Progress of Theoretical Physics, Vol. 73, No. 4, April 1985

Vibron Solitons and Coherent Polarization in an Exactly Tractable Oscillator-Lattice System

Proteins and Frölhlich's Idea of Biological Activity
An exactly tractable, nonlinearly coupled oscillator-lattice system is studied. This is a quasi one-
 ascillator system is shown to include, under certain circumstances, Frenkel excitons with exciton transfer of oscillator-lattice interactions is mainly classified into two types: One is to modulate vibrons, which are

 positive quartic anharmonicity. The former is applied to solitons in α helical proteins to show that
 biological activity due to the existence of coherent polarization field.

In spite of much current interest and speculations, little is known about physical
 hat biological activity and related phenomena may be due to coherent excitations of polar modes that are stabilized by nonlinear deformation of systems. ${ }^{1)}$ This idea was

 јо 8u!

Downloaded from https://academic.oup.com/ptp/article/73/4/853/1873187 by guest on 21 August 2022

vibrations. The Hamiltonian $H_{\text {osc }}$ of the oscillator system is taken to be

855

$$
H_{\text {latt }}=\sum_{n}\left[\left(P_{n}^{2} / 2 M\right)+(K / 2)\left(u_{n+1}-u_{n}\right)^{2}\right]
$$

$H_{\text {int }}=\sum_{n}\left[V\left(q_{n}\right)\left(u_{n+1}-u_{n-1}\right)-\lambda\left[\left\{\left(u_{n+1}-u_{n}\right) q_{n+1}+\left(u_{n}-u_{n-1}\right) q_{n-1}\right\} q_{n}\right]\right.$.
 be understood by considering an example in which the on-site potentials and the force
 $+u_{n}$ of the molecules in the lattice system through the form

[^0]$$
(\mathrm{c} \cdot \square) \quad\left(\left.\right|^{u} x-{ }^{u} x \mid\right) T \leftarrow\left(u^{\prime} u\right) T
$$
$v\left(q_{n}\right)=v_{0}\left(q_{n}\right)+\sum_{m} v_{1}\left(q_{n} ;|m-n| a\right), \quad L(m, n)=L(|m-n| a) \equiv L(|m-n|) . \quad$ (2•6)

 S.ołeli!

$$
{ }^{\prime}\left({ }^{u} x-{ }^{w} x \mid{ }^{{ }^{u}} b\right)^{\mathrm{r}} a^{\frac{u}{Z}}+\left({ }^{u} b\right)^{0} a=\left({ }^{u} x{ }^{\left.{ }^{\prime}{ }^{u} b\right)} a \leftarrow\left({ }^{u} b\right) a\right.
$$
 Explicit expressions for $V\left(q_{n}\right)$ and λ are then given by
$$
V\left(q_{n}\right)=v_{1}^{\prime}\left(q_{n} ;|a|\right) \quad \text { and } \quad \lambda=L^{\prime}(|a|)
$$

with

where the prime on v_{1} and L denotes differentiation with respect to the position of the -งəןnวəโ๐u
 various physically interesting problems as specific cases. Two typical cases exist: (1) The on-site potential $v\left(q_{n}\right)$ is of single-minimum type and (2) it is of double minimum type Here simplest is the case of harmonic oscillators

$$
v(q)=\mu \omega_{0}^{2} q^{2} / 2
$$

where ω_{0} is the elgenfrequency. Harmonic excitation waves propagating from one

 detail in $\S 7$.

Downloaded from https://academic.oup.com/ptp/article/73/4/853/187318.7 by guest on 21 August 2022

§ 3. An oscillator-lattice model for a Frenkel-exciton-lattice system

Essentially the same model Hamiltonian as that employed for the oscillator-lattice
 ipole-dipole coupling interacting with lattice vibrations. To illustrate this, we employ a

 of Pauli operators $\sigma_{n}=\left(\sigma_{n}{ }^{x}, \sigma_{n}^{y}, \sigma_{n}{ }^{z}\right)$, where $\sigma_{n}{ }^{x}$ and $\sigma_{n}{ }^{z}$ are related to the transition dipole moment $2 \mu \sigma_{n}^{x}$ and the population difference between the ground state and the excited state, respectively, of the nth molecule. Here μ is the matrix element of the
 low exciton density to neglect dynamical exciton-exciton interactions. is written in the form of the Ising model in a transverse field: ${ }^{7)}$

$$
H_{\mathrm{e} 1}=\sum_{n} \epsilon\left(x_{n}\right) \sigma_{n}^{z}-2 \sum_{n m} J\left(\left|x_{m}-x_{n}\right|\right) \sigma_{n}^{x} \sigma_{m}^{x}, \quad \epsilon\left(x_{n}\right)=\epsilon_{0}+\sum_{m} D\left(\left|x_{m}-x_{n}\right|\right)
$$

 of the free molecule and the instantaneous position of the nth molecule, respectively. The quantities $D\left(\left|x_{m}-x_{n}\right|\right)$ and $J\left(\left|x_{m}-x_{n}\right|\right)$ are the shift of ϵ_{0} due to the presence of other molecules and the dipole-dipole interaction energy, respectively.

