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Abstract 

The advent of deep sub-micron technology has 
recently highlighted the criticality of the on-chip 
interconnects. As diminishing feature sizes have led to 
increases in global wiring delays, Network-on-Chip 
(NoC) architectures are viewed as a possible solution to 
the wiring challenge and have recently crystallized into 
a significant research thrust. Both NoC performance 
and energy budget depend heavily on the routers' buffer 
resources. This paper introduces a novel unified buffer 
structure, called the dynamic Virtual Channel Regulator 
(ViChaR), which dynamically allocates Virtual 
Channels (VC) and buffer resources according to 
network traffic conditions. ViChaR maximizes 
throughput by dispensing a variable number of VCs on 
demand. Simulation results using a cycle-accurate 
simulator show a performance increase of 25% on 
average over an equal-size generic router buffer, or 
similar performance using a 50% smaller buffer. 
ViChaR's ability to provide similar performance with 
half the buffer size of a generic router is of paramount 
importance, since this can yield total area and power 
savings of 30% and 34%, respectively, based on 
synthesized designs in 90 nm technology.  

1. Introduction 

Rapidly diminishing feature sizes into the nanoscale 
regime have resulted in dramatic increases in transistor 
densities. While gate delays are scaling down 
accordingly, wiring delays are, in fact, increasing; as 
wire cross-sections decrease, resistance increases. This 
undesirable behavior has transformed the interconnect 
into a major hindrance. A signal would require multiple 
clock cycles to traverse the length of a large System-on-
Chip (SoC). To combat the delay issues emanating from 
slow global wiring, researchers have proposed the use of 
packet-based communication networks, known as 
Networks-on-Chip (NoC) [1-4]. NoCs, much like macro 
networks, can scale efficiently as the number of nodes 
(i.e. processing elements) increases. Besides 
performance, current designs indicate an additional 
alarming trend pertaining to the on-chip interconnect: the 

chip area and power budgets are increasingly being 
dominated by the interconnection network [5-7]. As the 
architectural focus shifts from monolithic, computation-
centric designs to multi-core, communication-centric 
systems, communication power has become comparable 
to logic and memory power, and is expected to 
eventually surpass them [6]. This ominous trend has 
been observed by several researchers [1, 5, 8] and the 
realization of its ramifications has fueled momentum in 
investigating NoC architectures. Researchers have 
proposed sophisticated router architectures with 
performance enhancements [9], area-constrained 
methodologies [7], power-efficient and thermal-aware 
designs [5, 10], and fault-tolerant mechanisms [11]. 

It is known that router buffers are instrumental in the 
overall operation of the on-chip network. However, of 
the different components comprising the interconnection 
fabric of SoCs, buffers are the largest leakage power 
consumers in an NoC router, consuming about 64% of 
the total router leakage power [12]. Similarly, buffers 
consume significant dynamic power [8, 13] and this 
consumption increases rapidly as packet flow throughput 
increases [13]. In fact, it has been observed that storing a 
packet in a buffer consumes far more energy than 
transmitting the packet [13]. Furthermore, the area 
occupied by an on-chip router is dominated by the 
buffers [2, 14, 15]. Consequently, buffer design plays a 
crucial role in architecting high performance and energy 
efficient on-chip interconnects, and is the focus of this 
paper. 

1.1. Importance of Buffer Size and Organiza-

tion 

Decreasing the buffer size arbitrarily to reclaim 
silicon area and minimize power consumption is not a 
viable solution, because of the intricate relationship 
between network performance and buffer resources. 
Buffer size and management are directly linked to the 
flow control policy employed by the network; flow 
control, in turn, affects network performance and 
resource utilization. Whereas an efficient flow control 
policy enables a network to reach 80% of its theoretical 
capacity, a poorly implemented policy would result in a 
meager 30% [16]. Wormhole flow control [17] was 
introduced to improve performance through finer-
granularity buffer and channel control at the flit level 
instead of the packet level (a flit is the smallest unit of 
flow control; one packet is composed of a number of 
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flits). This technique relaxes the constraints on buffer 
size at each router, allowing for a more efficient use of 
storage space than store-and-forward and virtual cut-
through [18] switching. However, the channel capacity is 
still poorly utilized; while the buffers are allocated at the 
flit level, physical paths are still allocated at the packet 
level. Hence, a blocked packet can impede the progress 
of other packets waiting in line and may also cause 
multi-node link blocking (a direct consequence of the 
fact that the flits of a single packet are distributed across 
several nodes in wormhole routers). To remedy this 
predicament, Virtual Channel (VC) flow control [19] 
assigns multiple virtual paths (each with its own 
associated buffer queue) to the same physical channel. It 
has been shown that VC routers can increase throughput 
by up to 40% over wormhole routers without VCs [16]. 
As a side bonus, virtual channels can also help with 
deadlock avoidance [20]. The work in this paper 
assumes, without loss of generality, the use of VC-based 
wormhole flow control, which suits the low buffer 
requirements of NoC routers. 

The way virtual channels – and hence buffers – are 
organized within a router is also instrumental in 
optimizing performance. The number of VCs per 
physical channel and the VC depth are two parameters 
that form an elaborate interplay between buffer 
utilization, throughput and latency. Researchers in the 
macro-network field have identified the decisive role of 
virtual channel organization in overall system 
performance [21, 22]. Detailed studies of the relation 
between virtual channels and network latency indicate 
that for low traffic intensity, a small number of VCs can 
suffice. In high traffic rates, however, increasing the 
number of VCs is a more effective way of improving 
performance than simply increasing the buffer depth 
[22]. Under light network traffic, the number of packets 
traveling through a router is small enough to be 
accommodated by a limited number of VCs; increasing 
the number of VCs yields no tangible benefits. Under 
high traffic, many packets are contenting for router 
resources; increasing VC depth will not alleviate this 
contention because of Head-of-Line (HoL) blocking. 
Increasing the number of VCs, though, will allow more 
packets to share the physical channels. This dichotomy 
in VC organization implies that routers with fixed buffer 
structures will either be underutilized or will 
underperform under certain traffic conditions, as 
illustrated in the examples of Figure 1. This figure 
highlights the weaknesses of statically-partitioned 
buffers. 

