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Neurophysiological and imaging studies have shown that seeing the actions of other

individuals brings about the vicarious activation of motor regions involved in performing
the same actions. While this suggests a simulative mechanism mediating the perception

of others’ actions, one cannot use such evidence to make inferences about the functional

significance of vicarious activations. Indeed, a central aim in social neuroscience is to
comprehend how vicarious activations allow the understanding of other people’s behavior,

and this requires to use stimulation or lesion methods to establish causal links from brain

activity to cognitive functions. In the present work, we review studies investigating the
effects of transient manipulations of brain activity or stable lesions in the motor system

on individuals’ ability to perceive and understand the actions of others. We conclude there
is now compelling evidence that neural activity in the motor system is critical for such

cognitive ability. More research using causal methods, however, is needed in order to

disclose the limits and the conditions under which vicarious activations are required to
perceive and understand actions of others as well as their emotions and somatic feelings.
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VICARIOUS MOTOR ACTIVATIONS DURING ACTION

PERCEPTION

There is now extensive neurophysiological evidence that

monkeys—and possibly humans—are equipped with a particular

class of neurons active during action execution and action

perception (Cattaneo and Rizzolatti, 2009; Mukamel et al., 2010).

These so called “mirror neurons” are thought to implement

a mechanism matching perceived actions to one’s own motor

representation of similar actions (di Pellegrino et al., 1992;

Gallese et al., 1996; Fogassi et al., 2005). By showing that action

perception modulates activity within the motor system, the dis-

covery of mirror neurons has provided direct neurophysiological

evidence in favor of the older notion that action perception is

inherently linked to action execution (Lotze, 1852; James, 1890;

Prinz, 1997). This idea was further supported in humans by

functional magnetic resonance imaging (fMRI) (Etzel et al.,

2008; Gazzola and Keysers, 2009; Kilner et al., 2009; Oosterhof

et al., 2010), electroencephalography (EEG) (Cochin et al., 1999;

Lepage and Théoret, 2006; Arnstein et al., 2011), and magnetoen-

cephalography (MEG) (Nishitani and Hari, 2002; Nishitani et al.,

2004) evidence that the action observation network (AON), i.e.,

the neural network activated by seeing others’ actions, largely

overlaps with the brain network involved in action execution.

This has supported the notion that perceiving and understanding

others’ actions may be based on their vicarious representations

within the observer’s motor system.

One of the most convincing evidence that action observation

vicariously activates motor circuits involved in performing the

observed action in humans comes from single-pulse transcranial

magnetic stimulation (TMS) studies. This neurophysiological

method implies that single magnetic pulses are administered over

the participants’ primary motor cortex to record motor-evoked

potentials from the targeted muscles and assess the excitability

of their corticospinal representation under different experimen-

tal conditions. Many studies have shown that observing others’

actions increases the excitability of the observers’ corticospinal

motor system (Fadiga et al., 1995; Catmur et al., 2007; Enticott

et al., 2010, 2011; Senot et al., 2011). This “motor resonance”

appears to be present for both transitive and intransitive move-

ments (Fadiga et al., 2005; Romani et al., 2005; Borgomaneri et al.,

2012) and is specific for the muscles involved in the observed

action (Urgesi et al., 2006a; Alaerts et al., 2009; Candidi et al.,

2010). Moreover, motor resonance is largely automatic and occurs

early in time (Lepage et al., 2010; Barchiesi and Cattaneo, 2012).

Furthermore, motor resonance is temporally coupled with the

observed action when this is dynamically displayed (Gangitano

et al., 2004) and seems to encode specific motor features such as

the direction (Stefan et al., 2005; Barchiesi and Cattaneo, 2012)

and the apparent effort of the action (Alaerts et al., 2010a,b;

Tidoni et al., 2013). These findings demonstrate that action obser-

vation induces a dynamic simulation of the observed movement

in the onlooker’s motor system. Studies using cyclic movements
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(Borroni et al., 2005) or static images of actions (Urgesi et al.,

2006b, 2010; Avenanti et al., 2013), however, also indicate that

action simulation may be biased toward the future phases of the

observed movements, suggesting the motor system is involved

in the predictive coding of observed actions as also highlighted

by intracortical recordings in monkeys’ premotor cortex (Umiltà

et al., 2001).