Equation ($3 \cdot 1$) is reducible to the exciton Hamiltonian $H_{\text {ex }}$ plus the exciton-lattice
 and $(2 \cdot 3)$, respectively, provided that it can be treated classically and that the molecular

 $\sigma_{n}^{z} \cong-\left[(1 / 4)-\left(\sigma_{n}^{x}\right)^{2}\right]^{1 / 2}+\left(\sigma_{n}^{y}\right)^{2}=-\left[(1 / 4)-\left(\sigma_{n}^{x}\right)^{2}\right]^{1 / 2}+\left[\left(\dot{\sigma}_{n}^{x}\right)^{2} / \epsilon\left(x_{n}\right)^{2}\right]$

and by putting

By the use of Eqs. (3.3) and (3.4), Eq. (3:1) is reduced to
$\sigma_{n}{ }^{x}=2^{-1 / 2} q_{n}$

Explicit expressions for $H_{\text {ex }}$, which corresponds to a non-fluctuating part of $H_{\text {el }}$, and $H_{\text {int }}^{\text {ex }}$ are obtained by expanding the quantities $D\left(\left|x_{m}-x_{n}\right|\right)$ and $J\left(\left|x_{m}-x_{n}\right|\right)$ in Eqs. (3•1) to first

 Namely, putting

taking inequality (3.2) into account and using the procedure given in Appendix A, we get
$H_{\text {ex }}=H_{\text {osc }} \quad$ and $\quad H_{\text {int }}^{\text {ex }}=H_{\text {int }}$

$V(q)=-\epsilon D^{\prime}(|a|)\left(1-2 q^{2}\right)^{1 / 2}, \quad \lambda=\epsilon J^{\prime}(|a|)$.

The total Hamiltonian of the exciton-lattice system under consideration can be obtained
 $(2 \cdot 2)$. Under the condition (3.2) it is a very good approximation to put $v(q)=$ const $+\left(\epsilon^{2} / 2\right) q^{2}+O\left(q^{4}\right)$,
a situation quite analogous to the case of Eq. (2•8).) as follows:

$$
\mu \ddot{q}_{n}+v^{\prime}\left(q_{n}\right)-2 \sum_{m} L(n, m) q_{m}+V^{\prime}\left(q_{n}\right)\left(u_{n+1}-u_{n-1}\right)
$$

$$
\begin{aligned}
& (Z \cdot \sigma) \\
& (I \cdot \nabla)
\end{aligned}
$$

 are then reduced to

$$
\begin{aligned}
& H_{\text {int }}=\sum_{n} V\left(q_{n}\right)\left(u_{n+1}-u_{n-1}\right) \\
& \mu \ddot{q}_{n}+v^{\prime}\left(q_{n}\right)-2 \sum_{m} L(n, m) q_{m}+V^{\prime}\left(q_{n}\right)\left(u_{n+1}-u_{n-1}\right)=0 \\
& K\left(u_{n+1}+u_{n-1}-2 u_{n}\right)+V\left(q_{n+1}\right)-V\left(q_{n-1}\right)=0
\end{aligned}
$$

 $K\{\cosh [a(\partial / \partial x)]-1\} u+\sinh [a(\partial / \partial x)] V(q)=0$.
where u_{0} is an integral constant. Inserting this back into Eq. $(4 \cdot 4)$, we get

$$
{ }^{u} b\left(u{ }^{\prime} u\right) T \stackrel{{ }^{u}}{\square} Z-\left({ }^{u} b\right), \Lambda^{0} n+\left({ }^{u} b\right), a+{ }^{u} b \underline{b} n^{\prime}
$$

We observe that Eq. (4•8) is also derivable from the following effective oscillator Hamiltonian
$H_{\mathrm{osc}}^{\mathrm{eff}}=\sum_{n}\left[\left(p_{n}^{2} / 2 \mu\right)+U\left(q_{n}\right)\right]-\sum_{n m} L(n, m) q_{n} q_{m}+\sum_{n} W\left(q_{n}, q_{n+1}\right)$

where

$\left.{ }^{(}{ }^{u} b\right) \Lambda(Y / Z)-\left({ }^{u} b\right) \Lambda^{0} n+\left({ }^{u} b\right) a=\left({ }^{u} b\right) \Omega$

$$
-(1 / K) V^{\prime}\left(q_{n}\right)\left[2 V\left(q_{n}\right)+V\left(q_{n+1}\right)+V\left(q_{n-1}\right)\right]=0
$$

$\cdot\left[\left({ }^{u} b\right) \Lambda-\left({ }^{1+u} b\right) \Lambda\right]\left({ }^{u} b\right) \Lambda(M / \mathrm{I})-=\left({ }^{1+u} b^{\prime} u b\right) M$
bg

 о7 әnp s!̣ s!ЧL 'suo!̣eł!