Since buffer resources come at a premium in 
resource-constrained NoC environments (they consume 
valuable power and silicon real-estate), it is imperative 
to limit the buffer size to a minimum without severely 
affecting performance. This objective function can only 
be achieved through the use of efficient management 
techniques which optimize buffer utilization. Since size 
and organization are design-time decisions, they cannot 
be dynamically changed during operation based on 
observed traffic patterns. However, the use of a carefully 
designed buffer controller can significantly affect the 
efficiency of storing and forwarding of the flits. 
Therefore, the throughput of a switch can be maximized 
through dynamic and real-time throttling of buffer 
resources. 

1.2. A Dynamic Virtual Channel Regulator 

Given the aforementioned significance of the NoC 
buffers in the area, power and performance triptych, we 
thereby introduce ViChaR

∗

: a dynamic Virtual Channel 
Regulator, which dispenses VCs according to network 
traffic. The ViChaR module is a very compact unit 
operating at the granularity of one router input/output 
port; therefore, a conventional 5-port NoC router would 
employ five such units to oversee buffer management. 

ViChaR's operation revolves around two intertwined 
concepts which constitute the two fundamental 
contributions of this work: 

(1) ViChaR uses a Unified Buffer Structure 
(UBS), instead of individual and statically partitioned 
First-In-First-Out (FIFO) buffers. While the unified 
buffer concept is not new, in this work we are revisiting 
the concept within the confinements of the strict resource 
limitations of on-chip networks. This is the first attempt 
to incorporate a unified buffer management in NoC 
routers. The new flavor in our endeavor stems from a 
fundamentally different implementation approach: we 
introduce a novel, table-based design which provides 
single-clock operation without incurring prohibitive 
overhead. Most importantly though, it enables the use of 
a flexible and dynamically varying virtual channel 
management scheme, thereby replacing the conventional, 
static resource allocation. 

(2) ViChaR provides each individual router port 
with a variable number of VCs, each of which is 
dispensed dynamically according to network traffic 
conditions. This translates into fewer but deeper VCs 

                                                           
∗ The name ViChaR was intentionally chosen to echo the word Vicar, 

who is someone acting as a substitute or agent for a superior. 
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under light traffic, and more but shallower VCs under 
heavy traffic. This attribute successfully marries two 
contradicting buffer organizations, which are impossible 
to combine in conventional, statically-allocated buffers. 
Furthermore, ViChaR's dynamic allocation scheme 
ensures a smooth continuum between these two extremes 
(few/deeper VCs versus more/shallower VCs) as the 
network intensity fluctuates. 

The proposed ViChaR architecture and a generic 
buffer architecture were synthesized in 90 nm 
technology. Area and power extracts indicate that a 
modest overhead in area and power due to more 
elaborate control logic in ViChaR is amortized by 
greater area and power gains through the use of fewer 
virtual channel arbiters. Thus, overall ViChaR allows for 
4% area reduction and incurs a minimal 2% power 
increase compared to an equal-size generic buffer 
implementation. Further, simulations with a cycle-
accurate NoC simulator under various traffic patterns 
show that ViChaR reduces network latency by 25% on 
average compared to a generic buffer of equal size. 
Alternatively, ViChaR can achieve the same 
performance as a conventionally buffered router by 
using 50% less buffer space. This result is of profound 
significance because it allows the designer to reduce the 
buffer size by half without affecting performance. This 
yields net area and power benefits of around 30% and 
34%, respectively, over the entire NoC router. 

The rest of the paper is organized as follows: a 
summary of related work is presented in Section 2, the 
proposed ViChaR architecture is analyzed in Section 3, 
simulation results are discussed in Section 4, and the 
concluding remarks are given in Section 5. 

2. Related Work in Buffer Design 

Interest in packet-based on-chip networks has rapidly 
gained momentum over the last few years, and analysis 
and optimization of on-chip interconnect architectures 
have garnered great attention. In this section, we focus 
solely on buffer related aspects. Within the realm of on-
chip buffer design, both size and organization have been 
shown to be directly related to network performance 
[14]. Buffer sizing in particular has been investigated in 
[14, 15]. However, these papers adopt a static approach, 
where optimal buffer sizes are pre-determined at design-
time based on a detailed analysis of application-specific 
traffic patterns. The sizing is optimal for only one 
particular application and one hardware mapping. 
However, a technique to dynamically alter the buffer 
organization at run-time is more desirable for a general 
purpose and reconfigurable SoC executing different 
workloads. A dynamic scheme would maximize 
utilization regardless of the traffic type in the NoC. 

Centralized buffer organizations have been studied 
extensively in the macro-network realm, but the 
solutions proposed are not amenable to resource 
constrained on-chip implementations. In particular, a 
unified and dynamically-allocated buffer structure was 
originally presented in [23] in the form of the 
Dynamically Allocated Multi-Queue (DAMQ) buffer. 
However, whereas the DAMQ architecture was part of a 
single-chip communication coprocessor for multi-
computer systems, the proposed implementation in this 

paper is aimed at area- and power-constrained, ultra-low 
latency on-chip communication. This profoundly 
affected our design considerations as follows: 

(1) The DAMQ used a fixed number of queues (i.e. 
virtual channels) per input port. Specifically, four queues 
were used, one for each of three output ports and a local 
processor interface. Consequently, all packets in the 
same queue had to obey the FIFO order, i.e. all packets 
in the same queue could still get stuck behind a blocked 
packet at the head of the queue. 

