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Abstract

This paper describes the functionality of ViC*, a compiler-like preprocessor for out-of-

core C*. The input to ViC* is a C* program but with certain shapes declared outofcore,

which means that all parallel variables of these shapes reside on disk. The output is a standard

C* program with the appropriate I/O and library calls added for e�cient access to out-of-core

parallel variables.

1 Introduction

Although parallel computers were originally designed with processing speed in mind, they have

proven equally valuable for their ability to solve problems with very large data requirements. Indeed,

parallel computers have opened up a new range of possibilities for scienti�c computing. Perhaps the

best known examples are \Grand Challenge" problems such as those from environmental modeling,

coupled �eld computations, and computational uid dynamics.

As the capacity of parallel computers has increased, however, so have the appetites of users.

Throughout the history of electronic computing, no matter how big and fast the top machines have

been, there have always been applications that needed them to be bigger and faster, and it remains

true today.

Over thirty years ago, computer architects devised virtual memory to solve this problem for

sequential machines [Den70]. We see two approaches in today's parallel machines:

� Have no built-in support for virtual memory. Without built-in virtual-memory support,

applications whose memory requirements exceed the available memory typically keep their

data on a disk system and perform explicit disk accesses. The explicit I/O calls consequently

add to the programmer's task, thus increasing the time spent in software development. The

programmer spends time that could otherwise be spent on application-speci�c code instead

worrying about disk I/O. Moreover, because I/O is often tricky to program, correct code is

more di�cult to develop and maintain.

�Supported in part by funds from Dartmouth College and in part by the National Science Foundation under Grant

CCR-9308667. Author's email address: thc@cs.dartmouth.edu.
yAuthor's email address: Alex.Colvin@dartmouth.edu.
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� Run traditional sequential virtual memory on the individual nodes, which requires a MIMD

architecture. This approach frees the programmer from coding explicit I/O calls, but because

it fails to take advantage of aggregate data-parallel operations, it also yields suboptimal per-

formance. There have been signi�cant technical advances recently on how to carefully plan

disk accesses for common data-parallel operations and algorithms [CGG+94, Cor92, Cor93,

CSW94, GTVV93, Kot94, NV91, NV92, VS94, WGWR93]. The performance improvements

gained by using these methods can be tremendous, and their impacts increase with the prob-

lem size. They require a degree of coordination among the processors and disks that unrelated

virtual-memory systems on separate nodes cannot provide.

Built-in virtual-memory support for data-parallel programming would allow the memory re-

quirements of application programs to exceed the available memory size without increasing software

development time or software complexity. Yet, programmers would not need specialized knowledge

of I/O-optimal algorithms in order to avoid huge performance penalties.

This paper describes a linguistic step toward such a solution. Our approach is based on the

data-parallel language C* [TMC93]. A preprocessor, ViC* (Virtual-memory C*), transforms a C*

program with parallel variables so large that they must reside on disk into a C* program with

all parallel variables �tting in memory and explicit I/O and library calls added. A ViC* source

program does not declare individual variables as disk-resident, or out-of-core; instead, any C* shape

may be declared to be outofcore, which means that all parallel variables of this shape are out-

of-core. Linguistically, the only di�erence between a ViC* program and a \standard" C* program

is the outofcore shape modi�er. The explicit I/O calls added by ViC* are direct parallel disk

reads and writes of sections of out-of-core parallel variables. The library calls added by ViC* are

typically for operations requiring communication in out-of-core parallel variables, e.g., reductions,

gets, and sends.

One principle of this project is to exploit existing languages and software as much as possible.

Although it performs as much analysis as many compilers, ViC* is a preprocessor. A programmer

using ViC* would �rst run the source program (say prog.vic), which contains outofcore shape

declarations, through ViC*, which produces a standard C* program (say prog.cs). This C*

program would then be run through the usual C* compiler and linked with special ViC* libraries

(containing the out-of-core communication functions) using the compiler ag -lvic to produce an

executable �le.

Why choose C* as a base language? We want a data-parallel language that is used at several

sites, for which there is existing code, and that is not High-Performance Fortran (HPF). We are

interested in data-parallelism because it has proven to be a valuable parallel-programming paradigm

and because recent I/O-optimal algorithms �t nicely into it. We want a language in use at several

sites and for which there is existing code because we hope that scienti�c programmers and others

will really use ViC*. And we wish to sidestep HPF because there are already two out-of-core HPF

projects that we know of, at Syracuse University [BTC94, TBC94] and Rice University [KKP94],

and because C* presents di�erent implementation challenges from HPF. In particular, HPF uses

arrays for parallelism and C* uses shapes, HPF has a much more restricted notion of context than

C*, and HPF's style of data distribution di�ers from that of C*. Moreover, the ViC* run-time

library may be substantially di�erent from those in the out-of-core HPF projects. Despite recent

setbacks at Thinking Machines Corporation, where C* was developed, we believe that C*|or at

least the concepts behind it|will persist for some time to come.

