
Viceroy: A Scalable and Dynamic Emulation of the
Butterfly

Dahlia Malkhi
∗

School of Computer Science
and Engineering

The Hebrew University
Jerusalem 91904, ISRAEL

dalia@cs.huji.ac.il

Moni Naor
†

Dept. of Computer Science
and Applied Mathematics

Weizmann Institute of Science
Rehovot 76100, ISRAEL

naor@wisdom.weizmann.ac.il

David Ratajczak
University of California

Berkeley, CA 94720, USA

dratajcz@cs.berkeley.edu

ABSTRACT
We propose a family of constant-degree routing networks
of logarithmic diameter, with the additional property that
the addition or removal of a node to the network requires
no global coordination, only a constant number of linkage
changes in expectation, and a logarithmic number with high
probability. Our randomized construction improves upon
existing solutions, such as balanced search trees, by ensuring
that the congestion of the network is always within a log-
arithmic factor of the optimum with high probability. Our
construction derives from recent advances in the study of
peer-to-peer lookup networks, where rapid changes require
efficient and distributed maintenance, and where the lookup
efficiency is impacted both by the lengths of paths to re-
quested data and the presence or elimination of bottlenecks
in the network.

1. INTRODUCTION
The Viceroy network construction tackles a fundamental

problem of practical distributed systems: the discovery and
location of data and resources in a dynamic network. It
functions as a distributed hash table (DHT), managing the
distribution of data among a changing set of servers, and
allowing clients to contact any participating server in the
network to find any stored resource by name. It is primarily
intended for environments in which the scale and dynamism
are so great as to require performance metrics outside the
scope of classical routing network research.

The motivation for our research stems from the recent
emergence of peer-to-peer applications on the Internet, where
it has become apparent that in order to share resources and

∗Supported in part by an Israeli Ministry of Science grant
#1230-3-01
†Supported in part by an IST Grant RAND-APX.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC 2002 Monterey, California, USA
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

access services over large, dynamic networks, users must first
have the means to locate them in an efficient manner. At an
abstract level, these applications all implement or employ a
distributed hash table that maps names to values and that
functions as a supporting lookup service. The Domain Name
System (DNS) is a known example of such a lookup service,
but one that is static and that suffers from congestion prob-
lems at the root of the DNS tree. In contrast, we aim to
build a completely distributed and scalable lookup service
suitable for deployment in peer-to-peer networks, where the
set of participating servers is particularly dynamic and no
central control or information is easily maintained.

There are two main challenges that large-scale DHTs must
overcome: the first is distributing data in such a way that it
remains nearly balanced across the set of active servers, and
such that only small changes are necessary when servers join
and leave. The second is to maintain a network of connec-
tion information between servers so that a lookup for data
can be “routed” between servers toward its intended target,
and so that servers may join and leave without requiring
hash information to be propagated through the entire net-
work. The Viceroy algorithm manages the first problem by
employing consistent hashing [5] in a manner nearly identi-
cal to Chord [20]. However, Viceroy improves upon existing
solutions to the second problem by maintaining a connec-
tion graph that is a constant degree, logarithmic diameter
approximation to a butterfly network.1

Objectives: We are primarily interested in Viceroy’s be-
havior in networks of extreme scale, dynamism, and traffic.
It must be able to cope with large volumes of client lookups,
thus we wish to ensure that there are no bottlenecks through
which lookups stagger. The joining or leaving of a single
server should not impair the availability of the service, so
we want such changes to have only a small and mostly local
impact on the network. We capture these design goals with
the following performance metrics:

Congestion: No server should be a bottleneck on the per-
formance of the service. The load incurred by lookups
routing through the system should be evenly distributed

1We confine ourselves to this second aspect of Viceroy, and
we refer the reader to the above citations for a more thor-
ough analysis of consistent hashing, its many desirable qual-
ities, and the subtleties involved with a distributed imple-
mentation.

among participating lookup servers. We define this
formally in Section 6.1.

Cost of join/leave: The service should accommodate changes
easily. In particular, when servers join or leave, only a
small number of servers should change their state.

Lookup path length: The forwarding path of a lookup
should involve as few machines as possible. We aim
to minimize the maximum path length in the network.
In later sections, this will be referred to as the dilation
of the network.

Clearly there are tradeoffs associated with some of these
objectives. Creating a network with greater connectivity
may reduce lookup path length, but it will also increase
the number of linkage updates during joins and leaves; on
opposite extremes would be a simple ring, and a complete
graph. Similarly, there are some schemes that optimize all
criteria but one. A balanced binary tree2, for example, has
desirable locality properties and logarithmic path length,
but has abysmal congestion at the root.

The Case for constant degrees: In developing Viceroy,
our primary motivation was to achieve an algorithm with
constant linkage cost, logarithmic path length, and with
the best achievable congestion given those constraints. We
emphasize constant linkage cost for several reasons. First,
we believe that the practical cost of updating links far ex-
ceeds normal lookup costs because it involves coordination
between multiple machines; each change could require new
session information to propagate between machines, or could
even require multiple machines to acquire locks in order
to rigidly maintain the consistency of the network. Sec-
ond, reducing the number of edges in the graph reduces the
ambient traffic associated with pings and control informa-
tion, and maintaining a constant degree network assuages
concerns about the cost of too many open connections at
servers. Third, there are cases when it is desirable for a
server to notify its outgoing and incoming connections that
it is leaving, and thus the degree of the network directly
relates to the load incurred by joins and leaves.3 While it
is a justifiable concern that low degree networks are unsuit-
able for failure-prone environments, we feel that issues of
fault tolerance should be handled separately from routing
design choices using clustering techniques. Section 7.2 de-
scribes one such scheme and presents further justification
for making this design choice.4

The framework: In order to distribute key-value pairs
across a set of participating servers, we treat both the servers
and the keys as points in a specially chosen metric where two
keys that are close under the metric reside on servers that
are also close under the metric. A particular key-value pair
resides on the server that is closest to the key. The choice of
the next hop in a route is calculated based on a comparison
between the point of the target key and the current server’s
point. This framework captures several recent proposals,
including Consistent Hashing [5] and Chord [20] (rings),

2specifically, those variants with constant linkage cost [9, 14]
3In [8], it is shown that such communication is necessary to
construct a DHT with atomic data semantics.
4See [8] for a more thorough examination of this approach.

