [S] compliance of the ATG 

cellular material and SHELL63 skins). Each sector has the compliance matrix calculated with the 

analytical properties of the anti-tetrachiral core [30], and correction factors taking into account 

the relative size of the sector and calculated following a procedure indicated in [22]. The skin 

plate has the same material as the core material. The skin thickness of the plate is uniform and 

equal to 2 mm. The area geometry of the external skin is 288 240×  mm. Both of the skin 

thickness and the surface dimensions of the skin are fixed.  

Table 3 lists the optimization variables and the mass of the sandwich plate for the 

original, after random optimization and after first order optimization design sets (both excitation 

cases “a” and “b” when the thickness of plate is fixed). The RMSL for the loading case “a” is 

reduced to 134.53 dB, while for case “b” the reduction is to 134.28 dB. The mass of the 

sandwich plate has however increased during the optimization by 11%. The optimization process 

by first-order method for both loading conditions, “a” and “b”, has converged after 50 iterations. 

The results related to the change of the radiuses in the different regions for the two loading cases 

shown in Fig. 6 confirm that for the minimization of the radiated sound, larger radiuses of the 

cells should be considered in all regions of the ATG sandwich panel. It is however worth 

mentioning that the optimized solutions provide an ~ 11% increase in weight compared to the 

original design. 

 

Table 3. Optimization results for ATG model under loading cases “a” and “b”  after 50 iterations 

with fixed thickness of plate 
 

	 R1 (mm) R2 (mm) R3 (mm) R4 (mm) R5 (mm) RMSL (dB) Mass (Kg) 

Loading 

case 
“a” “b” “a” “b” “a” “b” “a” “b” “a” “b” “a” “b” “a” “b” 

Original 

design 
4 4 4 4 4 4 4 4 4 4 137.30 136.52 0.38 0.38 

Random 

method 
8.03 7.20 7.59 8.91 7.70 8.51 5.33 6.63 8.63 6.06 134.59 134.42 0.422 0.424 
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First-

order 

method 

6.48 5.80 7.95 8.55 8.61 8.88 6.88 7.23 7.31 7.41 134.53 134.28 0.422 0.424 

 

In figure 9.a, the variation of the radiated sound power level over the frequency range of 

0-1000 Hz for the first loading case of Fig. 6  is shown. For these simulations the thickness of the 

ATG model is unchanged and constant in all parts of the plate. The natural frequencies of the 

structure with the optimum cell radiuses distribution are shifted to higher values. Also, the last 

two modal frequencies of the original structure have shifted to the 1010 Hz and 1090 Hz. Figure 

9.b shows that by changing the cells radius and the total thickness of model one can obtain the 

best result for the minimum radiated sound power level. 

 

  
 

(a). Optimized cell radiuses without any 

variation in the thickness of panel 

 

(b). Optimized thickness and cell radiuses 

 

Figure 9. Sound power level reduction of ATG model for the loading case “a” shown in figure 6. 

 

Figure 10 shows the optimization results related to the loading case “b”, when the radius 

of the cells and the thickness of the ATG have simultaneously changed The optimum radiuses 

distribution shown in table 3 has been obtained by using the first order method. The fundamental 

natural frequency of the optimum structure is moved to higher values. Also, the number of 

resonances is decreased within the frequency range between 0 Hz to 1000 Hz.  
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Figure 10. Minimization of the radiated sound power level with respect to the ATG thickness and 

various cell radiuses (loading condition case “b”) 

 

 It is important to monitor the mass variation of model after each optimization attempt. 

For this purpose, the normalized acoustic sound power ( )P  can be evaluated as defined by:  

             acoustics
P

P
T

=                                                                                                               (6) 

              31

2
T M Aω=                                                                                                                 (7) 

In equations 6 and 7, T is the kinetic power of structure and Pacoustics is the radiated sound 

power from the model both in Watt. The kinetic power is an indicator of the kinetic mechanical 

energy of the radiating surface of the sandwich panel in a unit time. The kinetic power can be 

calculated in term of mass of sandwich panel, the radiating surface area of plate, and the 

frequency of plate. In Eq. 7 M is the mass of the sandwich panel (in Kg) and A is the surface area 

of model in [m
2
] which is equal with 0.24 0.288× . Also, ω is the circular frequency of the 

harmonic excitation pressure loads in [s
-1

]. Furthermore, the normalized frequency 
n

ω  is defined 

in Eq. 8, in which 
1

ω  is the first fundamental frequency of model.  