(2) The control logic of the DAMQ buffer was very 
complex, relying on a system of linked lists to organize 
the data path. These linked lists were stored in pointer 
registers which had to be updated constantly. This 
caused a three-cycle delay for every flit 
arrival/departure, mainly because data had to be moved 
between pointer registers, and a so-called "free list" had 
to be updated (a linked list keeping track of available 
buffer slots) [24]. This three-cycle delay – while 
acceptable for inter-chip communication – would prove 
intolerable in an on-chip router. 

The DAMQ project spawned a few other designs, 
which aimed to simplify the hardware implementation 
and lower overall complexity. Two notable examples of 
these designs were the DAMQ with self-compacting 
buffers [25] and the Fully Connected Circular Buffer 
(FC-CB) [26]. Both designs have less overhead than the 
linked-list approach of [23] by employing registers, 
which selectively shift some flits inside the buffer to 
enable all flits of one VC to occupy a contiguous buffer 
space. The FC-CB design [26] improves on [25] by 
using a circular structure, which shifts in only one 
direction and ensures that any flit will shift by at most 
one position each cycle. However, the FC-CB has two 
main disadvantages when applied to an on-chip network. 
First, being fully connected, it requires a P

2
 x P crossbar 

instead of the regular P x P crossbar for a P-input 
switch. Such large and power-hungry crossbars are 
unattractive for on-chip routers. Second, the circular 
shifter allows an incoming flit to be placed anywhere in 
the buffer and requires selective shifting of some parts of 
the buffer while leaving the rest of the buffer 
undisturbed. This functionality inflicts considerable 
increases in latency, area and power over a simple, non-
shifting buffer implementation, like the proposed 
ViChaR design. The overhead is due to the large 
MUXes which are required between each buffer slot to 
enable both shifting and direct input. 

The circular-shift buffer of the FC-CB was 
implemented in Verilog HDL and synthesized in 90 nm 
commercial TSMC libraries to assess its viability in on-
chip designs. The circular buffer implementation of the 
FC-CB increases the datapath delay by 26% compared to 
ViChaR's stationary (i.e. non-shifting) buffer. Increases 
in datapath delay may affect the pipeline period in 
deeply pipelined router designs; a longer period will 
adversely affect throughput. Moreover, the FC-CB's 
large MUXes incur an increase of approximately 18% in 
buffer area. More importantly, though, the continuous 
shifting of the FC-CB buffer every clock cycle 
(assuming continuous incoming traffic) increases the 
dynamic power budget by 66%. Obviously, this 
overhead renders the FC-CB implementation 
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unattractive for on-chip applications. Finally, the FC-CB 
still works with a fixed number of VCs, just like the 
DAMQ design. In this paper, we will show that a 
dynamically variable number of VCs optimizes 
performance. 

The notion of dynamically allocating VC resources 
based on traffic conditions was presented in  [27], 
through the VCDAMQ and DAMQ-with-recruit-
registers (DAMQWR) implementations. However, both 
designs were coupled to DAMQ underpinnings; hence, 
they employed the linked-list approach of the original 
DAMQ, which is too costly for an on-chip network. 
Nevertheless, the work of [27] highlighted the 
significance of dynamic allocation of buffer resources, 
which forms the premise of the design proposed in this 
paper. 

Finally, the Chaos router [28] and BLAM routing 
algorithm [29] provide an alternative technique to saving 
buffer space. They employ packet misrouting, instead of 
storage, under heavy load. However, randomized (non-
minimal) routing may make it harder to meet strict 
latency guarantees required in many NoCs (e.g., 
multimedia SoCs). Moreover, these schemes do not 
support dynamic VC allocation to handle fluctuating 
traffic. 

3. The Proposed Dynamic Virtual Channel 

Regulator (ViChaR) 

3.1. A Baseline NoC Router 

A generic NoC router architecture [9] is illustrated in 
Figure 2. The router has P input and P output 
channels/ports. In most implementations, P=5; four 
inputs from the four cardinal directions (North, East, 
South and West) and one from the local Processing 
Element (PE). The Routing Computation unit, RC, is 
responsible for directing the header flit of an incoming 
packet to the appropriate output Physical Channel/port 
(PC) and dictating valid Virtual Channels (VC) within 
the selected PC. The routing is done based on 
destination information present in each header flit, and 
can be deterministic or adaptive. The Virtual channel 
Allocation unit (VA) arbitrates amongst all packets 

requesting access to the same VCs and decides on 
winners. The Switch Allocation unit (SA) arbitrates 
amongst all VCs requesting access to the crossbar and 
grants permission to the winning flits. The winners are 
then able to traverse the crossbar and are placed on the 
respective output links. Simple router implementations 
require a clock cycle for each component within the 
router. Lower-latency router architectures parallelize the 
RC, VA and SA using speculative allocation [30], which 
predicts the winner of the VA stage and performs SA 
based on that. Further, look-ahead routing can also be 
employed to perform routing of node i+1 at node i. 
These two modifications have led to two-stage, and even 
single-stage [9], routers, which parallelize the various 
stages of operation. 

So far, as a result of scarce area and power resources 
and ultra-low latency requirements, on-chip routers have 
relied on very simple buffer structures. In the case of 
virtual channel-based NoC routers, these structures 
consist of a specified number of FIFO buffers per input 
port, with each FIFO corresponding to a virtual channel. 
This is illustrated in Figure 2. Such organization 
amounts to a static partitioning of buffer resources. 
Hence, each input port of an NoC router has v virtual 
channels, each of which has a dedicated k-flit FIFO 
buffer. Current on-chip routers have small buffers to 
minimize their overhead; v and k are usually much 
smaller than in macro networks [9]. The necessity for 
very low latency dictates the use of a parallel FIFO 
implementation, as shown in the bottom right of Figure 
2. As opposed to a serial FIFO implementation [31], the 
parallel flavor eliminates the need for a flit to traverse all 
slots in a pipelined manner before exiting the buffer 
[31]. This fine-grained control requires more complex 
logic, which relies on read and write pointers to maintain 
the FIFO order. Given the small sizes of on-chip buffers, 
though, the inclusion of a parallel FIFO implementation 
is by no means prohibitive. The buffers within an NoC 
router can be implemented as either registers or 
SRAM/DRAM memory [32, 33]. However, given the 
relatively small buffer sizes employed, it is more 
reasonable to use small registers as buffers to avoid the 
address decoding/encoding latencies of big memories 
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and the access latencies associated with global 
bitlines/wordlines [32]. To this extent, the NoC buffers 
in this paper were implemented as registers. 