The remainder of this paper is organized as follows. Section 2 presents a brief overview of the

C* language and the ViC* extensions. The ViC* data structures and run-time interface reside in

a header �le, which Section 3 describes. Section 4 shows how ViC* modi�es out-of-core shape and
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data declarations. Sections 5 and 6 briey discuss how ViC* transforms out-of-core with and where

statements. Most of ViC*'s processing deals with expressions and optimizations, which Section 7

covers. Section 8 touches on issues relating to function calls with out-of-core parameters or return

values. Section 9 o�ers some concluding remarks. Finally, Appendix A shows the C* code generated

by a sample program.

2 Background concepts and overview of ViC*

This section introduces the parallel programming model and the language features of C* and ViC*

that implement it. More information about the C* language appears in [TMC93].

C*, and hence ViC*, support data-parallel programming , in which a sequential program operates

on parallel arrays of data, with each virtual processor operating on one parallel data element.

The underlying computer multiplexes a set of physical processors among the virtual processors to

support the parallel model. Scalar data remains global to all virtual processors.

Each parallel variable in C* has a shape, which describes its rectangular structure. A shape

de�nes the logical con�guration of parallel data in virtual processors. At any point in the program,

a current shape is in force. Most parallel operations must operate on data of the current shape. A

with statement selects the current shape, referred to by the reserved word current.

All C* operations are controlled by a context, which describes the active positions in parallel

variables of the current shape. Active positions are those whose virtual processors initiate parallel

operations. When a shape is made the current shape, all of its positions are active. The where

statement narrows the context by selecting a subset of the active positions within the shape. An

optional else clause of a where statement selects the complementary subset. The everywhere

statement makes all positions active. Context has both static and dynamic qualities. It is static

because completion of a where or everywhere statement restores the previous context. It is dynamic

because it is implicitly passed to any called function.

Parallel communication transfers parallel data among the virtual processors. There are several

forms of parallel communication. Reductions combine elements of a parallel variable into a scalar

result. Left indexing a parallel variable stores or extracts a scalar in a single virtual processor.

Parallel left indexing addresses data in a set of virtual processors. Virtual processors executing a

get operation in an expression fetch data from other virtual processors. Virtual processors executing

a send operation in an assignment transmit data to other virtual processors. Some readers may be

more familiar with get as \gather" and with send as \scatter." The standard C* library includes

specialized get and send operations for grid topologies as well as other forms of communication,

notably scans.

C* is restricted to in-core data stored in the computer's main memory. ViC* processes large

out-of-core parallel data sets stored on disk. ViC* extends the C* shape declaration statement

by allowing the outofcore storage-class modi�er on shape declarations. The outofcore modi�er

indicates that parallel variables of the shape in question normally reside outside the main memory.

(Typically, outofcore variables will reside on a parallel disk system.) ViC* uses this information

to access parallel variables of an outofcore shape. The keyword outofcore is a reserved word

in our implementation. Currently, ViC* needs to know at compile time whether each shape (even

those referenced by pointer) is outofcore. Eventually, we would like to be able to do without such

a modi�er and let ViC* determine which shapes should be out-of-core based on their size, the size

of the main memory, and other related factors.

To translate out-of-core operations, ViC* decomposes a program into basic blocks. A basic

block [ASU86] is a maximal sequence of statements with linear control ow. Types of statements
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within a basic block are declarations, assignments, expressions, subroutine calls, as well as with

and where statements. (Although where resembles a parallel if, it a�ects execution within virtual

processors rather than control ow.) A directed acyclic graph (dag) represents data dependencies

in a basic block. Basic blocks are further divided into simple blocks. A simple block is a subset of a

basic block delimited by subroutine calls or communication within out-of-core shapes. Each simple

block results in a sectioning loop in the C* program produced by ViC*. A simple block strip-mines

[ZC90] out-of-core data by iterating over in-core sections or strips of the data.

To improve performance, ViC* uses dataow analysis to determine which out-of-core data is

required from each simple block in subsequent execution. Such data is live. A variable for which

there are no further references is dead. Variables are always dead at the end of the block in which

they are declared.

Sample program

We illustrate some of the above concepts with the ViC* program in Figure 1. The program declares

an out-of-core shape series. Parallel variables of this shape are vectors of 240 elements. The out-

of-core parallel variable normal is a vector of 240 oats. Within the function example, we declare

out-of-core parallel variables harmonic and k in this shape. The variable k is initialized with the

pcoord intrinsic function, which returns the index of each position along an axis of a shape. For

i = 0; 1; : : : ;N� 1 the ith position of k (denoted [i]k in C*) has the value i. The where statement

narrows the context to the positive positions. The �rst statement in the where body assigns

elements of harmonic the reciprocals of k, so that [i]harmonic equals 1=i, for i = 1; 2; : : :N � 1.