               
1

n

ω
ω

ω
=                                                                                                                   (8) 

The reduction of the normalized radiated sound power level with respect to thickness and 

radius variation for the two loading cases “a” and “b” are presented in table 4. The normalized 

fundamental resonances for both cases “a” and “b” are shifted to higher frequencies, and the 

value of the optimum normalized sound power calculated by first-order optimization methods is 

also significantly decreased. For the optimum thickness and ATG cell radiuses case of loading 

“a”, the normalized frequency has increased by 30%, and the normalized radiated sound power 

decreased by 88.1%. Furthermore, for the optimum thickness of 18 mm and constant radius of 4 
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mm the normalized frequency has increased by 26% and the normalized radiated sound power 

decreased by 81.73%. In the loading case “b” when optimum thickness and optimum ATG cell 

radiuses distributions are considered, the normalized frequency has increased by 29% and the 

normalized radiated sound power is decreased by 86.11%. When the optimum thickness and 

constant radius of 4 mm are however considered the normalized frequency decreases by 26.5% 

and the normalized radiated sound power is diminished by 80.41%. Table 4 shows that for the 

two loading cases the structures with the optimum thickness and radius have in general the larger 

normalized frequencies and the smallest normalized radiated sound power. 

 

Table 4. Reduction of normalized radiated sound power for ATG model 
 

Loading 

condition 
Model 

Normalized frequency 

1

ω
ω

 

Normalized 

radiated sound 

power 5
10×  

Case “a” 

Constant thickness and radius 1 94.7 

Optimum thickness and radius 1.30 11.2 

Optimum thickness, constant radius 1.26 17.3 

Case “b” 

Constant thickness and radius 1 96.5 

Optimum thickness and radius 1.29 13.4 

Optimum thickness, constant radius 1.265 18.9 
	

5. Modelling the auxetic hexagonal sandwich panel  

 In this section, the mechanical and vibroacoustic properties of the auxetic hexagonal 

sandwich panel are analysed. 
 

5.1 Mechanical properties of auxetic hexagonal sandwich panel 

The sandwich panel with auxetic hexagonal consists of 15 10×  auxetic hexagonal unit 

cells with negative internal angle of 20θ °
= − . The total dimension of the plate is 288 240× mm. 

To keep the first natural frequency of the auxetic hexagonal sandwich panel same as the one of 

the ATG sandwich panel, the geometry of the model is as given in table 6. In figure 11, a single 

cell of the auxetic hexagonal sandwich panel and its geometrical parameters are shown.  

 

 

Figure 11. A representative unit cell of the auxetic hexagonal cellular structure 

 

Table 5 shows the geometrical parameters of the original model related to the auxetic the 

auxetic hexagonal sandwich panel. 
 

                        Table 5. Geometrical parameters of auxetic hexagonal sandwich panel 
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h (mm)  l (mm) t (mm) b (mm) θ (degree) 

16.77 8.51 1 10.23 -20 

 

Figure 12.a shows a gradient hexagonal cellular configuration along the x direction. The 

generation of the gradient core is performed from the base hexagonal unit as shown in figure 

12.b, which is defined by the constant dimension 
1
L . Each section of the band-graded core has 

six geometrically fixed points 1-6, while the geometry of each region changes with change in 

angle θ . The lengths h and L can be calculated using the formula proposed by Lira et al. [22] 
 

 

 

         (a) (b) 

Figure 12. (a). Hexagonal gradient core [19], (b). Gradient geometry for the unit cell with 

varying angles and constant length 
1
L

(from [22])
 

 

