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Abstract

This article presents a probabilistic method for vehicle detection and tracking through the analysis of monocular

images obtained from a vehicle-mounted camera. The method is designed to address the main shortcomings of

traditional particle filtering approaches, namely Bayesian methods based on importance sampling, for use in traffic

environments. These methods do not scale well when the dimensionality of the feature space grows, which

creates significant limitations when tracking multiple objects. Alternatively, the proposed method is based on a

Markov chain Monte Carlo (MCMC) approach, which allows efficient sampling of the feature space. The method

involves important contributions in both the motion and the observation models of the tracker. Indeed, as

opposed to particle filter-based tracking methods in the literature, which typically resort to observation models

based on appearance or template matching, in this study a likelihood model that combines appearance analysis

with information from motion parallax is introduced. Regarding the motion model, a new interaction treatment is

defined based on Markov random fields (MRF) that allows for the handling of possible inter-dependencies in

vehicle trajectories. As for vehicle detection, the method relies on a supervised classification stage using support

vector machines (SVM). The contribution in this field is twofold. First, a new descriptor based on the analysis of

gradient orientations in concentric rectangles is defined. This descriptor involves a much smaller feature space

compared to traditional descriptors, which are too costly for real-time applications. Second, a new vehicle image

database is generated to train the SVM and made public. The proposed vehicle detection and tracking method is

proven to outperform existing methods and to successfully handle challenging situations in the test sequences.
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1 Introduction
Signal processing techniques have been widely used in

sensing applications to automatically characterize the

environment and understand the scene. Typical pro-

blems include ego-motion estimation, obstacle detection,

and object localization, monitoring, and tracking, which

are usually addressed by processing the information

coming from sensors such as radar, LIDAR, GPS, or

video-cameras. Specifically, methods based on video

analysis play an important role due to their low cost,

the striking increase of processing capabilities, and the

significant advances in the field of computer vision.

Naturally object localization and monitoring are cru-

cial to have a good understanding of the scene.

However, they have an especially critical role in safety

applications, where the objects may constitute a threat

to the observer or to any other individual. In particular,

the tracking of vehicles in traffic scenarios from an on-

board camera constitutes a major focus of scientific and

commercial interest, as vehicles cause the majority of

accidents.

Video-based vehicle detection and tracking have been

addressed in a variety of ways in the literature. The for-

mer aims at localizing vehicles by exhaustive search in

the images, whereas the latter aims to keep track of

already detected vehicles. As regards vehicle detection,

since exhaustive image search is costly, most of the

methods in the literature proceed in a two-stage fashion:

hypothesis generation, and hypothesis verification. The

first usually involves a rapid search, so that the image

regions that do not match an expected feature of the

vehicle are disregarded, and only a small number of
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regions potentially containing vehicles are further ana-

lyzed. Typical features include edges [1], color [2,3], and

shadows [4]. Many techniques based on stereovision

have also been proposed (e.g., [5,6]), although they

involve a number of drawbacks compared to monocular

methods, especially in terms of cost and flexibility.

Verification of hypotheses is usually addressed through

model-based or appearance-based techniques. The for-

mer exploit a priori knowledge of the structure of the

vehicles to generate a description (i.e., the model) that

can be matched with the hypotheses to decide whether

they are vehicles or not. Both rigid (e.g., [7]) and

deformable (e.g., [8]) vehicle models have been pro-

posed. Appearance-based techniques, in contrast, involve

a training stage in which features are extracted from a

set of positive and negative samples to design a classi-

fier. Neural networks [9] and support vector machines

(SVM) [10,11] are extensively used for classification,

while many different techniques have been proposed for

feature extraction. Among others, histograms of oriented

gradients (HOG) [12,13], principal component analysis

[14], Gabor filters [11] and Haar-like features [15,16]

have been applied to derive the feature set for

classification.

Direct use of many of these techniques is very time-

consuming and thus unrealistic in real-time applications.