Narrowing the context to positive positions avoids a division by 0. A sum reduction, denoted by

the += operator, sums all elements of harmonic into sum. The series is normalized by the reciprocal

of this sum into normal. Finally, a send operation shifts the elements of normal, sending each

element to the previous position. Within the parallel left-index expression, the period denotes the

index vector; hence this statement executes in parallel the assignments

[0]normal = [1]normal;

[1]normal = [2]normal;

[2]normal = [3]normal;

...

[N-2]normal = [N-1]normal;

3 Header File

The preprocessor includes a standard header �le with every compilation. Figure 2 shows this �le,

which de�nes ViC* data structures and declares runtime support routines for memory-management

and I/O. ViC* uses names beginning ViC__ to avoid conicts with the source program.

ViC* transforms out-of-core shape and data declarations into ViC__shape and ViC__data dec-

larations. A ViC__shape structure describes an out-of-core shape. The positions, rank, and

dimensions �elds describe a parallel data con�guration similar to an in-core shape, but without

in-core size limitations. A shape also has a current context, represented here by a pointer to paral-

lel boolean variable. A ViC__data structure describes a single out-of-core variable. It records the

variable shape and identi�es either a �le with out-of-core data or a scalar initial value for a �le yet

to be created.

C* de�nes the current shape and context as global state, which is automatically passed to

subroutines. ViC* implements these with global pointers to the current out-of-core shape and

context. It transforms out-of-core with and where statements into operations on these pointers.
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/* compute a truncated harmonic series and normalize it */

#define N (1L<<40) /* N == 2**40 */

outofcore shape [N]series; /* series of terms */

float:series normal; /* normalized terms */

void example()

{

float:series harmonic; /* truncated harmonic series */

float sum; /* series summation */

int:series k;

with (series) {

k = pcoord(0); /* index array */

where (k > 0) {

harmonic = 1.0 / k; /* 1/k (0 < k < N) */

sum = += harmonic; /* sum terms */

normal = harmonic * (1.0 / sum); /* normalized terms */

[.-1]normal = normal; /* shift series */

}

}

}

Figure 1: A sample ViC* program.

Other ViC* runtime support subroutines (ViC__Open through ViC__Copy in Figure 2) allocate

in-core strips of out-of-core data and transfer these strips to and from data �les. The routines

determine the in-core shape at runtime to make the best use of available memory.

ViC* converts out-of-core operations into loops that iterate over in-core sections from disk

�les. Several macros (ViC__DCL through ViC__CLOSE in Figure 2) simplify declarations and �le

access. These macros use the standard preprocessor token-concatenation operator ## to reference

auxiliary variables. Variables of the form ViC__name_file and ViC__name_strip reference open

�le descriptors and in-core data. ViC* also introduces temporary variables beginning ViC__number

to hold stacked context information and intermediate results.

Other library functions implement out-of-core parallel communication, with versions for a num-

ber of special cases [Cor92].

4 Processing of declarations

This section describes how ViC* processes out-of-core shape and data declarations. ViC* identi�es

out-of-core shape declarations by the outofcore modi�er and replaces them with ViC__shape dec-

larations. It scans variable declarations for these shapes to identify out-of-core data and replaces

them with ViC__data declarations. ViC* detaches any out-of-core initializations for separate pro-

cessing as assignments, and it copies other declarations unchanged to the output. Figure 3 shows

several typical declarations, with the corresponding ViC*-generated output.

The out-of-core shape series has N positions in a 1-dimensional array. Its initial context is the

parallel boolean variable ViC__everywhere. The declarations of out-of-core variables a, aa, and

ap are changed into declarations using ViC__data structures with shape series. The array aa is

initialized with an array of ViC__data structures. These out-of-core variables have no initial value.