Interestingly, motor resonance appears to be sensitive to higher

order aspects of others’ actions, such as the goal or the intention

of the actor (Cattaneo et al., 2009; Tidoni et al., 2013), suggesting

that motor cortex activity is influenced by processing occurring

in higher-order regions within the AON. In keeping, there is now

direct evidence that resonance in the motor cortex reflects com-

putations carried out in the inferior frontal cortex (IFC, including

the ventral premotor cortex and the posterior part of the infe-

rior frontal gyrus) and the inferior parietal lobule (IPL). This

is demonstrated by perturb-and-measure studies (Paus, 2005;

Avenanti et al., 2007) in which off-line suppression of neural

activity in IFC disrupts the motor facilitation induced by action

observation (Avenanti et al., 2007, 2013; Enticott et al., 2012) and

dual coil studies in which stimulation of IFC and IPL modulates

motor cortex reactivity to observed actions (Koch et al., 2010;

Catmur et al., 2011).

BRAIN STIMULATION AND LESION METHODS TO

HIGHLIGHT CAUSAL LINK BETWEEN AON AND ACTION

PERCEPTION

While neurophysiological and brain imaging techniques have

been essential in highlighting that action simulation is automat-

ically triggered by action observation, it should be noted that

these approaches only provide correlational evidence and cannot

establish whether neural activity in motor regions is necessary for

action perception. Behavioral studies have shown that action exe-

cution affects the perception of others’ actions, suggesting a close

link between motor and perceptual processing in social interac-

tions (Kilner et al., 2003; Hamilton et al., 2004; Schütz-Bosbach

and Prinz, 2007a,b; D’Ausilio et al., 2010; Sacheli et al., 2012,

2013). Motor experts present superior perceptual abilities in the

prediction of others’ actions (Abernethy et al., 2008; Aglioti et al.,

2008) and short-term action execution training improves percep-

tion of full (Hecht et al., 2001; Urgesi et al., 2012) and point-light

(Casile and Giese, 2006) displays of the same action even if no

visual feedback is provided during the execution phase. On the

other hand, non-use of specific body parts, following massive

deafferentation of lower limbs in spinal cord injury patients, leads

to impaired recognition of their movements depicted in static

images (Pernigo et al., 2012) and point-light (Arrighi et al., 2011)

displays.

While behavioral studies have shown an influence of action

execution on action perception these approaches do not tell

“where” in the brain these two functions interact. Thus, to test

the causal role of specific visuo-motor nodes of the AON in

action perception is fundamental to recur to causal methods,

i.e., investigating the effect of brain damage or non-invasive

brain stimulation of parieto-frontal AON regions on the ability

to perceive and recognize others’ actions (Avenanti and Urgesi,

2011).

Mounting evidence suggests that IFC and IPL are critical for

action perception. In two studies participants were presented with

videos of an actor lifting and placing a box that could be of dif-

ferent weights and were asked to estimate the weight of the box

(Pobric and Hamilton, 2006) or to recognize whether the actor

was trying to provide deceiving information about the weight of

the box (Tidoni et al., 2013). It was found that online repetitive

TMS over IFC but not over occipital cortex or temporo-parietal

junction worsened participants’ performance in such tasks that

required to monitor spatio-temporal features of seen actions (e.g.,

arm acceleration). Notably, no change in performance was found

in “temporal” control tasks requiring to estimate how long the

actor’s hand was visible (Pobric and Hamilton, 2006) or in a

“spatial” control task requiring to monitor the hand path dur-

ing lifting and placing (Tidoni et al., 2013). Taken together these

studies suggest that IFC is actively involved in processing seen

kinematics and in particular in integrating their spatial and tem-

poral features, which may be important to predict others’ actions

(see also Stadler et al., 2012; Avenanti et al., 2013; Costantini et al.,

2013).