Therefore, in this study we propose a vehicle detection

method that exploits the intrinsic structure of the vehi-

cles in order to achieve good detection results while

involving a small feature space (and hence low computa-

tional overhead). The method combines prior knowledge

on the structure of the vehicle, based on the analysis of

vertical symmetry of the rear, with appearance-based

feature training using a new HOG-based descriptor and

SVM. Additionally, a new database containing vehicle

and non-vehicle images has been generated and made

public, which is used to train the classifier. The database

distinguishes between vehicle instances depending on

their relative position with respect to the camera, and

hence allows for an adaptation of the feature selection

and the classifier in the training phase according to the

vehicle pose.

In regard to object tracking, feature-based and model-

based approaches have been traditionally utilized. The

former aim to characterize objects by a set of features

(e.g., corners [17] and edges [18] have been used to

represent vehicles) and to subsequently track them

through inter-frame feature matching. In contrast,

model-based tracking uses a template that represents a

typical instance of the object, which is often dynamically

updated [19,20]. Unfortunately, both approaches are

prone to errors in traffic environments due to the diffi-

culty in extracting reliable features or in providing a

canonical pattern of the vehicle.

To deal with these problems, many recent approaches

to object tracking entail a probabilistic framework. In

particular, the Bayesian approach [21,22], especially in

the form of particle filtering, has been used in many

recent studies (e.g., [23-25]), to model the inherent

degree of uncertainty in the information obtained from

image analysis. Bayesian tracking of multiple objects can

be found in the literature both using individual Kalman

or particle filters (PF) for each object [24,26] and a joint

filter for all of the objects [27,28]. The latter is better

suited for applications in which there is some degree of

interaction among objects, as it allows for the control-

ling of the relations among objects in a common

dynamic model (those are much more complicated to

handle through individual PF [29]). Notwithstanding,

the computational complexity of joint-state traditional

importance sampling strategies grows exponentially with

the number of objects, which results in a degraded per-

formance with respect to independent PF-based tracking

when there are several participants (as occurs in a traffic

scenario). Some recent studies, especially relating to

radar/sonar tracking applications [30], resort to finite set

statistics (FISST) and use random sets rather than vec-

tors to model multiple objects state, which is especially

suitable for the cases where the number of objects is

unknown.

On the other hand, PF-based object tracking methods

found in the literature resort to appearance information

for the definition of the observation model. For instance,

in [23], a likelihood model comprising edge and silhou-

ette observation is employed to track the motion of

humans. In turn, the appearance-based model used in

[27] for ant tracking consists of simple intensity tem-

plates. However, methods using appearance-only models

are only bound to be successful under controlled sce-

narios, such as those in which the background is static.

In contrast, the considered on-board traffic monitoring

scenarios entail a dynamically changing background and

varying illumination conditions, which affect the appear-

ance of the vehicles.

In this study, we present a new framework for vehicle

tracking which combines efficient sampling, handling of

vehicle interaction, and reliable observation modeling.

The proposed method is based on the use of Markov

chain Monte Carlo (MCMC) approach to sampling

(instead of the traditional importance sampling) which

renders joint state modeling of the objects affordable,

while also allowing to easily accommodate interaction

modeling. In effect, driver decisions are affected by

neighboring vehicle trajectories (vehicles tend to occupy

free space), and thus an interaction model based on

Markov random fields (MRF) [31] is introduced to man-

age intervehicle relations. In addition, an enriched

observation model is proposed, which fuses appearance
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information with motion information. Indeed, motion is

an inherent feature of vehicles and is considered here

through the geometric analysis of the scene. Specifically,

the projective transformation relating the road plane

between consecutive time points is instantaneously

derived and filtered temporally based on a data estima-

tion framework using a Kalman filter. The difference

between the current image and the previous image

warped with this projectivity allows for the detection of

regions likely featuring motion. Most importantly, the

combination of appearance and motion-based informa-

tion provides robust tracking even if one of the sources

is temporarily unreliable or unavailable. The proposed

system has been proven to successfully track vehicles in

a wide variety of challenging driving situations and to

outperform existing methods.