FIFO buffers in statically assigned buffer structures 
have two inherent disadvantages. First, a packet at the 
head of a VC whose designated output port is busy will 
block all subsequent packets in that VC from being 
transmitted (assuming non-atomic buffer allocation) 
even if their designated output ports are free. This Head-
of-Line (HoL) blocking can severely affect network 
performance in congested conditions, similar to the 
previously discussed DAMQ. This scenario is illustrated 
at the top of Figure 3. Second, if only part of a packet 
occupies a VC buffer at a given time, then any vacant 
slots in that buffer cannot be reassigned to a new packet 
for as long as that VC is reserved by the partial packet to 
avoid packet/message mixing. Thus, a VC buffer may 
only be occupied by a single header flit because the 
remaining flits happen to be blocked in preceding routers 
due to congestion. In such a scenario, the remaining free 
slots in the buffer cannot be assigned to other packets 
until the tail flit of the current packet releases the VC. 
This attribute of FIFO buffers can lead to substantial 
under-utilization of the buffers, as shown at the bottom 
of Figure 3, and cripple network performance. 

3.2. The ViChaR Architecture 

Figure 4 illustrates the buffer organization of a 
conventional NoC router (left) and our proposed 
alterations (right). The crux of ViChaR is composed of 
two main components: (1) the Unified Buffer Structure 
(UBS), shown in Figure 4, and (2) the associated control 
logic, called Unified Control Logic (UCL). 

Figure 4 shows only one of the five sub-modules of 
UCL, the Arriving/Departing Flit Pointer Logic. This 
sub-module constitutes the interface between the UBS 
and the UCL; the UCL controls the unified buffer (UBS) 
through the Arriving/Departing Flit Pointer Logic 
module. A top-level block diagram of the entire ViChaR 
architecture is shown in Figure 6. This figure illustrates 
all five of the UCL sub-modules: (1) the 
Arriving/Departing Flit Pointers Logic, (2) the Slot 
Availability Tracker, (3) the VC Availability Tracker, (4) 
the VC Control Table, and (5) the Token (VC) 
Dispenser. The operation of each component and the 

interaction between the UBS and its controlling entity 
(the UCL) are described in detail in section 3.2.2. All 
five modules function independently and in parallel, 
which is of critical importance to the ultra-low latency 
requirements of the router. The UCL components work 
in tandem with the unified buffer (UBS), providing 
dynamic allocation of both virtual channels and their 
associated buffer depth. As illustrated in Figure 6, the 
two main ViChaR components (UBS and UCL) are 
logically separated into two groups: the unified buffer 
(UBS) and two of the five UCL modules (the 
Arriving/Departing Flit Pointers Logic and the Slot 
Availability Tracker) are situated at the input side of the 
router (i.e. to accept all incoming flits), while the 
remaining modules of the control logic (UCL) are 
responsible for the VC arbitration of all flits destined to 
a particular output port. Based on incoming traffic and 
information from the Slot and VC Availability Trackers, 
the Token (VC) Dispenser grants VC IDs to new packets 
accordingly. The VC Control Table is the central hub of 
ViChaR's operation, keeping track of all in-use VCs and 
a detailed status of the unified buffer (UBS). When flits 
arrive and/or depart, the Arriving/Departing Flit Pointers 
Logic controls the UBS's MUXes and DEMUXes in 
accordance with the VC Control Table. 

It is important to realize that the UBS is physically 
identical to the generic buffer structure: the v 
independent k-flit FIFO buffers of a traditional 
implementation are simply logically grouped in a single 
vk-flit entity (the UBS in Figure 4). Hence, other than 
the control logic, there is no additional hardware 
complexity, since the vk-flit UBS is NOT a large, 
monolithic structure; it groups the existing buffers 
together, and it is only through the use of its control 
mechanism (the UCL) that the buffers appear as a 
logically unified structure. As shown in Figure 4, UBS 
retains the same number of MUXes/DEMUXes as the 
generic implementation, i.e. one MUX/DEMUX per k 
flits, to avoid large (and hence slower) components. 

3.2.1. Variable Number of Virtual Channels. Where-
as a conventional NoC router can support only a fixed, 
statically assigned number of VCs per input port (namely 
v, as shown in Figure 4), the ViChaR architecture can 
have a variable number of assigned VCs, based on 
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network conditions. ViChaR assigns at most one packet 
to each VC so as to enable fine flow control granularity; 
on the contrary, the sharing of a single VC by multiple 
packets can lead to situations where a blocked packet 
impedes the progress of another packet which happens to 
use the same VC (known as HoL blocking, as described 
in Section 3.1). A vk-flit ViChaR structure can support 
anywhere between v VCs (when each VC occupies the 
maximum of k flits) and vk VCs (when each VC 
occupies the minimum of 1 flit) at any given time under 
full load. This variability in the number of in-use VCs is 
illustrated in Figure 5. To aid understanding, each VC in 
Figure 5 is shown to occupy a contiguous space in the 
buffer (UBS); in reality, however, this may not be the 
case because the UBS allows the VCs to include non-
consecutive buffer slots (this fact will be explained in 
more detail in Section 3.2.2). Hence, the system can 
support a variable number of in-flight packets per port, 
dynamically allocating new VCs when network 
conditions dictate it. Dynamic variability in in-flight 
messages can increase throughput under heavy traffic. 