 Кq ұипоээe оұи! иәчеұ Кโәұеш! taking u_{n} in Eq. (4-2), with the last term omitted, to be of the form

$$
u_{n}=u(n a-v t) \equiv u(\xi)
$$

(4•13)
 renormalization of K in Eqs. (4•7), (4•8), (4•10) and (4•11):

$$
K \rightarrow K\left[1-\left(v^{2} / c_{s}^{2}\right)\right]=K^{*}
$$

and by approximating the equation as

On-site potential and implication to Fröhlich's model

 of biological activityWe specify here the form of the on-site potentials $v(q)$ and $V(q)$ to see how the

 $v(q)=\left(\mu \omega_{0}^{2} / 2\right) q^{2}+(b / 4) q^{4}, \quad b>0$ $V(q)=(A / 2) q^{2}+(B / 4) q^{4}, \quad A>0, \quad B>0 . \quad$ (5•2)
 Inserting Eqs. $(5 \cdot 1)$ and $(5 \cdot 2)$ into Eq. $(4 \cdot 10)$, we get an explicit expression for $U(q)$. әq ueว (b) \cap ғо sәлпеәј โе! gained by discarding sixth- and eighth-order anharmonic terms to get

$$
\begin{aligned}
& U(q)=\left(\mu \omega_{0}{ }^{2}+u_{0} A\right)\left(q^{2} / 2\right)+\left[b+u_{0} B-\left(2 A^{2} / K\right)\right]\left(q^{4} / 4\right) \\
& \text { on the assumption that } A \gg B \text {. Three cases of physical interest exist: } \\
& U U(q)=\left\{\begin{array}{lll}
\left(\mu \omega_{0}^{\prime 2} / 2\right) q^{2}-\left(b_{1} / 4\right) q^{4}, & b_{1}>0, & \text { (case (1)) } \\
\left(\mu \omega_{0}^{\prime 2} / 2\right) q^{2}+\left(b_{2} / 4\right) q^{4}, & b_{2}>0, & \text { (case (2)) } \\
-(\alpha / 2) q^{2}+(\beta / 4) q^{4}, & \alpha, \beta>0, & \text { (case (3)) }
\end{array}\right.
\end{aligned}
$$

$$
\omega_{0}^{\prime 2}=\omega_{0}^{2}+\left(u_{0} A / \mu\right)>0, \quad \alpha=-\left(\mu \omega_{0}^{2}+u_{0} A\right)>0,
$$

$$
b_{1}=\left(2 A^{2} / K\right)-b-u_{0} B>0, \quad b_{2}=b+u_{0} B-\left(2 A^{2} / K\right)>0,
$$

Of these three cases, case (3), which is only realizable for $u_{0} \neq 0$ with the condition $u_{0} A$ <0 and $\left|u_{0} A\right|>\mu \omega_{0}{ }^{2}$, is most remarkable in the sense that the modified on-site potential
 әqпор е оұ ге!

 place for $u_{0} \neq 0$.

Since cases (1) and (2) are studied in detail in §6, the remaining part of this section is devoted to case (3). Here the oscillator-lattice interactions induce a shift of equilibrium position of oscillators from $q=0$ to $q= \pm(\alpha / \beta)^{1 / 2}$ and a lowering of the

 transition or the appearance of coherent states both in the oscillator system and the lattice

 term in Eq. (4-9):
An explicit expression for $W\left(q_{n}, q_{n+1}\right)$ is omitted. If each oscillator has a non-vanishing

 this purpose, let us define the total energy $H_{\text {tot }}$ of the oscillator-lattice system as a whole by the equation

$H_{\text {tot }}=H_{\mathrm{osc}}^{\text {eff }}+H_{\text {latt }}\left[\left\{p_{n}\right\},\left\{u_{n}(q)\right\}\right]$.

are the kink width and the velocity of vibrons in the long wavelength limit, respectively. The quantity v is the kink velocity.
A situation here is reminiscent of the idea put forward by Fröhlich as mentioned in §1. ${ }^{1)}$ Setting up on phenomenological level equations of motion for a polarization field and a longitudinal elastic field, he and his coworkers ${ }^{2)}$ showed specifically that the nonlinear coupling of these two fields leads to an excited metastable state with nonvanishing mean polarization field. Assuming that the employed model may be applicable to proteins and in particular to enzymes, he speculated that these molecules

 activity of an enzyme in the metastable, polarized, state is much higher than it is in the ground state, then it could be switched on by the electric field due to adsorbed ions or due

workers still appears to remain on phenomenological level. The present oscillator-lattice model in case (3) may be the first implementation of Fröhlich's idea on microscopic level,
 whether the result obtained in this section or the argument of similar nature may be applicable to real situations in the problem of biological activity.