2 Problem statement and proposed framework
As explained in Section 1, the proposed tracking

method is grounded on a Bayesian inference framework.

Object tracking is addressed as a recursive state estima-

tion problem in which the state consists of the positions

of the objects. The Bayesian approach allows for the

recursive updating of the state of the system upon

receipt of new measurements. If we denote sk the state

of the system at time k and zk the measurement at the

same instant, then Bayesian theory provides an optimal

solution for the posterior distribution of the state given

by

p (sk |z1:k) =
p(zk |sk)

∫

p(sk |sk−1) p (sk−1 |z1:k−1) dsk−1

p(zk |z1:k−1)
(1)

where z1:k integrates all the measurements up to time

k [21]. Unfortunately, the analytical solution is intract-

able except for a set of restrictive cases. Particularly,

when the state sequence evolution is a known linear

process with Gaussian noise and the measurement is a

known linear function of the state (also with Gaussian

noise) then the Kalman filter constitutes the optimal

algorithm to solve the Bayesian tracking problem. How-

ever, these conditions are highly restrictive and do not

hold for many practical applications. Hence, a number

of suboptimal algorithms have been developed to

approximate the analytical solution. Among them, parti-

cles filters (also known as bootstrap filtering or conden-

sation algorithm) play an outstanding role and have

been used extensively to solve problems of a very differ-

ent nature. The key idea of particles filters is to repre-

sent the posterior probability density function by a set

of random discrete samples (called particles). In the

most common approach to particle filtering, known as

importance sampling, the samples are drawn

independently from a proposal distribution q(·), called

importance density.

However, importance sampling is not the only

approach to particle filtering. In particular, MCMC

methods provide an alternative framework in which the

particles are generated sequentially in a Markov chain.

In this case, all the samples are equally weighed and the

solution in (1) can therefore be approximated as

p (sk |z1:k) ≈ c · p (zk |sk)

N
∑

r=1

p (sk |s(r)
k−1) (2)

where the state of the rth particle at time k is denoted

s
(r)
k
, N is the number of particles, and c is the inverse of

the evidence factor in the denominator of (1). As

opposed to importance sampling, a record of the current

state is kept, and each new sample is generated from a

proposal distribution that depends on the current sam-

ple, thus forming a Markov chain. The proposal distri-

bution is usually chosen to be simple so that samples

can easily be drawn. The advantage of MCMC methods

is that the complexity increases only linearly with the

number of objects, in contrast to importance sampling,

in which the complexity grows exponentially [27]. This

implies that using the same computational resources,

MCMC will be able to generate a larger number of par-

ticles and hence, better approximate the posterior distri-

bution. The potential of MCMC has been shown for

processing data of different sensors, e.g., for target track-

ing in radar [32] or video-based ant tracking [27]. An

MCMC framework is thus used in this study for vehicle

tracking.

This framework requires that the observation model, p

(zk | sk), and the dynamic or motion model, p(sk |sk - 1),

be defined. Selection of these models is a key aspect to

the performance of the framework. In particular, in order

to define a scheme that can be lead to improved perfor-

mance in an MCMC-based Bayesian framework, we have

tried to first identify the weaknesses of the state-of-the-

art methods related to the definition of these models.

Regarding the observation model, as stated in Section 1,

most methods in the literature resort to appearance-

based models typically using templates or some features

that characterize the objects of interest. Although this

kind of models perform well when applied to controlled

scenarios, they prove insufficient for the traffic scenario.

In this environment the background changes dynami-

cally, and so do weather and illumination conditions,

which limits the effectiveness of appearance-only models.