As a result of its unified buffer and dynamic 
behavior, the ViChaR structure alters the Virtual channel 
Allocation (VA) logic of the router. Since the router 
function may return multiple output VCs restricted to a 
single physical channel [30], two arbitration stages are 
required in both the generic and ViChaR cases, as shown 
in Figure 7. In the generic case, the first stage reduces 
the number of requests from each input VC to one (this 
ensures the request of a single VC at a particular output 
port by each input VC). Subsequently, the winning 
request from each input VC proceeds to the second 
arbitration stage. Details of the VA operation are omitted 
for brevity, but can be found in [30]. 

In the proposed ViChaR architecture, VA takes a 
different approach due to the dynamic VC allocation 
scheme: the first arbitration stage reduces the number of 
requests for a particular output port to one request per 
input port. The generic router (Figure 7(a)) requires v:1 
arbiters, since the number of VCs supported is fixed to v. 
ViChaR, on the other hand, supports anywhere between 
v and vk VCs per port at any given time. To 
accommodate the worst case scenario (i.e. vk in-flight 
VCs), ViChaR needs larger vk:1 arbiters in stage 1 of the 
allocation (Figure 7(b)). The second arbitration stage in 
ViChaR produces a winner for each output port among 
all the competing input ports. Therefore, while the 
proposed ViChaR architecture uses larger Stage 1 

arbiters (vk:1 vs. v:1), it uses much smaller and fewer 
Stage 2 arbiters. The reason for the simplified second 
stage is that ViChaR dynamically allocates VCs as 
needed, instead of accepting requests for specific VCs 
(which would necessitate one arbiter per output VC, just 
like the generic case). It is this attribute that helps the 
ViChaR implementation incur only a slight increase in 
power consumption (and even achieve a small area 
decrease), compared to a generic architecture, as will be 
shown shortly. 

The variable number of VCs supported by ViChaR 
also necessitates bigger arbiters in the first stage of 
Switch Allocation (SA), as shown in Figure 8. Similar to 
VA, switch allocation is performed in two stages. The 
first stage accounts for the sharing of a single port by a 
number of VCs. Again, ViChaR needs larger vk:1 
arbiters. The second stage arbitrates between the 
winning requests from each input port (i.e. P ports) for 
each output port; thus, it is the same for both 
architectures. The ViChaR overhead due to the bigger 
stage-1 SA arbiters (illustrated in Table 1's detailed 
breakdown) is almost fully amortized by the bigger 
savings resulting from the smaller VA stage discussed 
previously. 

To analyze the area and power overhead, NoC 
routers with (a) a generic buffer and (b) the proposed 
ViChaR buffer were implemented in structural Register-
Transfer Level (RTL) Verilog and then synthesized in 
Synopsys Design Compiler using a TSMC 90 nm 
standard cell library. The resulting designs operate at a 
supply voltage of 1 V and a clock frequency of 500 
MHz. The routers have 5 input ports (i.e. P=5), 4 VCs 
per input port (i.e. v=4), each VC is four-flit deep (i.e. 
k=4), and each flit is 128 bits long. Both area and power 
estimates were extracted from the synthesized router 
implementations. A comparison of the area and power 
overhead of the two schemes is shown in Table 1. Note 
that both routers have equal buffer space (vk=16 buffer 
slots per input port) for fairness. It is evident that while 
ViChaR incurs an overhead in terms of control logic and 
switch allocation (SA), this overhead is over-
compensated (in terms of area) by a larger reduction in 
the VA logic. Thus, the ViChaR model provides area 
savings of around 4%. In terms of power, ViChaR 
consumes slightly more power (1.75%). This power 
increase, however, is negligible compared to the 
performance benefits of ViChaR, as will be 
demonstrated in Section 4. 
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3.2.2. ViChaR Component Analysis. The key 
challenges in designing ViChaR were to avoid (a) 
deepening the router's pipeline, and (b) decreasing the 
operating frequency. To circumvent the multi-cycle 
delay induced by a linked-list approach [23] to ViChaR, 
we opted instead for a table-based approach, as 
illustrated in Figure 10. This logic is required for each 
output port in the router. Following is a break-down of 
the control logic (UCL) sub-modules of the proposed 
ViChaR architecture: 

VC Control Table: The VC Control Table (see 
Figure 10) forms the core of the control logic of 
ViChaR. It is a compact table, holding the slot IDs of all 
flits currently in the buffers, which are requesting the 
particular output port (e.g. West). Note that since the 
number of buffer slots in on-chip routers is resource-
constrained, the size of the table is minimal, as 
demonstrated by the low overhead in the control logic in 
Table 1. The VC Control Table is organized by VC ID, 
with each VC having room for at most a single packet. 
Without loss of generality, in this work we assumed a 
packet to consist of four flits: a Head flit, two Data 
(middle) flits, and a Tail flit. The packet size is assumed 
to be constant, but the table can trivially be changed to 
accommodate a variable-sized packet protocol. As seen 
in the VC Control Table box of Figure 10 (right-hand 
side), the VCs can include non-consecutive buffer slots 
(e.g. VC1 comprises of slots 2, 4, 6 and 7) of the South 
input port (i.e. flits arriving from the South). This 
attribute allows full-flexibility in buffer utilization and 
avoids the issues encountered in statically-allocated 
buffers. VC3 only occupies one slot (10) in Figure 10. In 
a static buffer, 3 additional slots would have to be 
reserved for the remaining flits of VC3; those slots 
would remain unused if the remaining flits happened to 
be blocked in previous routers. Instead, in ViChaR those 
slots can be used by other VCs, thus maximizing the 
buffer utilization. Furthermore, the use of a table-based 
controller makes the management of a variable number 
of VCs very easy: non-used VCs are simply NULLed out 
in the VC Control Table (e.g. VC4 in Figure 10). 