suotijos uol!oxə pue suot!jos uorq! \quad • 9 §

In what follows we shall dwell upon cases (1) and (2) considered in $\S 5$. In doing this we confine ourselves to the case $u_{0}=0$ and $A \gg B$ for the sake of simplicity. Inserting Eqs. $(5 \cdot 4)$ and $(5 \cdot 5)$ into $(4 \cdot 8)$, we then obtain

$$
\ddot{q}_{n}+\omega_{0}^{2} q_{n}-(2 / \mu) \sum_{m} L(n, m) q_{m}-(-1)^{\eta-1}\left(b_{\eta} / \mu\right) q_{n}^{3}
$$

$$
\eta=1 \text { for case (1) and } \eta=2 \text { for case (2). }
$$
 $\eta=1$ for case (1) and $\eta=2$ for case (2). (6:1)
 Equation (6•1) is an equation of motion for vibrons, Frenkel excitons or optical mode

 phonons, which are often called quasi-particles hereafter, with the dispersion relation $\omega^{(0)}(k)=\left[\omega_{0}^{2}-(2 / \mu) \sum_{m} L(n, m) \exp [i k(m-n) a]^{1 / 2}\right.$nonlinearly modulated by acoustic phonons. The bottom and the top of the frequency band $\omega^{(0)}(k)$ are given by

and

$$
\omega^{(0)}\left(k_{2}\right) \equiv \omega_{2}=\left[\omega_{0}^{2}+(2 / \mu) \sum_{m}(-1)^{|m-n|^{-1}} L(n, m)\right]^{1 / 2}, \quad k_{2}=\pi / a,
$$

respectively.
We are concerned with nonlinearity-induced localized modes or solitons of the
quasi-particles stationary ones of which appear below the bottom or above the top of the
frequency band $\omega^{(0)}(k)$ for cases (1) and (2), respectively. We divide q_{n} into negative and
positive frequency parts: terms with their main time-dependence given by $\exp \left(-i \omega_{\eta}\right)$ and their complex conjugate. We then obtain

$$
-\left(A^{2} / 2 K \mu\right) q_{n}\left(q_{n+1}^{2}+q_{n-1}^{2}-2 q_{n}^{2}\right)=0
$$

$q_{n}=Q_{n}+Q_{n}{ }^{*} \equiv \bar{Q}_{n} \exp \left(-i \omega_{n} t\right)+\bar{Q}_{n}{ }^{*} \exp \left(i \omega_{n} t\right)$.
We insert this into Eq. $(6 \cdot 1)$ and employ a rotating-wave approximation to retain only
$\ddot{Q}_{n}+\omega_{0}^{2} Q_{n}-(2 / \mu) \sum_{m} L(n, m) Q_{m}-(-1)^{n-1}\left(3 b_{\eta} / \mu\right)\left|Q_{n}\right|^{2} Q_{n}$

[^1]\[

$$
\begin{aligned}
& (\text { eZI } \cdot 9) \\
& ([I \cdot 9)
\end{aligned}
$$
\]

$8 \cdot 9)$
$0=$
(e8.9)
(98•9)
(6.9) Here we have used Eqs. $(6 \cdot 2),(6 \cdot 3),(6 \cdot 4)$ and the relation $\omega^{(0)}(-k)=\omega^{(0)}(k)$. A physical insight into the appearance of solitons can be gained by rewriting Eq. (6.8a) as

$\ddot{\phi}_{n}+\left[\omega^{(0)}\left(k_{\eta}-k\right)^{2}-\omega^{2}\right] \phi_{n}$

Here ω and k are real constants identified as the eigenfrequency and momentum of solitons, respectively, while ϕ_{n} is a (real) envelope function depending on site index and time variable t. Putting Eq. (6.7) into Eq. (6.6), we get
$\quad Q_{n}=\phi_{n} \exp [-i(\omega t-\bar{k} n a)]$ with $\bar{k}= \begin{cases}k & \text { for } \eta=1, \\ k_{2}-k & \text { for } \eta=2 .\end{cases}$
Here ω and k are real constants identified as the eigenfrequency and momentum of

where

$$
2 \omega \dot{\phi}_{n}+(2 / \mu) \sum_{n=1}^{\infty} \mathcal{L}(l) \sin (k l a)\left(\phi_{n+\ell}-\phi_{n-l}\right)=0
$$

,$_{\eta}(l)=(2 / \mu) \mathcal{L}(l) / \omega_{L \eta}^{2} \quad$ with $\quad \omega_{L \eta}^{2}=(2 / \mu) \sum_{l=1}^{1} \mathcal{L}(l)$,