The integration of spatio-temporal features is critical for

biological-motion perception in order to blend the coherent

motion pattern of a series of point-lights into a unitary percep-

tion of a moving individual. While voxel-based morphometry

(Gilaie-Dotan et al., 2013) and fMRI studies (Saygin et al., 2004)

suggest a relation between IFC and biological motion perception,

causal methods have recently demonstrated that off-line TMS

suppression of IFC activity (van Kemenade et al., 2012) or vas-

cular lesion to IFC (Saygin, 2007) impairs the ability to detect

biological motion from point light displays.

Another group of studies has suggested a role of IFC in pro-

cessing configurational aspects of observed actions (e.g., limb dis-

placement, postures). In such studies participants were presented

with static images showing hand grips (Jacquet and Avenanti,

2013), upper or lower limb actions (Urgesi et al., 2007b) or whole

body movements (Urgesi et al., 2007a). In all the studies it was

found that stimulation of IFC but not of control regions impaired

the ability to visually discriminate between pictures depicting

two slightly different actions. Notably, brain damage patients

with lesions occurring in IFC but not in posterior regions were

also impaired in similar tasks (Moro et al., 2008). Interestingly,

these impairments in processing configurational aspects of oth-

ers’ actions appear specific for biologically movements because

IFC stimulation does not impair visual discrimination of images

implying biomechanically impossible body movements (Candidi

et al., 2008).

While brain stimulation studies suggest a role of the AON,

and of IFC in particular (Figure 1), in processing specific spatio-

temporal and configurational features of seen actions, neuropsy-

chological evaluation of brain damage patients shows that lesions

in IFC and premotor cortices may lead to more global deficits in

action perception and understanding. Lesion in IFC and premo-

tor cortices reduces the ability to: (i) associate pictures of pan-

tomimes (e.g., licking) to the corresponding appropriate object

(ice cream) (Saygin et al., 2004); (ii) judge whether a transitive

action or an intransitive gesture is correctly performed (Pazzaglia

et al., 2008a); (iii) associate the sounds evoking human actions
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FIGURE 1 | Frontal and parietal brain sites whose non-invasive

stimulation affected: (i) motor resonance, as shown by

perturb-and-measure (Avenanti et al., 2007, 2013) and dual coil

TMS (Koch et al., 2010; Catmur et al., 2011); (ii) proactive gaze

shift during observation of actions toward objects, as shown by

virtual lesion (Costantini et al., 2013); and (iii) visual action

perception as shown by virtual lesion (Pobric and Hamilton, 2006;

Urgesi et al., 2007a,b; Candidi et al., 2008; van Kemenade et al.,

2012; Tidoni et al., 2013) and state-dependent TMS (Cattaneo,

2010; Cattaneo et al., 2010, 2011). In the study of Catmur et al.

(2011) IFC and dorsal premotor cortices were stimulated in the right

hemisphere but are represented on a left hemisphere. The white lines

define frontal (IFC and dorsal premotor) and parietal (IPL and

somatosensory) nodes of the AON and are based on a meta-analysis

of 139 functional imaging studies investigating action perception

(Caspers et al., 2010).

with pictures representing the same actions (Pazzaglia et al.,

2008b); (iv) or re-order pictures of human actions compared to

physical events (Fazio et al., 2009). On the other hand, lesion of

the IPL impairs the recognition of transitive gestures (Buxbaum

et al., 2005; Weiss et al., 2008; Kalénine et al., 2010) and of

biological motion (Battelli et al., 2003). Moreover, Tranel et al.

(2003) showed that patients with lesions in both IFC and IPL were

impaired in tasks involving recognition of action from static pic-

tures. Interestingly, there is a specific relation between the motor

deficits shown by brain lesion patients and their impairment in

action recognition (Eskenazi et al., 2009; Serino et al., 2010). For

instance, patients with fronto-parietal lesions who were impaired

in performing limb (limb apraxia) or mouth gestures (buccofa-

cial apraxia) were also impaired in the audio-visual matching of

hand and mouth actions, respectively (Pazzaglia et al., 2008b).