The data for an out-of-core variable is kept in a �le identi�ed by the ViC__data structure's
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#define ViC__MAX_DIM 8

/* ViC outofcore descriptors */

struct ViC__shape { /* out of core shape */

struct ViC__data *context; /* pointer to the saved context */

size_t positions; /* the number of shape positions */

int rank; /* shape rank */

size_t dimensions[ViC__MAX_DIM]; /* number of elements in each dimension */

};

typedef struct ViC__shape ViC__shape;

struct ViC__data { /* outofcore dataset */

ViC__shape *datashape; /* pointer to the variable shape */

long fileid; /* data file ID */

void *initial; /* or static initial value */

};

typedef struct ViC__data ViC__data;

/* ViC global "registers" passed implictly to subroutines */

ViC__shape *ViC__current; /* current shape */

ViC__data *ViC__context; /* current context */

/* simple block processing */

shape *ViC__Stripshape(size_t sizes); /* determine strip size & create shape */

void *ViC__Freeshape(shape *s); /* release shape for strip */

void:void *ViC__Alloc(size_t size); /* allocate in-core strip */

void ViC__Free(void); /* free in-core strips */

/* out-of-core I/O */

typedef struct ViC__file ViC__file; /* data file descriptor */

ViC__file *ViC__Open(ViC__data *data); /* open dataset */

void ViC__Close(ViC__file *file, ViC__data *data); /* close dataset */

void ViC__Readstrip(void:void *data, size_t size, ViC__file *file);

void ViC__Writestrip(void:void *data, size_t size, ViC__file *file);

void ViC__Remove(ViC__data *data); /* delete file out of scope */

void ViC__Copy(ViC__data *dst, ViC__data *src); /* copy variables */

/* constants */

extern ViC__data ViC__everywhere; /* everywhere context */

/* macros to declare/read/write strip data */

#define ViC__DCL(T, V, D) \

T:current *ViC__##V##_strip = ViC__Alloc(boolsizeof(ViC__##V##_strip)); \

ViC__file *ViC__##V##_file = ViC__Open(D)

#define ViC__LOOP \

long ViC__position; \

for (ViC__position = 0; \

ViC__position < ViC__current->positions; \

ViC__position += positionsof(*ViC__stripshape))

#define ViC__READ(V) \

ViC__Readstrip(ViC__##V##_strip, boolsizeof(ViC__##V##_strip), ViC__##V##_file)

#define ViC__WRITE(V) \

ViC__Writestrip(ViC__##V##_strip, boolsizeof(ViC__##V##_strip), ViC__##V##_file)

#define ViC__CLOSE(V, D) ViC__Close(ViC__##V##_file, D)

Figure 2: The ViC.h �le.
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outofcore shape [N]series, *sp; ===> ViC__shape series = { &ViC__everywhere, N, 1, {N} },

*sp;

float:series a, aa[5], *ap; ===> ViC__data a = { &series, 0, NULL },

aa[5] = { { &series, 0, NULL },

{ &series, 0, NULL },

{ &series, 0, NULL },

{ &series, 0, NULL },

{ &series, 0, NULL } },

*ap;

float:*sp x; ===> ViC__data x = { sp, 0, NULL };

static float:series y = 1.0; ===> static float ViC__10 = 1.0;

static ViC__data y = { &series, 0, &ViC__10 };

struct s { ===> struct s {

int f1; int f1;

float f2; float f2;

char f3; char f3;

}; };

struct s:series z; struct ViC__s {

ViC__data f1 = { &series, 0, NULL };

ViC__data f2 = { &series, 0, NULL };

ViC__data f3 = { &series, 0, NULL };

};

struct ViC__s z;

Figure 3: Some sample ViC* declarations and the corresponding output.

fileid �eld. Initially a variable has no value and a zero fileid. Upon the �rst assignment to a

variable, the run-time function ViC__Writestrip assigns a unique nonzero integer to fileid and

creates a �le with that name. This �le holds the variable's data for the lifetime of the variable.

Global and static variables may be assigned an initial value before the program runs via the

ViC__data structure's initial pointer, which points to a scalar initial value. The static out-of-

core variable y has an initial value 1.0 stored in a preprocessor-generated scalar ViC__10. Global

out-of-core data �les are deleted when the program exits.

There are two obvious ways to store parallel structures. One way, used by ViC*, places each

�eld in a separate parallel variable. An element of a parallel structure, therefore, does not exist as a

contiguous entity. The other way keeps the �elds of each element together, storing them in a single

parallel variable. Such an implementation generally requires maintaining a stride value and �eld

o�sets in order to access individual �elds. ViC* places each �eld in a separate parallel variable for

two reasons. First, addresses of �elds of parallel structs are expressible values in C*, but addresses

of individual elements of parallel variables of any type are not. Using the declarations in Figure 3,

for example, &z.f2 is a legal C* expression but &[5]z is not. ViC*'s strategy is oriented toward

the former; the expression &z.f2 in a ViC* source program would remain unchanged in the output.

Second, individual �elds within structures are expressible values in C*, and so are entire structures.