In addition, the appearance of vehicles themselves is very

heterogenous (e.g., color, size), thus making their model-

ing much more challenging.
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These limitations in the design of the observation

model are addressed twofold. First, rather than the usual

template matching methods, a probabilistic approach is

taken to define the appearance-based observation model

using the Expectation-Maximization technique for likeli-

hood function optimization. Additionally, we extend the

observation model so that it not only includes a set of

appearance-based features, but also considers a feature

that is inherent to vehicles, i.e., their motion, so that it

is more robust to changes in the appearance of the

objects. In particular, the model for the observation of

motion is based on the temporal alignment of the

images in the sequence through the analysis of multiple-

view geometry.

As regards the motion model, it is designed under the

assumption that vehicles velocity can be approximated

to be locally constant, which is valid in highway envir-

onments. As a result, the evolution of a vehicle’s posi-

tion can be traced by a first-order linear model.

However, linearity is lost due to the perspective effect in

the acquired image sequence. To preserve linearity we

resort to a plane rectification technique, usually known

as inverse perspective mapping (IPM) [33]. This com-

putes the projective transformation, T, that produces an

aerial or bird’s-eye view of the scene from the original

image. The image resulting from plane rectification will

be referred to as the rectified domain or the trans-

formed domain. In the rectified domain, the motion of

vehicles can be safely described as a first-order linear

equation with an added random noise.

One important limitation regarding the dynamic

model in existing methods is the interaction treatment.

Most approaches to multiple vehicle tracking involve

independent motion models for each vehicle. However,

this requires an external method for handling of interac-

tion, and often this is simply disregarded. In contrast,

we have designed an MRF-based interaction model that

can be easily integrated with the above-mentioned indi-

vidual vehicle dynamic model.

Finally, a method is necessary to detect new vehicles in

the scene, so that they can be integrated in the tracking

framework. This is addressed in the current work by

using a two-step procedure composed of an initial

hypothesis generation and a subsequent hypothesis verifi-

cation. In particular, candidates are verified using a

supervised classification strategy over a new descriptor

based on HOG features. The proposed feature descriptor

and the classification strategy are explained in Section 6.

The explained framework is summarized in the gen-

eral scheme shown in Figure 1. The scheme shows the

main constituent blocks of the method, i.e., observation

model (which in turn relies on appearance and motion

analysis), motion model, vehicle tracking algorithm, and

new vehicle detection algorithm, as well as the techni-

ques used for their design. These blocks are explained

in detail in the following sections.

Bayes Feature                

Classi�cation

     Appearance Analysis

EM                   

Optimization

Image     

Alignment

         Motion Analysis

Homography 

Calculation

Motion Model

MRF Interaction Model MCMC Sampling

Vehicle Tracking 

Algorithm

Vehicle Detection 

CR-HOG

Feature   Extraction

SVM       

Classi�er

Observation Model

Figure 1 General scheme of the proposed method.
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3 Vehicle tracking algorithm
The designed vehicle tracking algorithm aims at estimat-

ing the position of the vehicles existing at each time of

the image sequence. Hence, the state vector is defined

to comprise the position of all the vehicles sk = {si,k}M
i=1 ,

where si,k denotes the position of vehicle i, and M is the

number of vehicles existing in the image at time k. As

stated, the position of a vehicle is defined in the rectified

domain given by the transformation T, although back-

projection to the original domain is naturally possible

via the inverse projective transformation T - 1.

An example of the bird’s-eye view obtained through

IPM is illustrated in Figure 2. Observe that the upper

part of the vehicles is distorted in the rectified domain.

This is due to the fact, that IPM calculates the appropri-

ate transformation for a given reference plane (in this

case the road plane), which is not valid for all of the ele-

ments outside this plane. Therefore, analysis is focused

on the road plane image and the position of a vehicle

will be defined as the middle point of its lower edge.

This is given in pixels, si,k = (xi,k, yi,k), where x indicates

the column and y is the row of the corresponding point

in the image, while the origin is set at the upper-left

corner of the image.