CAN [18] (d-dimensional tori), Plaxton et al. work [16] and
OceanStore [7] (hypercubes). (See more in the Section 1.1.)
The mapping we use is identical to Chord as we map keys
and servers to the unit ring [0..1). For a given set of ac-
tive servers, a server manages all key-value pairs that have
names between its counter-clockwise neighbor’s name and
its own name. We therefore say that a key is mapped to its
successor on the ring.

Routing on Viceroy networks uses links between succes-
sors and predecessors on the ring for short distances. Bor-
rowing from the ideas of Kleinberg [6] and Barriere et al. [2],
we augment the ring construction with a constant number
of long range contacts chosen appropriately so that a local-
ized routing strategy produces short paths. The inspiration
from [6] is that these few long range contacts should be cho-
sen randomly with a particular bias toward closer points.5

In attempting to improve the worst-case performance of such
a scheme, we arrived at an approximation to the classical
butterfly network, as described below. Unlike Kleinberg’s
work, the resulting topology has only logarithmic dilation
(instead of polylogarithmic).

The Viceroy topology: Viceroy networks are a composi-
tion of an approximate butterfly network6 and the connected
ring of predecessor and successor links mentioned previously.
In addition to predecessor and successor links, each server
includes five outgoing links to chosen long range contacts.
First, each node selects a level at random in such a way
that when n servers are operational, one of log n levels is
selected with nearly equal probability. For a level � node,
two edges are added connecting it to nodes at level � + 1: A
“down-right edge is added to a long-range contact at level
�+1 at a distance roughly 1/2� away, and a “down-left edge
at a close distance on the ring to level � + 1. In addition,
an “up” edge to a close-by node at level � − 1 is included if
� > 1. Finally, “level-ring” links are added to the next and
previous nodes of the same level �. Figure 1 depicts an ideal
Viceroy network. For simplicity, the up link, as well as ring
and level-ring links are not depicted.

Routing proceeds in three stages: the first one consists of
a climb using up connections to a level-1 node. In the second
stage, routing proceeds down the levels of the tree using the
down links; moving from level � to level �+1, one follows ei-
ther the edge to the close-by down link or the far-away down
link, depending on whether x is at distance greater than 1/2�

or not. This continues until a node is reached with no down
links, which presumably is in the vicinity of the target. Fi-
nally, a “vicinity” search is performed using the ring and
level-ring links until the target is reached (which may not
be at a leaf in the tree). We will show that this process re-
quires only O(log n) steps with high probability in a random
network construction7. Formalizing and proving this result,
as well as measuring the other performance metrics, will be
the focus of the remainder of this paper.

Contributions of this work: We present a simple and ef-

5While Kleinberg’s paper is descriptive, explaining how a
social network allowing efficient routing may develop, a con-
struction readily follows from his work.
6A butterfly network is described, e.g., in [19].
7Throughout this work we use the term with high probability
(w.h.p.) to mean with probability at least 1 − c/n for some
c > 0.

0 10.50.25 0.75

Level 1

Level 2

Level 3

Level 4

Node

Real identifier

Viceroy ”butterfly”-link

Figure 1: An ideal Viceroy network. Up and ring links are omitted for simplicity.

ficient network construction that maintains constant degree
networks in a dynamic environment. Routing is achievable
on these networks in O(log n) hops and with nearly optimal
congestion. This is the first proposal of a decentralized and
dynamic network where all of these properties are achieved
simultaneously. The events of a server joining and leav-
ing the system induce O(log n) hops and require only O(1)
servers to change their states.

1.1 Related work
The proliferation of Internet-scale services and the advent

of peer-to-peer applications has focused considerable atten-
tion on the resource lookup problem presented here. Many
popular services, such as DNS, LDAP, and file-sharing ser-
vices (such as Napster and Gnutella), rely on some parti-
tioning of data across a dynamic network. Recently, several
schemes have been proposed that address the scalability and
dynamic requirements of a world-wide lookup service.

The Chord lookup service [20] presents a solution that
has greatly influenced our approach. Specifically, we borrow
from it the design that maps name servers and resources onto
the same domain, and the use of a doubly-connected ring as
the underlying structure. However, our solution differs from
it in several important ways. First, in Chord, each node
maintains a logarithmic number of long-range links, yielding
a logarithmic number of join/leave linkage updates in expec-
tation and with high probability. In contrast, Viceroy has
constant out-degree, yields a constant expected linkage cost,
and with high probability, a random sequence of O(log n)
updates has a total O(log n) linkage cost. Second, in Chord,

the way in which the network is maintained appropriately
over the lifetime of the system is not fully described, and is
deferred to a background maintenance process. In contrast,
we have placed an emphasis on fully describing the way in
which the network evolves during server joins and leaves,
and on analyzing its worst case behavior.

The algorithm of Plaxton et al. [16] was originally de-
vised to route web queries to near-by caches, and has been
employed in the Tapestry naming service [21]. Similar to
Chord, its basic scheme is a distributed hash table with ef-
ficient request routing between lookup servers using an effi-
cient, dynamic routing structure. The routing algorithm is a
randomized approximation of a hypercube. Compared with
our scheme, the method of [16] has logarithmic expected
join/leave complexity.