Thus, the C* statements a = z.f2 and struct s zz = [5]z are both legal. ViC* can implement

the �rst statement easily, and it can implement the second statement by reading a single element

from each of three parallel variables. The opposing strategy of keeping �elds together allows the

second statement to be easily implemented. To implement the �rst statement, however, it must

read through more data, most of which is unneeded, and hence it entails many more disk reads
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{

ViC__shape *ViC__prev = ViC__current; /* save previous shape in temp */

ViC__current->context = ViC__context; /* save context */

ViC__current = &SHAPE; /* point to current ViC__shape */

ViC__context = ViC__current->context; /* take its context */

WITHBODY; /* body of with */

ViC__current = ViC__prev; /* restore previous shape */

ViC__context = ViC__current->context; /* and context */

}

Figure 4: Code generated for the with (SHAPE) WITHBODY statement.

than the ViC* strategy.

5 Processing of with statements

This section outlines how ViC* processes with statements. A with statement establishes the current

shape and sets the context to the current context for that shape. C* allows with statements to be

nested, with the shape and context restored to their previous values after the end of the statement.

ViC* transforms a with statement that establishes an out-of-core shape into assignments to

ViC__current and ViC__context. A temporary variable saves the previous shape and restores it

after the with statement. ViC* defers output of a with statement until it encounters an out-of-core

operation in the body of the with. The function ViC__Stripshape computes an in-core shape used

to hold in-core strips of the data.

Figure 4 shows the structure of the code generated for an out-of-core with statement of the

form

with (SHAPE) WITHBODY;

Here a local temporary variable, ViC__prev, stacks the previous out-of-core shape. The statement

body, WITHBODY, undergoes further processing.

6 Processing of where statements

This section describes how ViC* processes where statements. The where statement restricts the

execution context for a statement. The everywhere variant of this statement widens the context to

include all positions. This execution context determines which positions initiate parallel operations.

Context is implicit in all parallel operations, including those in function calls. This use of a current

context is one of the distinguishing features of C*, in contrast to FORTRAN 90 [ANS92, MR90],

where context has static scope and may be applied only to parallel operations.

Like the with statement, a where statement saves state and restores it. ViC* replaces out-of-

core where statements with operations on out-of-core boolean variables and the current context

pointer, ViC__context. It copies the current context, evaluates the where expression in the sur-

rounding context, then computes the restricted context. For the else clause, the value of the where

expression is complemented to narrow the context.

Figures 5 and 6 show the structure of the code generated for out-of-core where statements
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{

@ bool:outofcore current *ViC__prev, /* saved context pointer */

ViC__new, /* new context data */

ViC__where; /* where expression */

ViC__prev = ViC__context; /* save pointer to old */

@ ViC__where = CONTEXT; /* evaluate where expression */

@ everywhere

@ ViC__new = *ViC__prev & ViC__where; /* copy old context data */

ViC__context = &ViC__new; /* make current */

@ WHEREBODY; /* execute body of where */

@ everywhere

@ ViC__new = *ViC__prev & !ViC__where; /* recopy old context */

@ ELSEBODY; /* execute body of where else */

ViC__context = ViC__prev; /* restore previous context */

}

Figure 5: The ViC* code for the statement where (CONTEXT) WHEREBODY; else ELSEBODY. Lines begin-

ning with @ undergo further processing by ViC*.

{

@ bool:outofcore current *ViC__prev; /* saved context pointer */

ViC__prev = ViC__context; /* save pointer to old */

ViC__context = &ViC__everywhere; /* expand context */

@ EVERYBODY; /* body of everywhere */

ViC__context = ViC__prev; /* restore previous context */

}

Figure 6: The ViC* code for the statement everywhere EVERYBODY. Lines beginning with @ undergo

further processing by ViC*.

where (CONTEXT)

WHEREBODY;

else

ELSEBODY;

and

everywhere EVERYBODY;

in terms of ViC* rather than C* code. ViC* does further processing on the context assignments and

the statements in WHEREBODY, ELSEBODY, and EVERYBODY. The assignments to context variables are

structured so that they may be combined with other out-of-core operations in the statement body.

The scope of these variables is limited to the where statement, so that they need not be written to

disk if the statement �ts in a simple block. Some of the variables can be eliminated if there is no

else part or for everywhere statements. Section 7 describes these and other optimizations.
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7 Processing of expressions

This section describes how ViC* processes expressions, including C* assignments. Because ViC* is

a front end to a C* compiler, it is only concerned with translating the outofcore extensions to C*.

Out-of-core operations consist of parallel operations, reductions, and left indexing of outofcore

variables. The outofcore syntax extensions ensure that all such operations can be identi�ed in

the source. Scalar C expressions and expressions involving in-core parallel variables are compiled

by the C* compiler, and so they need no additional processing.

ViC* uses the current out-of-core shape and context to generate C* code that evaluates out-of-

core expressions by making passes in sectioning loops. Each sectioning loop evaluates a series of

in-core sections, or strips. The loop prologue evaluates any scalar expressions used in the body of

the loop.