It is seen that the potential functions $V_{1}\left(\phi_{n} ; k\right)$ and $V_{2}\left(\phi_{n} ; k\right)$ so introduced are of
 otherwise they are of single-minimum-type. It is only in such cases that localized modes or solitons can exist. independent at the same time. Equation (6•10) is reduced to

$$
(6 \cdot 12 a)
$$

$$
(6 \cdot 12 b)
$$

To illustrate this in the simplest way, let us first pay attention to stationary localized modes or stationary or non-propagating solitons for which $k=0$ and ϕ_{n} is time-
$\sum_{l=1}^{\infty} L_{\eta}(l)\left(\phi_{n+l}+\phi_{n-l}-2 \phi_{n}\right)=-\mathcal{V} V_{\eta}{ }^{\prime}\left(\phi_{n} ; 0\right)$,

(\&I•9)

 time version of the equation of motion for a Newtonian particle with mass $\sum_{l=1}^{\infty} l^{2} L_{\eta}(l) a^{2}$

$$
\begin{aligned}
& \text { (0L•9) } \\
& \sum_{l=1}^{\infty} L_{\eta}(l) \cos (k l a)\left(\phi_{n+l}+\phi_{n-l}-2 \phi_{n}\right)-\left[(-1)^{\eta-1} / \omega_{L \eta}^{2}\right] \ddot{\phi}_{n}=-C V_{\eta}{ }^{\prime}\left(\phi_{n} ; k\right),
\end{aligned}
$$

Here the lattice discreteness in the oscillator system is regarded as a perturbation to the integrable system governed by Eq. ($6 \cdot 14$). The spatial discreteness effect can then be deduced from the well-known KAM theorem. ${ }^{\text {8 }}$) Let us consider solutions plotted in (ϕ_{n}, $\left.\phi_{n+1}-\phi_{n}\right)$-space, for which three characteristic features exist, fixed points, invariant
 small anharmonicity all trajectories which exist in the integral system persist albeit deformed. As anharmonicity increases, fewer and fewer of the KAM trajectories remain, and their disappearance is connected with the appearance of chaotic phases (see Fig. 1).
 maximum point or unstable point in $\mathcal{V}_{\mu}\left(\phi_{n} ; 0\right)$ and that in the close vicinity of the separatrix corresponding to the soliton solution $(6 \cdot 16)$ are most sensitive to the

 which are slightly deformed from those in the continuum limit.
 moving solitons which are governed by Eqs. $(6 \cdot 10)$ and $(6 \cdot 8 \mathrm{~b})$, the former and the eigenfrequency ω and the envelope function ϕ_{n} and the soliton momentum k, respectively. әлои чэпи әге ($0[\cdot 9$) pue (98.9) 'sbन әәu!s

 reduce to one and the same equation

Fig. 1. Schematic feature of solutions to Eq. (6•13'). The points O and M are a hyperbolic point and
an elliptic point, respectively, of $C V_{n}\left(\phi_{n}, 0\right)$. A dotted trajectory is a separatrix corresponding to solitons in the continuum limit. The shaded region represents chaotic phases.

$$
0={ }_{\varepsilon} \phi\left({ }_{z}{ }^{u} \supset \pi / /^{u} q \mathcal{E}\right)+\phi\left[{ }_{z}{ }^{u} \partial /\left({ }_{z}{ }^{m}-{ }_{z}{ }^{u}(\infty)\right]_{\tau-u}(\mathrm{I}-)-\left({ }_{z} x p / \phi_{z} p\right)\right.
$$

$(6 \cdot 14)$ $$
x=n a \text { and } c_{\eta}^{2}=(2 / \mu) \sum_{l=1}^{\infty} \mathcal{L}(l) l^{2} a^{2}
$$

Solutions to Eqs. (6•14) with the boundary condition $\phi(\pm \infty)=0$ and $|d \phi / d x|_{x= \pm \infty}=0$ are
neighbour pairs. Then, it is reduced to

$$
\phi=
$$

$$
(6 \cdot 16)
$$

where α is an arbitrary parameter identified as the amplitude of the stationary solitons. With the above preliminary discussion on the case of continuum limit in mind, we study Eq. $(6 \cdot 13)$ which is generally non-integrable. Without loss of the essential feature of the problem, we confine ourselves to the case in which the $L(n, m)$'s extend only nearest