The recent work by Ratnasamy et al. [18] places a sim-
ilar stress to ours on a constant degree network for rout-
ing lookup requests. Their Content Addressable Network
(CAN) dynamically maintains an approximation to a d-
dimensional torus, for a chosen constant d. Their expected
routing complexity is O(dn(1/d)), compared with logarith-
mic in our construction.

Table 1 provides a snapshot of the performance of each of
these methods, as well as the Viceroy scheme, according to
our chosen performance metrics.

Work on data structures has produced some related re-
sults. SkipLists [17], for example, lend themselves to dis-
tributed construction and similarly employ randomization
for efficient routing. Compared with our method, some of
the nodes in a SkipList suffer a load which is linear in the

Lookup scheme dilation congestion linkage

Chord[20] log n (log n)/n log n
Tapestry[21] log n (log n)/n log n

CAN[18] dn(1/d) dn(1/d−1) d
Small Worlds [6] log2 n (log2 n)/n O(1)

Viceroy (ours) log n (log n)/n 7

Table 1: Comparison of expected performance mea-
sures of lookup schemes.

total traffic, where the load in our construction is balanced.
Certain types of constant linkage-cost data structures are
competitive with our scheme in every way except for con-
gestion [9, 14]. Proposals for distributed data structures
typically address the problem of join and leave complexity
and state partitioning, but either require centralized control,
or do not address congestion [4, 12].

There are other works that have looked at the problem of
dynamic network construction with different emphases than
ours. Pandurangan et al. address in [15] the problem of dy-
namically constructing a low-degree, logarithmic diameter
network under a probabilistic model of arrival and depar-
ture; however their construction does not provide a rout-
ing scheme and their intended application is to disseminate
queries to every server rather than to route to a particular
server. Their method is also not fully distributed and em-
ploys a central server for newly connected nodes. One can
view Viceroy as an improvement over their scheme in that
logarithmic diameter is achieved in a distributed fashion,
and its desirable congestion properties means that Viceroy
can also be used for dissemination. Lin et al. are concerned
in [10] with building graphs that remain connected in the
face of many failure scenarios. Fiat and Saia in [3] are
concerned with constructing a logarithmic diameter routing
network that remains connected despite attacks on a large
fraction of its nodes. Both of these constructions are static,
and have logarithmic degree at each node.

2. SYSTEM MODEL AND PRELIMINAR-
IES

2.1 Terminology and notation
The system consists of a varying set of participating servers

(or simply, servers). We sometimes refer to an active set of
servers as a configuration. Servers have real identifiers cho-
sen uniformly at random from the range [0..1) before they
join. By slight abuse of notation, we will refer to server
identifiers simply as the servers themselves. All arithmetic
in this range will be done modulo 1, and we refer to it as the
ring. For any three real values x, y, z ∈ [0..1), stretch(x, y)
is the clockwise region between x and y non-inclusive, and
z is between x and y if z ∈ stretch(x, y). There are two
measures of interest related to stretches: their length and
the number of servers in them: The distance d(x, y) is the
clockwise distance from x to y. The density q(x, y) is the
number of servers present in stretch(x, y).

We denote by succ(x), the clockwise neighbor of x on the
ring in the current configuration, and pred(x), its counter-
clockwise neighbor. Also, as a matter of convenience, we will
use the term clockwise-closest as a shorthand for “closest in

the clockwise direction”
Each server s has an additional positive integer identifier

called its level, denoted s.level. The meaning of levels will
become apparent when we discuss our network construction,
but it intuitively indicates a server’s placement in the but-
terfly network we construct. We denote by nleveli(x), the
clockwise-closest level-i server to x, i.e., a server of level i
that is closest in the clockwise direction to x. Similarly,
pleveli(x) denotes the server of level i that is closest in the
counter-clockwise direction to x. We define the shorthand
nextonlevel(x) = nlevelx.level(x), i.e., the closest server
of the same level as x in the clockwise direction from x (like-
wise, prevonlevel(x) = plevelx.level(x)). Finally, the
level-density qi(x, y) denotes the number of level-i servers
present in stretch(x, y).

2.2 System model and assumptions
Each server maintains certain information about other

servers to facilitate routing and the distribution of data in
the network. When we say that a server s has a link to s′,
this means that s has established a connection to s′ and may
forward requests to it. In practice this means that physical
address information must be known to each of them, and
internal state is kept about incoming and outgoing connec-
tions. For our purposes we will assume that any server can
establish a connection to any other if it knows that server’s
identifier, and merely say that a “connection is made” rather
than elaborate on how this is done at the protocol level.

Any server may voluntarily leave the system and new
servers may spontaneously join it. However, we assume that
joins and leaves are not correlated with server identifiers, and
thus the server identifiers of an active set of servers always
appear randomly distributed about the ring. In this paper
we assume that multiple join and leave operations do not
overlap, and servers never fail; we refer the reader to [8] for
techniques to achieve concurrency and to handle failures in
the system. In principle the system is capable of handling
many parallel joins and leaves since with high probability
the servers that have to change their state do not overlap;
however to avoid dealing with issues such as locking we made
the above assumption.

Lastly, it is an important feature that a client may invoke
a lookup operation at any active server. However, the mech-
anism by which a client or joining server is initially advised
of an active server is not discussed here.

3. THE VICEROY NETWORK
Every participating server has two associated values that

determine its connectivity to the rest of the system: its iden-
tity s.id ∈ [0, 1) and its level � which is a positive integer.
The identity of a server is fixed throughout its participation
in the system, but the level will sometimes be changed in
the course of the network’s evolution. The link and rout-
ing structure of a Viceroy network is determined entirely
by the identity and level information of the currently active
servers, and is not affected by historical configurations or
other sources of randomness.
Remark: given that the identity is fixed, we will simplify
our notation and refer to both the server and the identity
as s (and drop the s.id).