The loop body transfers data between out-of-core data �les and the in-core strips and evaluates

out-of-core expressions in the appropriate context. A loop may cover several contexts, that is,

several where or everywhere statements.

Elementwise expressions

Let us �rst examine a simple elementwise expression:

harmonic = 1.0 / k;

becomes

{

shape *ViC__stripshape = ViC__Stripshape( /* determine strip shape */

boolsizeof(bool:current) +

boolsizeof(float:current) +

boolsizeof(int:current));

with (*ViC__stripshape) { /* in-core shape */

ViC__DCL(bool, 30, ViC__context); /* in-core context */

ViC__DCL(float, harmonic, &harmonic); /* in-core data */

ViC__DCL(int, k, &k);

ViC__LOOP {

ViC__READ(30); /* in-core context */

ViC__READ(k); /* in-core data */

where (*ViC__30_strip) { /* establish context */

*ViC__harmonic_strip = 1.0 / *ViC__k_strip; /* evaluate expression */

}

ViC__WRITE(harmonic); /* write output data */

}

ViC__Free(); /* free in-core strips */

ViC__CLOSE(k, &k); /* close data files */

ViC__CLOSE(harmonic, &harmonic);

ViC__CLOSE(30, ViC__context);

}

ViC__Freeshape(ViC__stripshape); /* delete shape */

}

The function ViC__Stripshape computes and allocates the in-core shapes, given the sizes of the

strip data and the context. The ViC__DCL macro declares and allocates the in-core data and then

opens the data �les. The ViC__READ macro reads data and context for the out-of-core expression,
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with results written by ViC__WRITE. Once the loop completes, the �les are closed and the shape

and data are deallocated.

Reductions

A reduction operator, such as +=, accumulates its result in a scalar variable. This reduction value

is available at the end of the loop. The loop for

sum = += harmonic;

with oat scalar sum becomes

{

shape *ViC__stripshape = ViC__Stripshape( /* determine strip shape */

boolsizeof(bool:current) +

boolsizeof(float:current));

with (*ViC__stripshape) { /* in-core shape */

float ViC__40 = 0.0; /* scalar temporary */

ViC__DCL(bool, 30, ViC__context); /* in-core context */

ViC__DCL(float, harmonic, &harmonic); /* in-core data */

ViC__LOOP {

ViC__READ(30); /* in-core context */

ViC__READ(harmonic); /* in-core data */

where (*ViC__30_strip) { /* establish context */

ViC__40 += *ViC__harmonic_strip; /* evaluate reduction */

}

}

ViC__Free(); /* free in-core strips */

ViC__CLOSE(harmonic, &harmonic); /* close data files */

ViC__CLOSE(30, ViC__context);

}

ViC__Freeshape(ViC__stripshape); /* delete shape */

}

sum = ViC__40; /* result of reduction */

Optimization by loop fusion

ViC* attempts to reduce the amount of I/O by combining sectioning loops that share inputs and

outputs. If the two expressions above are combined, their sectioning loops are fused into a single

loop. The body of the fused sectioning loop for the code fragment

k = pcoord(0);

where (k > 0) {

harmonic = 1.0 / k;

sum = += harmonic;

}

is transformed into the following, which computes a oat scalar ViC__40:
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*ViC__k_strip = ViC__position + pcoord(0); /* evaluate expression */

*ViC__30_strip = (*ViC__k_strip > 0)

where (*ViC__30_strip) {

*ViC__harmonic_strip = 1.0 / *ViC__k_strip; /* evaluate expression */

ViC__40 += *ViC__harmonic_strip; /* evaluate reduction */

}

Note that the body of the loop computes the temporary variable used to hold context information,

eliminating the need to read it from disk.

The optimizer operates on basic blocks containing out-of-core operations. A basic block consists

of expressions and assignments with linear control ow. Data dependencies within a basic block

form a dag. Vertices identify the results of the operations in the block, and edges connect operands

to an operation. Any in-order traversal of the dag correctly evaluates the operations.

The dag is used to partition the basic block into subgraphs, each of which is a simple block,

implemented with a sectioning loop. Within a subgraph, initial vertices are those which have no

input edges, such as variable values. Final vertices are those which have no output edges, such

as assignments to variables whose value is not used in the subgraph. Operations that potentially

involve communication, such as reductions, left indexing, and subroutine calls, delimit simple blocks

and must be either initial or �nal vertices. They are �nal vertices of the simple block that computes

them, and they are initial vertices of the simple block that uses them. Such values are implemented

with temporary variables that transmit their value from one block to another.