For simplicity, the gradient core has also been in this case replaced by an equivalent 

special orthotropic homogenized material with a suitable compliance matrix [S] [22]. The out-of-

plane Poisson’s ratios 
xz

υ and
yz

υ  are assumed to be zero, consistently with the assumptions of 

the cellular material theory [4]. Similarly, the other transverse Poisson’s ratios are assumed to 

satisfy the relation 
zx zy c

υ = υ ≈ υ  where 
c
υ  is the Poisson’s ratio of the core material [4]. The 

formulations given by Gibson and Ashby [4] for the mechanical properties of honeycombs are 

valid only for infinite honeycombs, typically for panels made of 12 12×  cells or above [22]. For 

structures made of periodic assemblies of fewer cells, it is possible to observe a general decrease 

of stiffness, accompanied by variations of the Poisson’s ratio from the theoretical infinite panel 

solution [19]. While 10 10×  honeycomb panels show substantially the same behavior under uni-

axial tensile loading (i.e., the Ex and Ey moduli are the same),. a 2 10×  cell panel will have a 

decreased stiffness Ex compared to the one predicted by the theoretical analysis [22]. In table 6, 

the finite element results for a 2 10×  auxetic hexagonal core and 4 10× auxetic hexagonal core 

for both angles 20θ °
= −  and 30θ °

= −  are shown. A 2 10×  cell panel will have a stiffness Ex 

substantially decreased compared to the analytical prediction, but a 4 10×  core with two rows at 

20θ °
= − and two rows at 30θ °

= −  will yield an equivalent stiffness closer to the one predicted 

by the analytical formulas. 
 

Table 6. Theoretical and finite element model values for 
x
E  of auxetic hexagonal core 

 

Cell angle θ  Theoretical value from ref. [4] Calculated FEM value Calculated FEM value  
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in degree for 10 10× core for 2 10× core for 4 10× core  

-20 5.58 Mpa 1.48 Mpa 4.24 Mpa 

-30 5.14 Mpa 1.40 Mpa 4.10 Mpa 

 

Table 7 also shows that for a 8 10× gradient cell panel consisting of 4 rows of auxetic 

cells at 20θ °
= −  and 4 rows of units at 30θ °

= −  will have mechanical properties close to the 

theoretical values. Therefore for gradient cell cores greater than 8 10× , the theoretical value 

predicted for 
x
E  can be considered an adequate approximation.  

 

Table 7. Theoretical and FE results for the 
x
E  modulus of auxetic hexagonal gradient core 

 

2-Layered gradient configuration 
Average theoretical 

from Ref. [4] 

Calculated  

by FEM  

Average by FEM  

(2 separate layers) 

4 10×
° °(2×10, θ=-20 and 2×10, θ=-30 )  

5.36 Mpa 4.24 Mpa 1.44 Mpa 

8 10×
° °(4×10, θ=-20 and 4×10, θ=-30 )  

 5.36 Mpa 5.41 Mpa 4.16 Mpa 

5.2 FE modelling of auxetic hexagonal sandwich panel 

Similarly to the other models so far developed, the plate skin is modeled with SHELL63 

elements and the core with SOLID45 ones containing the homogenized material. The natural 

frequencies of the auxetic hexagonal sandwich are given in table 8.  
 

               Table 8. Natural frequencies of sandwich panel with auxetic hexagonal core 

Mode 1 2 3 4 5 

Frequency (Hz) 285.14 557.15 844.21 928.02 1031.90 

 

For the harmonic analysis of the auxetic hexagonal sandwich panel, simply supported 

boundary conditions by constraining the translational degrees of freedom in the neutral plane of 

model are considered. The same excitation cases used for the ATG model are also considered. 

The applied pressures are in the frequency range between 0 Hz and 1000 Hz. 