The network consists of three sets of links: a general ring,
where each node is connected to its successor and predeces-
sor, level rings, where nodes of the same level are connected

to each other in a ring, and the butterfly where each non-
leaf node at level � points to two “down” nodes of level �+1
and each node at level � > 1 points to an “up” level � − 1
node. The left down link is chosen to be the first node of
level �+1 clockwise-closest to s (i.e. nlevel�+1(s)), and the
right down link is chosen to be the first node of level � + 1
clockwise-closest to s+1/2� (i.e. nlevel(�+1)(s+1/2�)). An
up link is chosen to be the level � − 1 node clockwise-closest
to s, i.e. nlevel�−1(s). Figure 1 depicts the relationship
between the ring id’s and the butterfly links.

It remains to discuss how levels are chosen, how joins and
leaves affect this construction, and how routing is performed
along the established connections.

4. IDENTITY AND LEVEL SELECTION
The ideal conditions for our algorithm occur when an

equal fraction of n servers select each level between 1 and
log n, and the server identifiers at any particular level are
evenly distributed about the ring. Achieving these condi-
tions exactly, however, would require a knowledge of log n
and might require all server identifiers and possibly all levels
to change whenever a server joins or leaves. Without precise
knowledge of n, and without altering server identifiers, our
goal is to select levels that approximate the ideal conditions
in a way that requires as few level changes as possible when
a join or leave occurs. In this section we examine the prop-
erties of the random identity selection, and describe a way
of selecting levels that achieves the above goal.

In our model, each server picks its identifier independently
and uniformly from [0, 1) and this id does not change while
it is active in the system. In practice, we are not concerned
with choosing an id with infinite precision, and it suffices to
generate a fixed number of random bits so as to plausibly
avoid collisions.8

We now describe a distributed level selection algorithm
and show that it provides a good dispersal of levels among
servers. The basic idea is as follows: a server s first esti-
mates n, then based on this estimate, n0, it chooses a level
between 1 . . . �log n0� uniformly at random. Of course, the
best way to estimate n is to simply count the servers that
exist at the time of estimation. However, since precisely ac-
counting the size of the network would require information
to be propagated to every server each time the size changes,
this would be too costly. Our goal is then to provide a good
estimate of n while keeping the estimation procedure rea-
sonably localized. To this end, our estimation procedure
only utilizes the identifier information of the servers in the
vicinity of the estimating server, s.

select-level(s):

1. Let n0 = 1/d(s, succ(s)).

2. Select a level � among [1 . . . �log n0�] uniformly at ran-
dom and return �.

Figure 2: Level selection algorithm

Our simple algorithm is presented in Figure 2. By noticing
that the expected distance between the estimating server
and its successor is roughly 1/n, we can get a “ballpark”

8In any case, collisions can be detected by merely performing
a lookup on the chosen identity.

estimate for n. The elegance of this scheme is that a server
must only reselect a level if its successor changes.9.

Good and sane networks: Our identity and level selec-
tion is designed so as to achieve a good dispersal of servers
and level within the ring. The precise properties we need,
sanity and goodness, are as follows (Recall that for servers
s, t, q(s, t) denotes the number of servers in stretch(s, t) and
qi(s, t) denotes the number of servers of level i in stretch(s, t)):

Sanity: When n servers are present, then w.h.p. ev-
ery server running the select-level algorithm estimated
log(n/(2 log n)) ≤ �log n0� ≤ 3 log n. We say that any level
� < log(n/(2 log n)) is “sane.”

Goodness: When n servers are present, the following is
satisfied:

(1) A logarithmic-length stretch contains a logarithmic
number of servers: For all servers s, w.h.p.
q(s, s + (log n)/n) = O(log n) . (2) Finding a server on a
particular level takes a logarithmic number of ring steps in
expectation, and square-log at worst: For all servers s and
for i ≤ log(n/(2 log n)), in expectation q(s,nleveli(s)) =
O(log n) and w.h.p. q(s,nleveli(s)) = O(log2 n).

(3) Finding a server on a ‘sane’ level j ≤ log(n/(2 log n))
takes a logarithmic number of ring steps: For all servers s,
w.h.p. minj≤log(n/(2 log n)){q(s,nlevelj(s))} = O(log n).

(4) A stretch of logarithmic length contains one server in
expectation, and at least one with non-negligible probabil-
ity: For all servers s and for i ≤ log(n/(2 log n)), in expec-
tation E[qi(s, s + (3 log n)/n)] = 1 and with probability at
least 1/2 it holds that qi(s, s + (3 log n)/n) ≥ 1.

(5) Level selections are evenly interleaved to within a log-
arithmic factor: For all servers s and for i, j ≤ log(n/(2 log n)),
in expectation E[qi(s,nlevelj(s))] = 1 and w.h.p.
qi(s,nlevelj(s)) = O(log n).

In the following claim, we state the sanity and goodness
of our construction. The proof technique is rather standard,
and is omitted due to space constraints.

Claim 4.1. The network identity and level selection scheme
above is sane and good.

5. VICEROY CONSTRUCTION AND ROUT-
ING

In this section, we describe how a Viceroy lookup network
is constructed and maintained dynamically in a completely
decentralized manner. We describe the operations: join
and leave, which both call lookup as a subroutine. We
will discuss two variants of the lookup operation in the
next section.

A server s maintains the following variables, initially un-
defined:

s, s.level: the identity and the level chosen by s.

s.predecessor, s.successor: ring pointers.
9We can improve this further by saying that a new level
must be chosen only when �log n0� changes (otherwise the
current random selection is good enough). Also, even if
�log n0� changes, the new level chosen must only be put in
place if it was a level that didn’t exist before (if n0 increases),
or if the current level no longer exists (if n0 decreases)

s.nextonlevel, s.prevonlevel: level ring pointers

s.left, s.right, s.up: butterfly pointers.

join Operation: The main operation we describe is how a
server joins the network. For a server s to join the network,
it performs the steps in Figure 3. If a server’s level changes,
then it will have to repeat steps 4 and 5.