$(, 8[\cdot 9)$

$$
\phi_{n+1}+\phi_{n-1}-2 \phi_{n}=-C V_{\eta}^{\prime}\left(\phi_{n} ; 0\right) .
$$

ssịed moqu8!əu
with

$\frac{\partial^{2} Q}{\partial x^{2}}-\frac{1}{c_{1}{ }^{2}} \frac{\partial^{2} Q}{\partial t^{2}}-m_{1}^{2} c_{1}^{2} Q+2 m_{1} g_{1}\|Q\|^{2} Q=0$	for case (1),
$\frac{\partial^{2} Q^{\prime}}{\partial x^{2}}+\frac{1}{c_{2}{ }^{2}} \frac{\partial^{2} Q^{\prime}}{\partial t^{2}}+m_{2}^{2} c_{2}^{2} Q^{\prime}+2 m_{2} g_{2}\left\|Q^{\prime}\right\|^{2} Q^{\prime}=0$	for case (2)

This is also a non-relativistic form of Eqs. (6.17a) ($\left.Q=\exp \left(-i \omega_{1} t\right) \psi\right)$ and (6.17b) (Q

(6.28)

(6•29) Inequality $(6 \cdot 29)$ means that the soliton amplitude α should satisfy the condition that the corresponding harmonic energy is much larger than the corresponding anharmonic energy multiplied by three. The solution in the non-relativistic limit for case (1) was obtained in (I).

$$
(\mu / 2) \omega_{\eta}^{2} \alpha^{2} \gg(3 / 4) b_{\eta} \alpha^{4}
$$

We now go back to the original discrete oscillator model by giving a brief discussion
on solutions to Eqs. $(6 \cdot 8 \mathrm{~b})$ and $(6 \cdot 10)$. As in the case of Eq. $\left(6 \cdot 13^{\prime}\right)$, we assume nearest neighbour interaction for the $L(n, m)$'s to obtain
By the use of the second of Eqs. $(6 \cdot 19),(6 \cdot 28)$ is rewritten as

$$
\omega_{\eta} \gg g_{\eta} \alpha^{2} .
$$

where

$$
\begin{aligned}
& \phi_{n+1}+\phi_{n-1}-2 \phi_{n}-\left[(-1)^{\eta-1} / \omega_{L \eta}^{2}(k)\right] \ddot{\phi}_{n}=-C V_{\eta}^{\prime}\left(\phi_{n} ; k\right) \\
& 2 \omega \dot{\phi}_{n}+\omega_{L \eta}^{2} \sin (k a)\left(\phi_{n+1}-\phi_{n-1}\right)=0
\end{aligned}
$$

$$
\omega_{L \eta}(k)^{2}=\omega_{L \eta}^{2} \cos (k a) \text { and } \omega_{L \eta}^{2} \rightarrow \omega_{L \eta}^{2}(k) \text { in } \vartheta_{\eta}\left(\phi_{n} ; k\right)
$$

The second of (6.31) means that the quantity $\omega_{L \eta}^{2}$ in $C_{\eta}\left(\phi_{n} ; k\right)$ should be replaced by

 әұеш! $\left(v^{2} / \omega_{L \eta}^{2}(k)\right)\left(d^{2} / d \xi^{2}\right)$ by $\left[v^{2} / a^{2} \omega_{L \eta}^{2}(k)\right] 2[\cosh \{a(d / d \xi)-1\}]$. In terms of

$=\xi /[a-v(t / s)]$,

(6.32)

(6•33)
 $\phi_{s+1}+\phi_{s-1}-2 \phi_{s}=-\gamma_{\eta}(k) \mathcal{V}{ }_{\eta}{ }^{\prime}\left(\phi_{s} ; k\right)$,

(6•34)

Eq. $(6 \cdot 30 \mathrm{a})$ is then rewritten as

$$
\gamma_{\eta}(k)=\left[1-\left(v^{2} / c_{\eta}(k)^{2}\right)\right]^{-1 / 2}
$$

$$
\text { with } \quad c_{\eta}(k)=a \omega_{L \eta}(k) .
$$

where

itons in α-helical proteins and comparison

In the previous section we made a detailed study of vibron solitons as an application of our model system, a simplified version of which was studied in (I) to give an alternative view to Davydov solitons in α helical proteins. In this section a more detailed and improved discussion is given to test our Davydov's idea can be formulated in a more physically reasonable and quantitatively correct form by the present oscillator-lattice model in comparison with the original Davydov theory. ${ }^{3)}$ In order to make our discussion self-contained, we first show the α helix in Fig. 2. Without loss of essential features of the problem, we use here a highly idealized model of the α helix by confining ourselves to considering a single chain of peptide groups. Then ω_{0} in Eq. (2.8) or
$(5 \cdot 1)$ is the eigenfrequency of the amide-I vibration. The quantities q_{n}, μ and $L(n, m)$
 vibration of the nth peptide group (nth
Such a result is only a zeroth order approximation to Eqs. (6•30). However, this already contains the non-trivial result that the vibron soliton frequency band $\omega_{\eta}(k)$ has the width р
 numerical solutions to Eq. (6.33). Qualitative features of the solutions can easily be
 the separatrix corresponds to the solution ($6 \cdot 22$) , $(6 \cdot 23)$ and ($6 \cdot 24$), and the same reasoning on the change of the KAM trajectories and the appearance of chaotic phases can
 solitons, for which the soliton momentum is not strictly defined.
Finally, the binding frequency $\omega_{B}(k)$ of solitons with momentum k is defined by the relation
> for case (1),
for case (2).
> (6.38a) (988.9) ЧІ!м uos!̣eduoว u! suot!