Arriving/Departing Flit Pointers Logic: The Flit 
Pointers Logic directly controls the Input and Output 
MUXes/ DEMUXes of the unified buffer (UBS), as 

illustrated in Figure 9, and is directly linked to the VC 
Control Table module. Once a flit departs, its location in 
the VC Control Table is invalidated by asserting a 
NULL bit. There is a set of such pointers for each VC in 
the table. However, the overhead is minimal due to the 
simplicity of the pointer logic; both Departing and 
Arriving Flit Pointers are implemented in combinational 
logic and simply have to observe the non-NULL 
locations in their VC. For example, the Departing Flit 
pointer points at the first non-NULL location (in its 
particular VC) starting from the left of the table, as 
shown on the right side of Figure 10 for VC2 (in the VC 
Control Table box). If all the entries in a single row of 
the VC Control Table are NULL, then the VC must be 
empty; thus, the pointer logic releases the VC by 
notifying the VC Availability Tracker (Release Token 
signal in Figure 9). When a new flit arrives, the pointer 
logic guides the flit to the appropriate slot in the unified 
buffer (UBS), based on the flit's VC ID and information 
from the Slot Availability Tracker. Finally, newly 
arrived header flits in the UBS can request an output VC 
by first undergoing local (1

st
 stage) arbitration (top right 

of Figure 9), and then global (2
nd

 stage) arbitration 
(bottom left of Figure 10). 

VC and Slot Availability Trackers: The VC 
Availability Tracker simply keeps track of all the VCs in 
the VC Control Table that are not used. The Token (VC) 
Dispenser dynamically assigns VCs to new incoming 
packets based on information provided by the VC 
Availability Tracker. Similarly, the Slot Availability 
Tracker keeps track of all the UBS slots which are not in 
use. When a new flit arrives, it is stored into a slot 
indicated by the Slot Availability Tracker. The VC and 
Slot Availability Trackers are functionally identical. 
They consist of a small table, as shown at the bottom 
right of Figure 9 (Slot Availability Tracker) and the top 
left of Figure 10 (VC Availability Tracker). Each row of 
the table corresponds to one VC ID (in the VC 
Availability Tracker) or one buffer slot (in the Slot 
Availability Tracker). For each entry in the table, one bit 
indicates that the VC/Slot is available (logic 1) or 
occupied (logic 0). Both trackers have a pointer which 
points to the top-most available entry. If all VCs are 
occupied (i.e. all-zero table in the VC Availability 
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Tracker), the Token (VC) Dispenser stops granting new 
VCs to requesting packets. Similarly, an all-zero table in 
the Slot Availability Tracker implies a full buffer (UBS); 
this is reflected in the credit information sent to adjacent 
routers. The functionality of the VC/Slot Availability 
Trackers is implemented in combinational logic, similar 
to the Flit Pointers Logic described above. 

Token (VC) Dispenser: The Token (VC) Dispenser 
interfaces with the P:1 Arbiter and is responsible for 
dispensing free VCs to requesting packets. VCs here are 
like tokens; they are granted to new packets and then 
returned to the dispenser upon release. The flow diagram 
of the Dispenser's operation is illustrated on the right-
hand side of Figure 10. Based on information provided 
by the VC Availability Tracker, the Token Dispenser 
decides whether to grant a VC or not. The VC dispenser 
keeps checking for possible deadlock situations among 
the in-use VCs. Deadlocks may occur in networks which 
employ adaptive routing schemes. If a pre-specified time 
threshold is exceeded, the Token Dispenser can channel 
an existing VC into one of the escape VCs to break the 
deadlock. As a proof of concept of ViChaR's 
functionality, the experiments in this paper use 
deterministic (XY) routing, which is inherently 
deadlock-free. However, ViChaR was designed to 
operate under adaptive routing schemes as well. 
Therefore, the Token (VC) Dispenser needs to account 
for possible deadlock situations. Toward that extent, a 
number of VCs can be designated as "escape", or "drain" 
channels to provide deadlock recovery in adaptive 
routing algorithms (escape channels employ a 
deterministic routing algorithm to break the deadlock) 
[34]. The Dispenser needs to switch deadlocked flits into 
these escape channels if there is a need. One experiment 
in Section 4.2 validates the effectiveness of this 
technique under adaptive routing. 

Assuming that no deadlock situation exists, the 
Token Dispenser can proceed with its normal operation. 
The Dispenser grants new VCs on a First-Come-First-
Served (FCFS) basis; if a new header flit wins the VC 
arbitration and the VC Availability Tracker indicates 
that a free VC is available, then the new packet will be 
granted a new VC. The Dispenser does not give priority 

to flits of existing VCs. In principle, a more elaborate 
mechanism could be used for dispensing new VCs, 
which would monitor on-going traffic and reach a 
decision based on some quantitative metric or prior 
traffic history. However, given the highly restrictive 
objective function of minimal area, power and latency 
budgets in the design of on-chip networks, such complex 
monitoring mechanisms were deemed infeasible. After 
all, ViChaR was architected to operate within one clock 
cycle. The use of an FCFS scheme in the Token 
Dispenser turns out to be very efficient at maximizing 
performance. The Dispenser is able to self-throttle the 
dispensing of new VCs based on traffic conditions: if 
more packets request a channel (high traffic) more VCs 
are dispensed; if fewer packets are present (low traffic) 
fewer VCs are granted and more buffer depth is allotted 
to existing VCs. 