In figure 13.a, the variations of both /
x ABS
E E and /y ABSE E with the variation of the angle 

θ  are shown, with 
ABS
E being the Young’s modulus of the core material (ABS plastics). The 

graphs show that with an increase in angle θ , 
x
E  slightly increases, but the increment of 

y
E  is 

more significant.  Also the out-of-plane Young’s modulus 
z
E  is decreased when the angle θ  is 

increased [4]. 
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(a). In-plane young modulus ratios  (b). Out of plane transverse shear stiffness 

Gxz and Gyz 

 

Figure 13. Variation of mechanical properties of a single auxetic hexagonal cell  

 

Figure 13.b depicts variation of out-of-plane transverse shear stiffness Gxz and Gyz with 

change of cell angle, while the thickness of the core is 10.23 mm.. With an increase of the cell 

angle, Gxz decreases and Gyz increases respectively. Also in this case (and similarly to the ATG 

panel) the sensitivity of the radiated sound power level is negligible with respect to Gxy. Figure 

13.a indicates that the in-plane Young’s moduli of a single auxetic hexagonal cell have in general 

larger values when the cell angle is small (in magnitude). However, the moduli will tend to 

decrease with respect to the cell angle from -10 to -30 degrees, while after these angle values no 

significant changes in uniaxial stiffness are noticeable. This trend is totally different for the out 

of plane transverse shear stiffness (Figure 13b), and for a cell angle of -30
o
 the two transverse 

moduli differ substantially. These observations can give a guideline to design hexagonal auxetic 

structure cell angles when a specific loading case, e.g. bending or torsion, should be considered. 
 

5.3 Minimization of RMSL for auxetic hexagonal sandwich panel   

5.3.1 Optimizing the angle of the hexagonal sandwich panel 

The auxetic hexagonal gradient plate is considered to be composed of five different 

sectors with five different negative angles {
1
θ , 

2
θ , 

3
θ , 

4
θ , 

5
θ }

T
. The skin plate has the same 

material as the core material and the thickness of the skin is fixed. First-order and random 

optimization ANSYS routines are used for the minimization of the RMSL. Figure 14 shows the 

change of the angles in different regions during the optimization iterations for the load case “a”. 
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Figure 14. Change of the hexagonal auxetic cell angle during the optimization by using the first 

order method for the first loading condition (Fig. 6.a). 

In table 9, the optimization results for the minimization of the radiated sound power level 

of auxetic hexagonal sandwich panel with constant thickness are shown.  

Table 9. The optimization variables for the auxetic hexagonal sandwich panel under loading 

cases “a” and “b” after 20 iterations 

	
1
θ

  
(Degree) 

2
θ  

(Degree) 

3
θ   

(Degree) 

4
θ

 
(Degree) 

5
θ

 
(Degree) 

RMSL 

(dB) 
Mass (Kg) 

Loading 

case 
“a” “b” “a” “b” “a” “b” “a” “b” “a” “b” “a” “b” “a” “b” 

Original 

design 
-20 -20 -20 -20 -20 135.89 135.52 0.399 0.399 

First-

order 

method 

-18.99 -18.51 -21.09 -18.25 -19.54 -16.11 -10.02 -10.01 -14.71 -15.02 135.17 134.44 0.397 0.396 

Random 

search 

method 

-45.74 -14.64 -23.56 -27.32 -17.75 -21.10 -13.51 -11.11 -20.39 -10.65 135.53 134.69 0.398 0.397 

For the load case “a”, the root mean square of the sound power level is reduced by 0.72 

dB, and by 1.08 dB for the load case “b”. Figures 15.a and 15.b show the reduction of the sound 

power level by using various optimization methods when the two loading cases are considered. 

The first resonance in the spectra related to the “b” case has been shifted to a higher value than 

for the case “a”. It is noticeable that in both cases the radiating peaks related to the 3
rd

 and 4
th

 

global modes are reduced and shifted to higher frequency values within the same frequency 

range. This behavior appears to be essentially stiffness dominated, because the mass for the 

optimized configurations changes in a very negligible way compared to the original design 

(Table 9). 



	

	

18	

  
(a). loading case “a”  

 

(b). loading case “b”  

 

Figure 15. Sound power level reduction for the auxetic hexagonal panel 

 

5.3.2 Optimizing the thickness of hexagonal sandwich panel 

Figure 16 shows the variation of the radiated sound power level for the loading profile “a”. The 

first case has a constant cell angle of 20θ = − ° and thickness of 10.23 mm. The second one has 

constant cell angle of 20θ = − ° and the optimum thickness of 18 mm, while the third one has an 

optimum cell angle that has been derived using the first order method and an optimum thickness 

of 18 mm. It is clear that the fundamental natural frequency of the optimum structure is moved to 

higher values in all the cases. Also, the modal density is decreased over the frequency considered 

for these simulations because of the way the stiffness to mass ratio of the structure has increased.  