-2§

Ref. 3)).
amide-I oscillator), its effective mass and a dipole-dipole interaction force constant

 о7 әұе!

 harmonic, so case (1) ($\eta=1$) considered in $\S \S 5$ and 6 holds here.
We first compare the model Hamiltonian and a relevant field variable in the present theory and those in the Davydov theory.*) For this purpose we introduce creation and
 $q_{n}=\left(2 \mu \omega_{0}\right)^{-1 / 2}\left(b_{n}+b_{n}^{+}\right), \quad$ (7•1a) $p_{n}=\left(\mu \omega_{0} / 2\right)^{1 / 2}(1 / i)\left(b_{n}-b_{n}{ }^{+}\right) . \quad(\hbar=1) \quad$ (7•1b)

In terms of the b_{n} 's and the $b_{n}^{+\prime}$ S Eq. (2•1) is rewritten as ${ }^{5, * *)}$

$H_{\mathrm{osc}}=\sum_{n} \omega_{0} b_{n}{ }^{+} b_{n}-\sum_{n m} \bar{J}(n, m)\left(b_{n}{ }^{+} b_{m}+b_{m}{ }^{+} b_{n}+b_{n}{ }^{+} b_{m}{ }^{+}+b_{n} b_{m}\right)$
 by Davydov takes the form

$$
(D \cdot L)
$$

 ие!̣оұ!! әвиечэхә кq ләјsuex ч!!

 Davydov theory are given by the Hamiltonian

[^2] description appears to be more appropriate.
In the Davydov theory solitons are quantal entities, where number states are taken to be
 where in a certain sense phase states are considered as appropriate. Generally speaking, for such low energy excitations as those encountered in biological systems the phase-state
These differences of the model amide-I oscillator Hamiltonian and the viewpoint on Starting from Eqs. $(7 \cdot 4),(2 \cdot 2)$, and $(7 \cdot 5)$ and using the continuum approximation, Davydov directly arrived at the 1d NLS equation for $a_{n} \rightarrow a(x, t)$

with

where

condition $\left(7 \cdot 6^{\prime}\right)$ are given by
Aside from the factor W_{D}, one-soliton solutions to Eq. (7•7) with the normalization condition ($7 \cdot 6$) are given by

$$
\begin{aligned}
& \begin{array}{l}
(0[\cdot L) \\
(6 \cdot L)
\end{array}
\end{aligned}
$$

 terms of ordinary units which will be used throughout the remaining part of this paper, a result of such a procedure is written as

$$
A=\left(2 \mu \omega_{0} / \hbar\right) \chi
$$

698
$g_{1}=3 g_{D} / q_{0}{ }^{2}$ with $q_{0}{ }^{2}=\hbar / \mu \omega_{0}$.$\quad{ }^{(7 \cdot 13)}$
 (LZ.9) 'b太 sеәаәчм '\{!

 approximation and the other the non-relativistic limit of the nonlinear Klein-Gordon equation obeyed by the complex field Q, in conjunction with the use of the continuum
 the soliton binding energy obtained here are different from those of the Davydov theory. Namely, the binding energy of the Davydov solitons takes a unique value since their

 soliton solutions for α helical proteins

$$
(\Pi I \cdot L)
$$

$$
(7 \cdot 15)
$$

 oscillator, i.e., $\alpha^{2}=q_{0}^{2} y$, we get

$$
E_{1}(k)=\left[E^{(0)}(k)^{2}-\left(12 E_{0} \chi^{2} / K\right) y\right]^{1 / 2}
$$

(7-16)
$E_{1}(k)=\hbar \omega_{1}(k), \quad E^{(0)}(k)=\hbar \omega^{(0)}(k), \quad E_{0}=\hbar \omega_{0} . \quad$ (7•17)
In the above equations y is a dimensionless quantity yet to be estimated. The binding energy $E_{B}(k)$ of solitons is therefore given by
For vibrons in α helical proteins and also those in most of molecular crystals, the width $\omega_{W}{ }^{2}$ of the vibron squared frequency band

$$
\omega_{W^{2}}=\omega^{(0)}\left(k_{2}\right)^{2}-\omega^{(0)}(0)^{2}=(8 / \mu) \sum_{l=\text { odd }} L(l),
$$