ViChaR's Effect on the Router Pipeline: The 
control logic (UCL) of ViChaR was designed in such a 
way as to decouple the operation of the sub-modules 
from each other. Thus, sub-modules are kept compact 
and can all operate in parallel, hence completing the 
entire operation in a single clock cycle. This is a 
significant improvement over the three-clock cycle delay 
of [23]. Figure 11 shows the pipeline stages of both a 
generic and the ViChaR router pipelines. As previously 
mentioned, the ViChaR architecture modifies the VA 
and SA stages (Stages 2 and 3 in Figure 11). The dark-
colored boxes indicate the components modified/added 
in the ViChaR structure as compared to the generic case. 
As shown in the figure, the additional hardware operates 
in parallel without affecting the critical path of the 
router. This fact is also verified by our studies of the 
critical path delays of all major components of the router 
architectures (extracted from the synthesized designs). In 
both cases, the bottleneck that determines the minimum 
clock period is the arbitration logic (for the VA and SA 
stages, as shown in Figure 7 and Figure 8, respectively). 
All the components of the ViChaR router remain within 
the slack provided by the slower arbiters. Hence, the 
ViChaR architecture does not affect the pipeline depth 
or the clock frequency. Furthermore, since ViChaR does 
not create any interdependencies between pipeline 
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Table 1. Area and Power Overhead of the ViChaR Architecture. 
The results in this table assume equal-size buffers for both router 
designs. However, ViChaR's efficient buffer management scheme 

allows for a 50% decrease in buffer size with no performance 
degradation (see Section 4). In such a case, area and power is 
reduced by 30% and 34%, respectively, over the whole router. 

Component (one input port) Area (in µm2) Power (in mW) 

ViChaR Table-Based Contr. Logic 12,961.16 5.36 

ViChaR Buffer Slots (16 slots) 54,809.44 15.36 

ViChaR VA Logic 27,613.54 8.82 

ViChaR SA Logic 6,514.90 2.06 

TOTAL for ViChaR Architecture 101,899.04 31.60 

Generic Control Logic 10,379.92 5.12 

Generic Buffer Slots (16 slots) 54,809.44 15.36 

Generic VA Logic 38,958.80 9.94 

Generic SA Logic 2,032.93 0.64 

TOTAL for Gen. Architecture 106,181.09 31.06 

ViChaR Overhead / Savings 
- 4,282.05 

4.03% 
SAVINGS 

+ 0.54 
1.74% 

OVERHEAD  

Figure 9.  The ViChaR UBS Architecture (One Input Port 
Shown) 
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stages, it can also be used in speculative router 
architectures which minimize the pipeline length. 

4. Simulation Results 

4.1. Simulation Platform 

A cycle-accurate on-chip network simulator was used 
to conduct detailed evaluation of the architectures under 
discussion. The simulator operates at the granularity of 
individual architectural components. The simulation test-
bench models the pipelined routers and the 
interconnection links. All simulations were performed in 
a 64-node (8x8) MESH network with 4-stage pipelined 
routers. Each router has 5 physical channels (ports) 
including the PE-router channel. The generic router 
(shown as "GEN" in results graphs) has a set of 4 virtual 
channels per port. Each VC holds four 128-bit flits (i.e. a 
total of 5x4x4=80 buffer slots). The ViChaR router 
("ViC" in results graphs) has a 16-flit unified buffer per 
port (i.e. a total of 5x16=80 buffer slots, just like the 
generic case). One packet consists of four flits. The 
simulator keeps injecting messages into the network until 
300,000 messages (including 100,000 warm-up 
messages) are ejected. Two network traffic patterns were 
investigated: (1) Uniform Random (UR), where a node 
injects messages into the network at regular intervals 
specified by the injection rate, and (2) Self-Similar (SS), 
which emulates internet and Ethernet traffic. For 
destination node selection, two distributions were used: 
(1) Normal Random (NR), and (2) Tornado (TN) [35]. 
In all cases, except one, deterministic (XY) routing and 
wormhole switching were employed. One experiment 
used minimal adaptive routing to evaluate the systems in 
a deadlock-prone environment. Single link traversal was 
assumed to complete within one clock cycle at 500 MHz 
clock frequency. Both dynamic and leakage power 
estimates were extracted from the synthesized router 
designs and back-annotated into the network simulator. 

4.2. Analysis of Results 

Our simulation exploration starts with a latency 
comparison between a conventional, statically assigned 
buffer architecture and the proposed ViChaR 
implementation. We first assume that both designs have 
equal-sized buffers; specifically, 16-flit buffers per input 
port (i.e. a total of 80 flits per NoC router). In the 

generic design (GEN), the 16 buffer slots are arranged as 
4 VCs, each with a 4-flit depth. ViChaR (ViC), on the 
other hand, can dynamically assign its 16 buffer slots to 
a variable number of VCs, each with a variable buffer 
depth. Figure 12(a) and Figure 12(b) show the average 
network latency (in clock cycles) as a function of 
injection rate (in flits/node/cycle) for Uniform Random 
(UR) and Self-Similar (SS) traffic patterns, respectively. 
The graphs include results for both Normal Random 
(NR) and Tornado (TN) source-destination selection 
patterns. In all cases, ViChaR substantially outperforms 
the generic architecture; by 28% (NR) and 24% (TN) on 
average for Uniform Random traffic, and 25% (NR) and 
18% (TN) for Self-Similar traffic. More importantly, 
though, ViChaR saturates at higher injection rates than 
the generic case. 

Figure 12(c) shows the buffer occupancy at injection 
rates between 0.25 and 0.35 (i.e. before the onset of 
saturation). Higher buffer occupancy indicates network 
blocking. ViChaR is clearly much more efficient at 
moving flits through the router; the buffer occupancy of 
a 16-flit/port ViChaR design is considerably lower than 
an equal-size static configuration. Buffer occupancy 
alone, however, is not an indicative metric, since it does 
not relay any information about network latency. To 
validate ViChaR's highly efficient buffer management 
scheme, its latency at these smaller buffer sizes should 
also be investigated. To that extent, Figure 12(d) and 
Figure 12(e) depict how the latency of ViChaR at 
various buffer sizes compares to the latency of the 
generic architecture with a fixed 16-flit/port buffer size. 
It is evident from the graphs that the UBS can achieve 
similar performance with less than half the buffer size of 
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the generic architecture. This is of profound importance, 
since buffers dominate the area and power budgets of 
NoC routers; reducing the buffer size by 50% will yield 
significant savings. An alternative way to visualize this 
phenomenon is illustrated in Figure 12(f). This graph 
shows how the latency of ViChaR at various buffer sizes 
compares to the latency of the generic architecture with a 
16-flit/port buffer size (horizontal dashed line) at an 
injection rate of 0.25. ViChaR has higher latency only 
when its buffer size drops below 8 flits per port. On the 
other hand, Figure 12(g) shows that decreasing the 
buffer size in a generic, statically assigned buffer 
structure always degrades performance. 