 

Figure 16. Radiated sound power level minimization for loading case “a”- auxetic hexagonal 

core thickness optimization 
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For the loading case “a”, the normalized frequency is increased by 51.5% for the auxetic 

hexagonal core with a cell angle of 20θ = − ° and optimum thickness of 18 mm, and the 

normalized radiated sound power decreases by 93%. For the case related to both cell angles and 

thickness being optimum, the normalized frequency increases by 60% while the normalized 

radiated sound power is reduced by 94.6%. These results are also very similar to the ones 

observed for loading case “b”. The masses of the auxetic hexagonal sandwich panel 

corresponding to the pressure load cases “a” and “b” with the optimum cell angles and optimum 

thickness of 18 mm are 0.480 Kg and 0.478 Kg respectively. In both cases the mass are increased 

compared to the original configuration.  

 

6. Comparison of the normalized radiated power performance between the auxetic 

optimized configurations 

 

Figure 17 gives a global comparison of the normalized radiated sound power levels in 

logarithmic scale of the original and optimized ATG and auxetic hexagonal models for the 

loading case “a” with respect to the normalized frequency. The figure shows the effect of the 

gradient geometry on the reduction of the radiated noise from the auxetic sandwich panel, and it 

generally indicates that the modal density has decreased for the gradient structures within the 

normalized frequency range. 

 

 

Figure 17. Effect of gradient geometry on reduction of radiated noise in auxetic sandwich panels 

(loading case “a”) 

 

Compared to the original non-optimized models, it is possible to notice a general 

reduction of the normalized radiated sound power, and an increase at the same time of the 

normalized frequency for the first resonance. The auxetic hexagonal model shows the lowest 

level of radiated noise, in particular for the first peak. Low levels of radiated noises are also 

observed in the case of the first loading level for the other resonances within the normalized 

frequency range for the optimized auxetic re-entrant configuration, rather than in the ATG 
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morphology. At higher frequencies, the optimum models behave fairly similarly, both in terms of 

modal density and overall sound power levels. The optimum auxetic hexagonal configuration has 

also the advantage of featuring the lowest amount of mass increment in comparison to the 

original model, and this is a particularly interesting point in terms of potential applications like 

airframe structures. It should be emphasized that with the one-dimensional gradient geometry 

considered in this work one can adjust the mechanical properties of the original material 

simultaneously along the three Cartesian directions. 

 

7. Conclusions 

The paper has described the vibroacoustic behavior of anti-tetrachiral and auxetic 

hexagonal gradient sandwich panels. A homogenized finite element modeling approach has been 

used to determine the mechanical properties of the auxetic structures, the natural frequencies and 

the radiated sound power level of sandwich panels made by the auxetic cores.  

Both of the auxetic core geometry and thickness of the sandwich panels affect the 

radiated sound power level of the structure. In general, the first resonance belonging to the 

optimized structures shifts towards higher frequencies. Furthermore, the optimized structures 

radiate a lower level of structure-borne sound.  

The location of the excitations plays an important role on the radiated noise level from 

the structures, both for the ATG and the auxetic hexagonal sandwich panels. Therefore, it is 

recommended to use the gradient core geometries to cover the excitations areas (see loading case 

“a”).   

The auxetic hexagonal model performs better to reduce structure-born radiated noise, 

especially at low frequency ranges. At higher frequencies however, the optimum configurations 

of the ATG and auxetic hexagonal sandwiches behave fairly similarly, both in terms of modal 

density and overall sound power levels. The optimum auxetic hexagonal configuration has also 

the lowest amount of mass increment in comparison to the original model. This is a feature that 

could be considered for potential airframe structures applications, in which weight reductions or 

control are paramount.  
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