1. Select an identity s according to the identity selection
mechanism described in Section 4.

2. Find using the lookup subroutine succ(s). Up-
date s.predecessor, s.successor, pred(s).successor
and succ(s).predecessor so as to insert s in its place
on the ring.

3. Transfer from the successor all key-value pairs with
key between s.predecessor and s.

4. Select a level s.level according to the level se-
lection mechanism of Section 4. Find (by sin-
gle stepping on the ring) s′ = nextonlevel(s)
and s′′ = prevonlevel(s). Update s.nextonlevel,
s.prevonlevel, s′′.nextonlevel, and s′.prevonlevel to
insert s into its place on the level ring.

5. Find nlevel(s.level+1)(s) (by single-stepping in the
clockwise direction) and assign it to s.left. Find
(using lookup) clockwise-closest(s + 1/2i), and then
find (by single stepping in the clockwise direction)
nlevel(s.level+1)(clockwise-closest(s + 1/2i)). Assign
it to s.right. Find nlevel(s.level−1)(s) and assign it
to s.up.

Figure 3: join algorithm.

leave Operation: When a server leaves, it will have to
remove all of its outbound connections, and notify all of
the servers with inbound connections that they must find a
replacement (which they will find using the lookup subrou-
tine)10. It must also transfer its resources to its successor.

Because of our level selection algorithm, it is likely that at
levels beyond (log n)/2 there may be a sufficient gap between
servers at the same level that single-stepping between them
would take an unreasonable amount of time. In order to
account for this, as well as to account for the possibility
of certain levels not existing, when choosing up and down
links as well as level ring links, we leave them unspecified if it
requires more than O(log2 n) steps after the initial lookup
to find them. Note that by the goodness properties of level
selection, none of the levels up to (log n)/2 are affected by
this detail.

6. SIMPLE LOOKUP
In this section we introduce a slightly simplified routing

protocol that performs competitively in the average case and
illustrates the basic principles that we will refine in Section
7 to yield stronger high probability bounds. The simplified

10This can be performed more efficiently by noticing that
the replacements will point to the successor on the general
or level rings, unless a level changes.

routing does not use the level ring links, only the successor,
predecessor, and butterfly links.

Generally, the lookup subroutine is used both for main-
taining the structure of the network (updates during join
and leave) and for looking up keys. The purpose of subrou-
tine lookup(x, y) is to find, starting at server y, the server
clockwise-closest to the value x.

Routing occurs in three distinct phases. In the first phase,
a level-1 (“root”) server is found by following up links. In
the second phase, the lookup is routed down from the root
along down connections. In this phase, when we are at a
node on level i we are at a distance at most 1/2i−1 from the
target. Then if the target is at distance 1/2i or greater, we
traverse down through the right link, and otherwise, down
the left link. This phase terminates when it reaches a node
with no down links or a node that overshoots the target. In
the third phase, the ring is traversed either in the clockwise
direction or in the counter-clockwise direction to the desired
target. Figure 4 describes this procedure.

A couple of things are worth pointing out: The first and
second stages will also be used in our more sophisticated
lookup scheme, though the third phase will be different. A
distributed version of this lookup algorithm would require
some state denoting the current phase to follow a lookup re-
quest. It would also require a choice on how the return value
is returned to the originator of the lookup (either directly,
or by backward-chaining along the lookup path).

lookup(x, y):

Initialization: Set cur to y.

Proceed to root: If cur.level = 1 goto traverse-tree
phase.
Else set cur = cur.up if it exists or else, cur =
cur.successor and repeat phase.

Traverse tree: If d(cur, x) < 1/2cur.level then cur =
cur.left (go down left) if it exists.
If d(cur, x) ≥ 1/2cur.level then cur = cur.right (go
down right) if it exists.
If the required down link does not exist or if it exists
and it overshoots the target, then goto traverse-ring
phase. Else repeat this phase.

Traverse ring: If cur is the clockwise-closest server to x
then compute a response to the lookup. Else, set cur =
cur.successor or cur = cur.predecessor, whichever is
closer to x and repeat phase.

Figure 4: Simple lookup algorithm.

6.1 Simple Viceroy analysis
In this section we make a preliminary analysis of the

Viceroy lookup network according to the performance met-
rics introduced in Section 1. Recall that the definition of
sanity (Claim 4.1) guarantees that w.h.p. all levels are un-
der 3 log n. This immediately implies that traversing up and
down the tree takes O(log n) steps:

Lemma 6.1. If n servers are present, then the first two
phases take O(log n) steps w.h.p. (over the identifier and
level choice).

Proof. The main point to notice here is that starting
with a node on level higher than log(n/(2 log n)), there may
not exist up links to follow. However, by the goodness prop-
erty (3) (Claim 4.1), traversing successors in the 1st phase
finds a node with level ≤ log(n/(2 log n)) in O(log n) steps.
From there, each step in the first phase decreases the level
by one, so the first phase takes O(log n). By sanity, there
are at most 3 log n network levels, and since each step in
the second phase increases the level by one, it also takes
O(log n).

The third phase involves single stepping along ring links.
In this simple version, it takes O(log n) steps in expectation,
and at worst O(log2 n) steps. Below, we optimize this step
to use level ring links, and bring the worst case cost down
to O(log n).

Lemma 6.2. If n servers are present, then the last phase
takes an expected O(log n) steps and O(log2 n) steps w.h.p.
(over the identifier and level choice.)