Although the clinical pattern of apraxic patients is complex and

cannot be reduced to the dysfunction of the AON visuo-motor

nodes, the effector-specific correspondence between their motor

and perceptual deficits further hints at the strict link between

action execution and perception. In sum, there is now strong evi-

dence that the activation of parieto-frontal nodes of the AON is

not merely associated to action observation, but it appears to be

critical to perceive and understand the actions of others.

STATE-DEPENDENT BRAIN STIMULATION IN ACTION

PERCEPTION

One important limitation of causal approaches is that brain

damage or non-invasive brain stimulation have remote effects.

Although TMS is more focal than other non-invasive brain stimu-

lation methods (i.e., transcranial direct current stimulation), and

provides extremely high time-resolution, it modulates activity not

only in the neurons under the coil but also in interconnected

regions (Ruff et al., 2009; Siebner et al., 2009; Avenanti et al.,

2012a,b; Arfeller et al., 2013). Thus, impairment of action per-

ception due to vascular or “virtual,” TMS-induced lesions over

specific motor regions may be at least partially due to the dis-

connection of a larger circuit (i.e., the AON) or the spread of

the TMS-induced excitation along its connections (Valero-Cabré

et al., 2005, 2007). The simultaneous combination of TMS with

functional imaging promises to be of especially great value to tease

apart the functional relevance of TMS-induced local and remote

neural effects.

Moreover, one should notice that classical virtual lesions

approaches do not elucidate how distinct neural populations

within the stimulated area interact to give rise to perception

and behavior (Silvanto et al., 2008; Avenanti and Urgesi, 2011;

Silvanto and Pascual-Leone, 2012). Recently, the TMS-adaptation
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and TMS-priming paradigms have been developed to tackle

such limitation. The paradigms are based on the well-established

notion of state-dependency, i.e., that TMS effects depend on the

initial state of the stimulated neurons (Lang et al., 2004; Siebner

et al., 2004, 2009; Bestmann et al., 2010). In such paradigms

the functional state of the neurons is manipulated by means

of perceptual (or motor) adaptation or priming. Although the

underlying neurophysiological mechanisms are not well under-

stood (Ruzzoli et al., 2011; Schwarzkopf et al., 2011; Perini et al.,

2012), the phenomenology of TMS-adaptation and TMS-priming

is very robust and consists in a TMS reduction or reverse of the

behavioral effects classically induced by perceptual adaptation or

priming. These effects unambiguously indicate the presence of

neurons encoding for the adapted/primed feature in the stimu-

lated area and their relevance for perceptual processing.

To date, state-dependent TMS has been used to explore per-

ceptual encoding of goal and grip configurations in frontal,

parietal, and visual nodes of the AON. For example, in a TMS-

priming study of Cattaneo (2010) participants were presented

with target pictures showing a hand grasping an object and

were asked to judge whether the movement was fast or slow.

Observed grasp types varied from precision (index finger and

thumb involved only) to whole-hand grasp. Target pictures were

preceded by similar prime pictures. Without TMS and with sham

stimulation, a clear priming effect was observed as a shorten-

ing of reaction times and as a bias toward the priming grasp

type in the classification responses. The perceptual advantage of

priming was reversed by TMS over IFC, suggesting that distinct

populations in such regions are tuned to different observed grasp

types and are critical for perception. In a recent TMS-adaptation

study, Cattaneo et al. (2010) used perceptual adaptation to goal-

directed actions and showed that IFC and IPL contain distinct

populations encoding the goal of observed action (i.e., grasp-

ing or pulling) independently from the effector (i.e., hand or

foot) used to perform such actions. To test whether the same

motor neurons involved in performing an action are critical for

visual perception of the same action, Cattaneo et al. (2011) used

cross-modal motor-to-visual TMS-adaptation. They asked par-

ticipants to repeatedly perform an action (pushing or pulling)

and then to categorize static images showing an actor’s hand

displacing a ball as pushing or pulling actions. Repeated motor

performance induced a visual aftereffect when categorizing action

stimuli, with a bias toward pulling after execution of pushing and

a bias toward pushing after execution of pulling. Thus, the after-

effect following motor adaptation was a bias toward the action

opposite to the one that had been trained, suggesting a motor-

to-visual adaptation of the same visuo-motor neurons involved

in action execution and observation. Notably, TMS over IFC but

not over control regions disrupted such visuo-motor aftereffects.