In the sample program above, we combine the parallel division and summation into one simple

block, but the result of the summation is not available until the next simple block. When we include

the dependency on sum in the program

harmonic = 1.0 / k;

sum = += harmonic;

normal = harmonic * (1.0 / sum);

the assignment to normal requires a second sectioning loop.

Likewise, the vertex for a volatile operand or one that is aliased must be initial or �nal. In

addition, for debugging purposes, a compiler ag forces every out-of-core operation into a separate

simple block. In this case, no loop fusion occurs and debugging can proceed statement by statement.

Observe that context, which we can view as an implicit operand of every expression (except

in the scope of an explicit everywhere), motivates loop fusion even when it would otherwise be

unpro�table. For example, in the absence of context, if two consecutive statements had no variables

in common, we would avoid fusing their sectioning loops in order to maximize the in-core strip size.

Larger strip sizes lead to faster I/O. If the statements share a context, however, fusing the loops

obviates the need to read the context for the second statement and possibly even the need to write

it to disk.

The optimizer also expands certain out-of-core constant expressions, such as the value

pcoord(0) assigned to k above. Expressions expanded by the optimizer include simple arithmetic

operations involving scalar constants and the intrinsic function pcoord.

An additional optimization avoids writing out-of-core variables that are no longer live, i.e., those

that will not be read back. This optimization requires ViC* to perform a data ow analysis beyond

the scope of a basic block.
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outofcore shape [N]series; ===> ViC__shape series = { &ViC__everywhere, N,1,{N} };

float mean(float:series a); ===> float mean(ViC__data a);

float:outofcore current normalize(float:outofcore current a);

===> void normalize(ViC__data *ViC__result, ViC__data a);

int:series calc(outofcore shape s); ===> void calc(ViC__data *ViC__result, ViC__shape s);

Figure 7: Example function headers and the result of their processing.

8 Processing of functions and communication

This section describes how ViC* processes function declarations, parameters, and results. ViC*

processes function de�nitions and function calls with out-of-core formal parameters and results; in-

core parameters and results remain unchanged. Parameter and result declarations are transformed

as described in Section 4. Statements in the function body are rewritten to operate on out-of-core

data as described in Section 7. Function calls are processed to pass arguments and return results

by value, in conformance to the C and C* convention.

Out-of-core shape and data parameters are replaced with the corresponding ViC__shape and

ViC__data declarations, as shown in Figure 7. Out-of-core shape parameters and parameters using

the shape current must be declared with the outofcore keyword. ViC* ensures that out-of-core

data that is passed by value is copied by the caller. This copying may be combined in a simple

block with other operations in the caller, or it can be achieved by calling a library subroutine,

ViC__Copy, to copy the data.

Instead of returning an out-of-core result by value, ViC* passes a pointer to an out-of-core result

variable as an extra parameter. Within the function body, all return statements copy the return

value to the result parameter. This assignment may be combined in a simple block with other

computations. By using a result parameter, ViC* avoids an additional data copy by the caller.

Local variables and temporaries must be deleted when the function exits or returns. In-core

data is allocated on the stack and is automatically reclaimed. Out-of-core data is persistent, and

must be explicitly deleted by calling ViC__Remove for each local variable at every exit point.

It is generally more e�cient to pass out-of-core parallel data by reference, using pointers, than by

value, which would entail copying the data. Admittedly, this style may increase the programming

e�ort required to use out-of-core data. In some cases, however, di�erent algorithms are more

e�cient for out-of-core data, making a distinct out-of-core version desirable. Function overloading

in C* allows both versions to coexist.

ViC* processes all communication that involves out-of-core variables (accomplished by parallel

left indexing) by generating calls to run-time library functions. This run-time library is an integral

part of the virtual-memory package and implements e�cient algorithms for special cases of com-

munication [Cor92]. The ViC* library implements left indexing of out-of-core variables where the

index is scalar, in-core parallel, or out-of-core. It also implements left indexing of in-core paral-

lel variables when the index is out-of-core. The C* communication routines to_grid, to_torus,

from_grid, and from_torus are also overloaded to support out-of-core data, such as the send

operation [.-1]normal = normal in the sample program.
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9 Conclusion

ViC* supports parallel programming on large data sets. It takes advantage of the distributed

memory model of C* to provide the convenience of in-core programming for data too large to �t

in main memory. With a small extension to the C* language, this approach implements virtual

memory for parallel data. ViC* gives C* programmers a migration path for applications that

exhaust physical memory resources.

ViC* goes beyond a simple library interface. For large datasets, we expect the time spent

performing I/O to exceed the time spent computing. ViC* analyzes program data ow and performs

program transformations to reduce I/O demands. It calculates the amount of in-core data to make

full use of available memory. ViC* fuses in-core sectioning loops to avoid repeated transfers of the

same data. These loops can cross context boundaries. In some cases, ViC* recomputes expressions

to avoid saving and recalling their values.