Proof. In the “Traverse-tree” phase, each time a down
link is followed, the maximum possible distance to the target
is halved. Therefore, at level k the greatest possible distance
to the target is 21−k. By goodness property (2) (Claim 4.1),
down links exist for all nodes at level k ≤ log(n/(2 log n)).
So when a node s at level log(n/(2 log n)) is ever reached
in this phase, the maximum distance from to the target is
(12 log n)/n, which by goodness property (1) (Claim 4.1)
is O(log n) steps away from the target; or it might over-
shoot the target by an expected O(log n) servers, and w.h.p.
at most O(log2 n) servers (again by goodness property (2)
Claim 4.1). Therefore, we have that the last phase takes an
expected O(log n) and at worst O(log2 n) total single steps.

Since the above lemmata hold regardless of the originating
server or the target server, we get the following as a result:

Corollary 6.3. If n servers are present in a Viceroy
network, then the expected (over source and destination) di-
lation of the simplified lookup scheme is O(log n) and it is
O(log2 n) w.h.p. (over the identifier and level choice.)

We define the load of a lookup on a server to be the prob-
ability that it is involved in a search for a random value from
a random starting point; the congestion of a network is then
the maximum load on any server. This measure gives us
an indication of whether there is a substantial bias in the
number of routes through particular nodes during normal
random traffic (where the assignment of keys is considered
sufficiently random and there are no “hotspots”)11 and dur-
ing periods of heavy traffic when nearly every route is being
traversed. Given that we have a bounded degree network,
Ω(log n) servers take part in a lookup for a random value
and thus the best load we can expect would be Ω(log n/n).
On the other hand we have:

Theorem 6.4. If n servers are present in a Viceroy net-
work, then for any server the expected load is O((log n)/n)
and w.h.p. the maximum load on all servers is O((log2 n)/n).

11This paper does not address the issue of hotspots, though
traditional mechanisms such as multiple replica placement
can be adapted to the distributed hash table framework.

Proof. To evaluate the load we will consider three pos-
sibilities for a server s to participate in a lookup from server
y to x, corresponding to the three phases of routing. It is
straight forward to see that each phase induces an expected
O(log n/n) load on s. We move to bound the worst case
load.

Our proof strategy is to concentrate on a single type of
walk leading to s, whereby type of walk we mean any partic-
ular, either upward or downward, sequence of link selections
(e.g., left-left-left-right-left). In order to bound the worst
case, we will prove below, in Lemma 6.5, that all nodes lead-
ing to s using a particular type of walk are within distance
O(log2 n) of one another, w.h.p. We will make use of this
property to bound the three phases separately as follows:

Node s is on the path to root (phase 1) Looking at the
first phase, for a node s to be on the path to root from y, it
must be on an upward path (e.g., up-up, or up-up-up). Since
the strict distance of all upward links is zero, all sources y
leading to s on upward paths are within distance O(log2 n)
from one another w.h.p. Therefore, out of all paths, w.h.p.
at most O((log2 n)/n) go through s in phase 1.

Node s is on route from level 1 to the lowest level
The proof here is divided into two parts. First, we “count”
the number of root nodes that have a path that goes through
s. Then we calculate the probability that each such path is
used.

By Lemma 6.5, for each particular type of walk from level
1 to s, there are source roots within at most O(log2 n/n)
distance from one another w.h.p. We now turn to the prob-
ability that a particular walk from any root is chosen. By
assumption, targets are distributed uniformly on the ring.
Therefore, a server s of level i receives at most 1/2i−1 of the
walks that go through a particular root. In fact, the load
may be somewhat lower due to overshooting, at which point
the butterfly path is abandoned and the ring is traversed.

Putting all of the above together, we have that a node
s of level i is on 2i types of walks from roots. Each has
O((log2 n)/n) load w.h.p., and is selected with probability
1/2i−1. This induces a load of O((log2 n)/n) on s w.h.p.

The final routing stage This stage involves single step-
ping on the ring for an expected O(log n) steps and at worst
O((log2 n)) w.h.p. by Lemma 6.2. Hence, there are an ex-
pected O(log n) source nodes and O(log2 n) nodes w.h.p. on
such paths.

In total, among all randomly selected sources and targets,
there are expected O(log n/n) routes that go through s, and
O(log2 n/n) routes w.h.p., and this is the load inflicted on
it.

Lemma 6.5. Let s be a node, and let two nodes r1 and r2

be such that a particular type of upward or downward “walk”
(e.g., left-left-right) leads from both r1 and r2 to s. Then r1

and r2 are within distance O(log2 n/n) from one another
w.h.p.

Proof. W.l.o.g, we look at the reverse walk starting from
s. Define the strict place at which the walk ends to be
s +

∑
j∈RM 2−j where RM = {j|j′th move is right}. We

now turn to bound the distance the walk ends from its strict

place. By goodness property (4) (Claim 4.1), with probabil-
ity 1/2 in case the walk starts with a left link, one is found
within a distance (3 log n)/n from s. Likewise, with prob-
ability at least 1/2 a right link is found within a distance
(3 log n)/n from r+1/2. If the desired link is not found, then
again with probability 1/2 we have a link of the same de-
sired level within additional (3 log n)/n distance, and so on.
When we finally find a link, we continue the series of experi-
ments looking for the link dictated by the next move, and so
on. This geometric experiment continues up to log n levels.

Therefore with probability 1− (
1
2

)2 log n
= 1− 1/n2 the last

link in the walk is within (3 log n)/n)(2 log n) = (6 log2 n)/n
distance from the strict distance determined by the walk.
Therefore we get that the two origins of the path, r1 and r2,
satisfy d(r1, r2) ≤ (12 log2 n)/n.

Finally, the connectivity properties of the Viceroy are as
follows:

Theorem 6.6. If n servers are present in a Viceroy net-
work, then the out-degree of each node is 7 (only 5 of which
are used in the simple version), the expected indegree is O(1)
and the largest in-degree is O(log n) w.h.p. (over the iden-
tifier and level choice.)