Thus, cross-modal TMS-adaptation provides complimentary evi-

dence to fMRI adaptation studies investigating the attenuation of

hemodynamic responses in AON regions after repeated execution

and observation of actions. These studies reported action-specific

cross-modal adaptation in fronto-parietal AON areas (Chong

et al., 2008; Kilner et al., 2009; Lingnau et al., 2009), suggest-

ing the same neural populations are activated in response to

specific actions that are either observed or executed. Using the

TMS-adaptation paradigm allowed documenting that the same

populations of neurons involved in action execution are also

critical for action perception.

CONCLUSIONS AND FUTURE DIRECTIONS

In conclusion, the studies reviewed here provide striking evidence

that action perception not only correlates with motor activations

in the observer’s brain, but also requires these activations for

allowing dynamic representations of others’ actions. Successful

social interactions, however, require motor, sensorial, cognitive,

and emotional representations of the behavior of conspecifics.

There is now substantial evidence that perceiving the emotions

(Carr et al., 2003; Gallese et al., 2004; Dapretto et al., 2006;

Bastiaansen et al., 2009) as well as the bodily sensations of oth-

ers such as touch (Keysers et al., 2004; Blakemore et al., 2005;

Bufalari et al., 2007; Ebisch et al., 2008; Schaefer et al., 2009;

Gazzola et al., 2012) or pain (Singer et al., 2004, 2006; Avenanti

et al., 2005, 2009a; Valeriani et al., 2008; Lamm et al., 2011; Voisin

et al., 2011) vicariously activates those brain regions involved in

the first hand experience of such emotions and bodily sensations.

Although it is held that the mechanism underlying perception of

others’ sensory or emotional feelings is similar to that underlying

action perception (Gallese et al., 2004; Keysers et al., 2010; Gallese

and Sinigaglia, 2011), fewer studies have addressed the issue of

causality in the former relative to the latter case. However, some

of these studies have been important in clarifying that, for exam-

ple, somatosensory cortices are not only active but are also critical

for recognition of others’ emotional expressions (Adolphs et al.,

2000; Pitcher et al., 2008; Banissy et al., 2010) and others’ tac-

tile experiences (Bolognini et al., 2011, 2012, 2013; Rossetti et al.,

2012). Further studies, however, are needed to corroborate the

causal link between vicarious activations and the understanding

of others’ sensorial and emotional states.

One critical question for future research concerns the degree to

which vicarious activations interact with other mechanism to give

rise to perception and understanding of others’ actions and feel-

ings. Mirroring and simulating others’ actions and feelings may

be just one strategy amongst many to gain knowledge of others’

mental states. There may be inter-individual differences in the

extent to which this strategy is deployed as well as some modu-

latory effect of social context and previous experience. Vicarious

somatomotor activations are often correlated with interindivid-

ual differences in personality (Gazzola et al., 2006; Avenanti et al.,

2009b; Minio-Paluello et al., 2009; Schaefer et al., 2012) and

are influenced by previous experience with the same situation

(Calvo-Merino et al., 2006; Cross et al., 2006; Cheng et al., 2007;

Fourkas et al., 2008; Abreu et al., 2012; Candidi et al., 2012;

Tomeo et al., 2012), and social group belonging (Xu et al., 2009;

Avenanti et al., 2010; Hein et al., 2010; Azevedo et al., 2012).

They are modulated also by a number of other factors rang-

ing from body ownership (Schütz-Bosbach et al., 2006, 2009)

to social tasks and contexts (Kokal et al., 2009; Donne et al.,

2011; Sartori et al., 2011). It is thus fundamental to understand

the functional significance of such differential activations and

causal methods may provide direct information about how and

when simulation plays a critical role in our understanding of

others’ mind.
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