[^3]
The dimensionless factor y can be esitmated by the stability condition of the soliton squared frequency band that $\omega_{1}(k)^{2}$ as a whole should be separated from the squared vibron frequency band $\omega^{(0)}(k)^{2}$ (see Fig. 3). By the use of Eqs. (7•15) and (7•19), this condition is written as

(7•21)

 neighbour pairs, we get the lower bound α_{m} of α as follows:

$$
\alpha_{m}^{2}=(2 / 3)\left(J K / \chi^{2}\right) q_{0}^{2}
$$

(7•22)

$$
y \simeq(2 / 3)\left(J K / \chi^{2}\right) \equiv y_{0}
$$

 J, K and χ used by Scott in his detailed analysis of the Davydov theory ${ }^{4}$ (see also Refs. 9)~11)):

This gives

about $15 \sim 35 \mathrm{~cm}^{-1}$ for moderate value of $y(0.83 \leq y \leq 1.94)$.
Until now, there is no experimental evidence for the existence of solitons in α helica
about $15 \sim 35 \mathrm{~cm}^{-1}$ for moderate value of $y(0.83 \leq y \leq 1.94)$.
Until now, there is no experimental evidence for the existence of solitons in α helical
 for acetanilide $\left(\mathrm{CH}_{3} \mathrm{CoNHC}_{6} \mathrm{H}_{5}\right)_{x}$ or ACN which is an organic solid having the structure

 of solitons, lies in the range $15 \sim 35 \mathrm{~cm}^{-1}$ of
 numerical values of χ and K given by Eq.

 that given by Davydov theory, which we
 it is obtained as follows:

This implies that

$$
y_{0}=1.73
$$

$E_{B}(k)=18.0 \times y \mathrm{~cm}^{-1}$
$(97 \cdot L) \quad(07 \cdot L) \cdot$ b或 $10 \ddagger$
$K=1.95 \times 10^{4} \mathrm{erg} \mathrm{cm}^{-2}$,

$$
\chi=3.4 \times 10^{-6} \mathrm{erg} \mathrm{~cm}^{-1}
$$

 $J=7.8 \mathrm{~cm}^{-1}$, -

The difference of natures of vibron solitons from Davydov solitons can also be seen by
 $E_{B D}$ is given by

$$
(7 \cdot 28)
$$

It is seen that soliton binding energy given by the Davydov theory is much too small
 of the energy band of amide-I vibration excitons as follows:
(7•29)
It is seen that with such small binding energy almost all part of the soliton energy band is merged into the amide-I energy band. It appears that these numerical results also lend support to the advantage of our vibron soliton theory over the Davydov theory.

§ 8. Concluding remarks

 biological activity. ${ }^{11,2)}$

 activity, it still suffers from several simplifications. Inclusion of the effect of phonon-

 related ones will be studied in the near future.

[^4]
[^0]: $(t \cdot b)$

[^1]: $-\left(A^{2} / 2 K \mu\right)\left[2 Q_{n}\left(\left|Q_{n+1}\right|^{2}+\left|Q_{n-1}\right|^{2}\right)+Q_{n}^{*}\left(Q_{n+1}^{2}+Q_{n-1}^{2}\right)-6\left|Q_{n}\right|^{2} Q_{n}\right]=0, \quad \eta=1,2, \quad(6 \cdot 6)$
 quasi-particles to omit the second line in Eq. $(6 \cdot 6)$. We seek the solutions in the form

[^2]: $(G \cdot L)$

 subject to the constraint

[^3]: $(7 \cdot 19)$

[^4]: References
 2) H. Bilz, H. Büttner and H. Fröhlich, Z. Naturforsch. 36B (1981), 208.
 3) A.S. Davydov, Biology and Quantum Mechanics (Pergamon Press, 1982), chap. VII and references cited
 therein; Sov. Phys. -Usp. 25 (1982), 899 and references cited therein.
 4) A. C. Scott, Phys. Rev. 26A (1982), 578; in Proc. 7th Kyoto Summer Institute on Dynamical Problems in
 Soliton Systems (Springer-Verlag, 1985) and references cited therein.
 5) S. Takeno, Prog. Theor. Phys. 71 (1984), 395.
 6) G. Kemeny, J. Theor. Biol. 48 (1974), 231.
 7) For a preliminary discussion, see S. Takeno, Prog. Theor. Phys. 69 (1983), 1798.
 8) See for example, V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer-Verlag, New
 York-Heidelberg-Berlin, 1980), Appendix 8.
 9) N. A. Nevskaya and Y. N. Chirgadze, Biopolymers 15 (1976), 637.
 10) V. A. Kuprievich and Z. G. Kudritskaja, cited in Ref. 4).
 11) V. A. Kuprievich and V. E. Klymenko, Mol. Phys. 34 (1977), 1287 .
 12) G. Careri, U. Buontempo, F. Carta, E. Gratton and A.C. Scott, Phys. Rev. Lett. 51 (1983), 304.