Following on the very encouraging result that 
ViChaR can achieve similar performance as a 
conventional buffer by using only half the buffers, 
Figure 12(h) shows the total average power consumption 
of the 8x8 MESH network for different buffer 
configurations. For equally sized configurations, 
ViChaR consumes slightly more power than a 
conventional buffer structure. At injection rates up to 
0.3, ViChaR consumes about 2% more power, 
corroborating the results of Table 1. At higher injection 
rates (when the network saturates), excessive switching 
activity causes this difference to grow a bit more, even 

though it never exceeds 5%. However, since ViChaR's 
efficiency allows us to halve the buffer resources with no 
discernible effect on performance, the overall power 
drops by about 34% (ViC-8 in Figure 12(h)) for 
equivalent performance. Similarly, the area occupied by 
the router decreases by around 30%, based on synthesis 
results. These decreases can lead to more power- and 
area-efficient SoCs. 

Figure 12(i) compares average network latency under 
minimal adaptive routing to validate ViChaR's 
effectiveness in handling deadlocks. Escape (drain) 
channels, which employ deterministic (i.e. deadlock-
free) routing, were used in both the generic and ViChaR 
architectures to break deadlocks. Evidently, ViChaR was 
able to handle all deadlock situations while significantly 
outperforming the conventional design. 

Figure 13(a) and Figure 13(b) present another metric 
of network performance, namely throughput (in flits per 
cycle). These graphs follow the same trend as the latency 
experiments, with ViChaR clearly outperforming a 
conventional buffer structure. Figure 13(c) includes the 
throughput of two different (but of equal size) generic 
configurations: 4 VCs each with a 3-flit depth, and 3 
VCs with a 4-flit depth. The graph indicates that while 
varying the statically-assigned VC configuration of a 
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generic buffer does affect throughput, its performance 
still trails that of the dynamically variable design of 
ViChaR. 

In the related work section (Section 2), we analyzed 
in detail why the unified buffers of the DAMQ [23] and 
FC-CB [26] would underperform compared to ViChaR's 
dynamic design. Both the DAMQ and FC-CB structures 
were implemented and incorporated into our cycle-
accurate simulator. Figure 13(d) shows how all designs 
fare against each other. DAMQ loses out because of its 
3-cycle buffer delay, and its fixed number of VCs, as 
previously explained. For a fair comparison, we assumed 
that the FC-CB design completes its buffer management 
procedure in one clock cycle (just like ViChaR). As seen 
in Figure 13(d), at low injection rates, the FC-CB's 
performance is almost identical to ViChaR's. However, 
as network traffic increases, FC-CB's performance starts 
to degrade compared to ViChaR. This is attributed to 
FC-CB's fixed number of VCs (i.e. just like DAMQ). 
Under heavier traffic loads, ViChaR's ability to 
dynamically dispense more VCs helps improve 
performance quite drastically. Note also that both FC-
CB and DAMQ would incur much higher area and 
power penalties (as explained in Section 2). In terms of 
throughput (not shown here), ViChaR's improvement 
over DAMQ and FC-CB is a more modest 5% (on 
average). However, ViChaR would perform substantially 
better in latency-critical applications. 

Finally, Figure 13(e) depicts the spatial variation in 
the number of VCs used in the 8x8 MESH, while Figure 
13(f) shows the temporal variation over simulation time. 
The average number of VCs used varies continuously 
according to network traffic. Figure 13(e) shows the 
average number of VCs dispensed at each node of the 
8x8 MESH network over the whole simulation time at an 
injection rate of 0.25. As expected, the nodes situated at 

the middle of the network exhibit higher congestion; 
ViChaR successfully self-throttled its resources by 
granting more VCs in these nodes in order to optimize 
performance. In Figure 13(f), as the network fills up with 
packets, the average number of VCs used over all nodes 
increases accordingly to handle the traffic. These results 
validate the effectiveness of our FCFS scheme employed 
in the Token (VC) Dispenser (Section 3.2.2). 

5. Conclusions 

The continuing technology shrinkage into the deep 
sub-micron era has magnified the delay mismatch 
between gates and global wires. Wiring will significantly 
affect design decisions in the forthcoming billion-
transistor chips, whether these are complex 
heterogeneous SoCs, or Chip Multi-Processors (CMP). 
Networks-on-Chip (NoC) have surfaced as a possible 
solution to escalating wiring delays in future multi-core 
chips. NoC performance is directly related to the routers' 
buffer size and utilization. In this paper, we introduce a 
centralized buffer architecture, called the Virtual 
Channel Regulator (ViChaR), which dynamically 
allocates virtual channels and buffer slots in real-time, 
depending on traffic conditions. Unlike current 
implementations, the ViChaR can dispense a variable 
number of VCs at any given time to maximize network 
throughput. 

Simulation results using a cycle-accurate network 
simulator indicate performance improvement of around 
25% under various traffic patterns, as compared to a 
conventional router with equal buffer size, with a modest 
2% power increase. Most importantly, though, ViChaR 
is shown to achieve performance similar to that of a 
generic router, while using a 50% smaller buffer. This 
attribute is a testament to ViChaR's efficient dynamic 
buffer management scheme, and is a result of utmost 
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significance in the NoC arena. Synthesized designs in 90 
nm technology indicate that decreasing the ViChaR's 
buffer size by 50% leads to area and power savings of 
30% and 34%, respectively, with no degradation in 
performance. 

For future work, we intend to evaluate the 
performance of ViChaR using workloads and traces 
from existing System-on-Chip architectures. 
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