Proof. Fix any node s. Then the only nodes that may
point to s are those of level s.level and s.level − 1 in
stretch(s, prevonlevel(s)) and stretch(s, prevonlevel(s−
1/2s.level)). The result then immediately follows from good-
ness property (5) (Claim 4.1).

7. IMPROVED LOOKUP
The simple routing above achieves good expected behav-

ior, but does not yield the desired O(log n) dilation with
high probability. In this section we show how to extend the
lookup subroutine to achieve this goal.

The main problem resides in the third phase of the lookup
algorithm where we must traverse the ring, even though
there might be O(log2 n) servers between the current server
and the target. An alternative approach that we now de-
scribe maintains the decentralized spirit of the Viceroy net-
work and allows us to leave the basic construction unaltered.
The idea is that the combination of the global and level rings
can yield a better local routing mechanism than the global
ring alone.

Definition 7.1. The hopping path from s to t is the
one obtained by starting with cur = s and setting cur =
cur.nextonlevel if cur.nextonlevel ∈ stretch(cur, t), cur =
cur.prevonlevel if cur.prevonlevel ∈ stretch(cur, t), other-
wise setting cur = cur.successor or cur = cur.predecessor
so as to minimize the distance to t. The process is repeated
until the clockwise-closest node to t is found. The hop-
ping length from s to t, denoted hops(s, t), is the number
of servers in the hopping path.

We will show that hopping allows one to route through
a poly-logarithmic number of nodes in a logarithmic num-
ber of steps w.h.p. By using this routing scheme in the
third phase of our lookup algorithm, we will thus achieve
the stronger bound we aim for. We modify the third phase
lookup algorithm as in Figure 5.

lookup(x, y): (third phase)

Traverse ring: If cur is the clockwise-closest server to
x then compute a response to the lookup. Else,
if cur.nextonlevel ∈ stretch(cur, x) then cur =
cur.nextonlevel, if cur.prevonlevel ∈ stretch(cur, x)
then cur = cur.prevonlevel, else set cur =
cur.successor or cur = cur.predecessor, whichever is
closer to x. Repeat phase.

Figure 5: Modified third phase of the lookup algo-
rithm.

7.1 Improved lookup analysis

Lemma 7.2. Let us consider a stretch of O(log2 n) servers
between s and t in a sane and good network. With high prob-
ability, the hopping length between s and t satisfies hops(s, t) =
O(log n).

Proof. Consider a hopping path on the stretch. It will
appear as a sequence of hops on the same level until that
level has no more nodes within the stretch, then another
sequence of hops on another level, and so on. For the re-
mainder, we will only consider the hopping path before it
gets within c log n single-steps of the target, and show that
this length is O(log n) with high probability. The final c log n
single-steps can take at most O(log n) hops. We’ll call the
first set of hops the “hopping phase” and the second set the
“stepping phase”.

The first task is to bound the number of times the level
changes during the hopping phase. Notice that only one
level that occurs in the stepping phase can be part of the
hopping phase. Let’s assume that the levels of the servers in
the stepping phase are chosen sequentially until log n/4 dis-
tinct levels have been selected, and let X denote the number
of trials necessary for this to occur. Because at any point
fewer than log n/4 levels have been selected, then the prob-
ability of selecting a new level at any point is at least 1/2.
The expected value for X is clearly 2 log n/4. Using a Cher-
noff bound we have that

Pr[X > c log n] ≤ e(c−1/2)2 log n/6 =
1

n(c−1/2)2/6
.

Thus with high probability, at least log n/4 levels are in the
stepping phase and thus are not in the hopping phase.

Now consider Pi to be the event that the ith server is
on the hopping path. We’ll use the principle of deferred
decisions, and assume that the levels are selected as the
hopping path proceeds from s to t, removing a candidate
level each time a level change occurs. Besides the nodes that
are in the path because a level change occurs (there can be
at most (3 log n) − (log n)/4 of these), Pj occurs only if it
selects the same level as the last Pi to occur. The selection
will be uniform out of the levels that haven’t been in the
hopping phase thus far. Using the bound we have on the
number of different levels of hopping, the probability that
Pi occurs is at most 4/ log n.

We can bound the number, P , of successful Pi events of
this type using the Chernoff bounds. In a stretch of d log2 n
servers, then have

Pr[P > 8d log n] < e−(4d log n)/3 <
1

nd
.

Thus with high probability, there are O(log n) level changes,
O(log n) “continuation” steps of the above type, and O(log n)
steps in the stepping phase.

The analysis of the dilation of the full Viceroy network
differs from the simple one only in the last phase. Hence,
we obtain the following as an immediate result.

Theorem 7.3. If n servers are present in a Viceroy net-
work, then the (worst-case) dilation of the network is O(log n)
w.h.p. (over the identifier and level choice.)

We note that hopping does not harm the load incurred
during the third phase of the lookup because it only reduces
the chance of a server being in the hopping path. However,
the load from the first two phases leaves the expected load
as before.

7.2 Bounding Indegrees - The Bucket Solution
So far we have concentrated on fixing the outdegree of

nodes and creating a sparse network. This obviously yields
small average indegree. However, the largest indegree in
the network might still be as large as log n and thus a single
server leaving would cause log n linkage changes. To combat
this we add another background process to the system which
we call “buckets.” Unfortunately, the details of the bucket
mechanism are more involved than the rest of Viceroy so we
only sketch its operation here.