In addition, we expect ViC* to serve as a testbed for parallel I/O research. Because I/O is under

the ViC*'s control, we can experiment with parallel I/O algorithms and implementations. Areas

of investigation include tradeo�s between synchronous and asynchronous I/O [KKP94], out-of-core

algorithms [Cor92], and parallel �le systems [CK93].

Other extensions to ViC* may include optimizations of elemental functions [KF93]|those which

require no parallel communication. We can evaluate an elemental function on an in-core strip,

calling it within the body of a sectioning loop. For arbitrary communications using left indexing,

we expect to categorize index values where possible by communications topology, such as grid, torus,

transpose, and general permutation. There are special algorithms [Cor92] for these communication

patterns.

File systems normally support persistent data. Program data, such as ViC* out-of-core data,

is transient and disappears on program exit. ViC* ensures that such data is properly deleted on

scope exit. Global out-of-core data must be deleted specially. Alternatively, ViC* out-of-core data

might be used to support persistent variables or program checkpointing.
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A ViC* Output

This appendix shows the code ViC* generates for the sample program of Figure 1. Comments are

added for clarity; ViC* normally only copies comments unchanged.

#define N (1L<<40) /* N == 2**40 */

ViC__shape series = { &ViC__everywhere, N, 1, {N} };

ViC__data normal = { &series, 0, NULL};

void example()

{

ViC__data harmonic = { &series, 0, NULL };

float sum;

ViC__data k = { &series, 0, NULL };

/* with (series) */

{

ViC__shape *ViC__prev = ViC__current; /* save previous shape */

ViC__current->context = ViC__context; /* save context */

ViC__current = &series; /* point to current ViC__shape */

ViC__context = ViC__current->context; /* take its context */

/* generate harmonic series and compute sum

harmonic = 1.0/k;

sum = += harmonic;

*/

{

shape *ViC__stripshape = ViC__Stripshape( /* determine strip shape */

boolsizeof(bool:current) +

boolsizeof(float:current) +

boolsizeof(int:current));

with (*ViC__stripshape) { /* in-core shape */

ViC__DCL(bool, 10, ViC__context); /* in-core context */

ViC__DCL(float, harmonic, &harmonic); /* in-core data */

ViC__DCL(int, k, &k);

float ViC__40 = 0.0; /* reduction accumulator */

ViC__LOOP {

ViC__READ(10);

where (*ViC__10_strip) {

*ViC__k_strip = ViC__position + pcoord(0);

}

where (*ViC__10_strip & ViC__k_strip > 0) { /* establish context */

*ViC__harmonic_strip = 1.0 / *ViC__k_strip;

ViC__40 += *ViC__harmonic_strip;

}

ViC__WRITE(harmonic); /* write output data */

}

ViC__Free(); /* free in-core strips */

ViC__CLOSE(k, &k); /* close data files */

ViC__CLOSE(harmonic, &harmonic);

ViC__CLOSE(10, ViC__context); /* close context */

sum = ViC__40; /* reduction operation */

}
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ViC__Freeshape(ViC__stripshape); /* delete shape */

}

/* use sum to generate normalized series

normal = harmonic*(1.0/sum);

*/

{

shape *ViC__stripshape = ViC__Stripshape( /* determine strip shape */

boolsizeof(bool:current) +

boolsizeof(int:current) +

boolsizeof(float:current) +

boolsizeof(float:current));

with (*ViC__stripshape) { /* in-core shape */

ViC__DCL(bool, 12, ViC__context);

ViC__DCL(int, k, &k);

ViC__DCL(float, harmonic, &harmonic); /* in-core data */

ViC__DCL(float, normal, &normal);

ViC__LOOP {

ViC__READ(12); /* in-core context */

ViC__READ(harmonic); /* in-core data */

where (*ViC__12_strip) {

*ViC__k_strip = ViC__position + pcoord(0);

}

where (*ViC__12_strip & *ViC__k_strip > 0) { /* establish context */

*ViC__normal_strip = *ViC__harmonic_strip * (1.0 / sum);

}

ViC__WRITE(normal); /* write output data */

}

ViC__Free(); /* free in-core strips */

ViC__CLOSE(normal, &normal); /* close data files */

ViC__CLOSE(harmonic, &harmonic);

ViC__CLOSE(k, &k);

ViC__CLOSE(12, ViC__context); /* close context */

}

ViC__Freeshape(ViC__stripshape); /* delete shape */

}

to_grid(&normal, &normal, &normal, -1); /* grid communication */

ViC__current = ViC__prev; /* restore previous shape */

ViC__context = ViC__current->context; /* and context */

}

}
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