Our approach is to improve the identifier and level selec-
tion procedures so that in stretches of length (log n)/n we
will have a constant number of servers (between c1 and c2 for
some fixed c1 and c2) from each “sane” level. We achieve
this by maintaining a distributed coordination mechanism
between contiguous, non-overlapping sets of servers on the
ring, buckets, consisting of O(log n) servers each. Inside each
bucket, we maintain a simple ring (which mostly overlaps the
general ring, except that the end points of the bucket are
also connected). The buckets are maintained so that several
properties hold:

Size: The size of a bucket is always Θ(log n), that is when-
ever the size of a bucket drops below log n it merges
with a neighbor bucket, and whenever the size exceeds
c log n the bucket splits into two. Such merging and
splitting might involve reassignment of levels to all
members of the bucket. Within the bucket, a precise
estimate of log n is maintained.

Diversity: The levels inside a bucket are not assigned at
random, rather it is assured that from each level in
[1.. log n] there is at least one member and no more
than c members. This assures that the indegree of any
server is bounded by 2c. To maintain this last property
it might be necessary to reassign a new level to some
remaining server in the bucket when a server leaves the
system (and the bucket).

Overhead: Note that when a node leaves this can cause at
most O(1) other nodes to change their level selection. Also a
join or leave can cause a bucket once in (c−1) log n steps to
reshuffle (which involves O(log n) changes, so the amortized
complexity is O(1).

Finally, buckets are also natural units for maintaining
replicated data, e.g., on routing information, for fault toler-
ance.

Acknowledgments
We thank Udi Wieder for a careful reading of the paper and
John Mitchell for useful discussions.

8. REFERENCES
[1] N. Alon, M. Dietzfelbinger, P. B. Miltersen, E.

Petrank, and G. Tardos. “Linear Hashing”. Journal of
the ACM Vol. 46, No. 5, 1999, pp. 667–683.

[2] L. Barriére, P. Fraigniaud, E. Kranakis and D.
Krizanc. “Efficient routing in networks with long
range contacts”. 15th International Symposium on
Distributed Computing (DISC ’01), Lecture Notes in
Computer Science vol. 2180, Springer, 2001 pp.
270–284.

[3] A. Fiat and J. Saia. “Censorship resistant peer-to-peer
content addressable networks”. Proceedings of the
13th ACM-SIAM Symp. on Discrete Algorithms, 2002.

[4] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D.
Culler. “Scalable, distributed data structures for
Internet service construction. Proc. Fourth Symposium
on Operating System Design and Implementation
(OSDI 2000), October 2000.

[5] D. Karger, E. Lehman, F. T. Leighton, M. Levine, D.
Lewin, and R. Panigrahy. “Consistent hashing and
random trees: Distributed caching protocols for
relieving hot spots on the World Wide Web”.
Proceedings of the 29th Annual ACM Symposium on
Theory of Computing (STOC), pp. 654–663, May
1997.

[6] J. Kleinberg. “The small world phenomenon: An
algorithmic perspective”. Proceedings of the 32nd
ACM Symposium on Theory of Computing, May
2000, pp. 163–170. (A shorter version available as
“Navigation in a Small World”, Nature 406, August
2000, pp. 845.)

[7] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.
Eaton, D. Geels, R. Gummadi, S. Rhea, H.
Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
“OceanStore: An Architecture for Global-Scale
Persistent Storage”, Proceedings of the Ninth
international Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS 2000), November 2000.

[8] N. Lynch, D. Malkhi and D. Ratajczak. “Atomic Data
Access in Distributed Hash Tables”, Proceedings of
the International Peer-to-Peer Symposium, March
2002.

[9] T. Lai and D. Wood. “Adaptive heuristics for binary
search trees and constant linkage cost”. Proceedings of
the 2nd ACM-SIAM Symposium on Discrete
Algorithms, pp. 72-77, San Francisco, CA, 1991.

[10] M.-J. Lin, K. Marzullo and S. Masini, “Gossip versus
Deterministically Constrained Flooding on Small
Networks”, Proceedings of the 14th International
Conference on Distributed Computing, 2000, pp.
253–267.

[11] R. J. Lipton and J. F. Naughton. “Clocked adversaries
for hashing”. Algorithmica, Vol. 9(3), 1993, pp.
239–252.

[12] W. Litwin, M.A. Neimat, D. A. Schneider. “LH*-A
scalable, distributed data structure”. ACM

Transactions on Database Systems, Vol. 21(4), 1996,
pp. 480–525.

[13] R. Motwani and P. Raghavan. “Randomized
Algorithms”. Cambridge University Press, 1995.

[14] T. Ottmann and D. Wood. “Updating binary trees
with constant linkage cost”. International Journal of
Foundations of Computer Science, 3, 1992, pp.
479–501.

[15] G. Pandurangan, P. Raghavan and E. Upfal.
“Building low-diameter p2p networks”. Proceedings of
the 42nd Annual IEEE Symposium on the
Foundations of Computer Science (FOCS), 2001.

[16] C. Plaxton, R. Rajaram, and A. Richa. “Accessing
nearby copies of replicated objects in a distributed
environment”. Proceedings of the Ninth Annual ACM
Symposium on Parallel Algorithms and Architectures
(SPAA 97), pp. 311–320, June 1997.

[17] W. Pugh. “Skip Lists: A probabilistic alternative to
balanced trees”. Communications of the ACM, vol
33(6), pp. 668–676, 1990.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S.
Shenker. “A scalable content-addressable network”.
Proceedings of the ACM SIGCOMM 2001 Technical
Conference. August 2001.

[19] H. J. Siegel. “Interconnection networks for SIMD
machines”. Computer 12(6):57–65, 1979.

[20] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. “Chord: A scalable peer-to-peer
lookup service for Internet applications”. Proceedings
of the SIGCOMM 2001, August 2001.

[21] B. Y. Zhao, J. D. Kubiatowicz and A. D. Joseph.
“Tapestry: An infrastructure for fault-tolerant
wide-area location and routing”. U. C. Berkeley
Technical Report UCB/CSD-01-1141, April, 2001.