In order to estimate the joint state of all of the vehi-

cles, the MCMC method is applied. As mentioned, in

MCMC the approximation to the posterior distribution

of the state is given by (2), which, assuming that the

likelihood of the different objects is independent, can be

rewritten as follows:

p (sk |z1:k) ≈ c ·
M
∏

i=1

p (zi,k |si,k)

N
∑

r=1

p (sk |s(r)
k−1) (3)

where zi,k is the observation at time k for object i. In

MCMC, samples are generated sequentially from a pro-

posal distribution that depends on the currents state,

therefore the sequence of samples forms a Markov

chain. The Markov chain of samples at time k is gener-

ated as follows. First, the initial state is obtained as the

mean of the samples in k - 1, s0
k =

∑

r s
(r)
k−1 /N . New

samples for the chain are generated from a proposal dis-

tribution Q(·). Specifically, we follow a Gibbs-like

approach, in which only one target is changed at each

step of the chain. At step τ the proposed position s′i,kof

the randomly selected target i is thus sampled from the

proposal distribution, which in our case is a Gaussian

centered at the value of the last sample for that target,

Q(s′i,k |s(τ)
i,k ) = N (s′i,k | s

(τ)
i,k , σq) . The candidate sample is

therefore s’k = (s
(τ)

\i,k, s′i,k) , where s\i,k denotes sk but with

si,k omitted. This sample is or is not accepted according

to the Metropolis algorithm, which evaluates the poster-

ior probability of the candidate sample in comparison to

that of the previous sample and defines the following

probability of acceptance [31]:

A(s′
k, s

(τ)

k ) = min

(

1,
p(s′

k|z1:k)

p(s
(τ)

k )z1:k

)

(4)

This implies that, if the posterior probability of the

candidate sample is larger than that of s
(τ)
k

the candidate

sample is accepted, and if it is smaller, it is accepted

with probability equal to the ratio between them. The

latter case can be readily simulated by selecting a ran-

dom number t from a uniform distribution over the

interval (0, 1), and then accepting the candidate sample

if A(s’k, s
(τ)
k ) > t . In the case of acceptance,

s
(τ+1)
k = s’k . Otherwise the previous sample is repeated

s
(τ+1)
k = s

(τ)
k

.

Observe that the samples obtained with the explained

procedure are highly correlated. It is a common practice

to retain only every Lth sample and leave out the rest,

which is called thin-out. In addition, the first B samples

are discarded to prevent the estimation from being

degraded by bad initialization. Finally, at each time step

the vehicle position estimates, s̄k = {s̄i,k}M
i=1 , are inferred

Figure 2 Transformation to the rectified domain through IPM. As opposed to the original image (a), in the rectified image (b) the effect of

perspective is removed and thus motion of vehicles is easier to model.
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as the mean of the valid particles s
(r)
k
:

s̄k =
1

N

N
∑

r=1

s
(r)
k (5)

3.1 Summary of the sampling algorithm

The previously introduced sampling process can be

summarized as follows. At time k we want to obtain a

set of samples, {s(r)
k }N

r=1
, which approximate the poster-

ior distribution of the vehicles state. In order to obtain

those, we make use of the samples at the previous time

step, {s(r)
k−1}N

r=1
, and of the motion and likelihood mod-

els, within the MCMC sampling framework. The steps

of the sampling algorithm at time k are the following:

(1) The average of the particles at the previous time

step is taken as the initial state of the Markov chain:

s0
k =

∑

r s
(r)
k−1 /N .

(2) To generate each new sample of the chain, s
(τ+1)
k

,

an object i is picked randomly and a new state s′i,k is

proposed for it by sampling from the proposal distri-

bution, Q(s′i,k |s(τ)
i,k ) = N (s′i,k | s

(τ)
i,k , σq) . Since the

other targets remain unchanged, the candidate joint

state is s’k = (s
(τ)

\i,k, s′i,k).

(3) The posterior probability estimate of the pro-

posed sample, p(s’k |z1:k) , is computed according to

the Equation (3), which depends on both the motion

and the observation models. The motion model, p

(sk|sk-1), is given by Equation (9), while the observa-

tion model for a vehicle, p(zi,k | si,k), is specified in

(22).

(4) The candidate sample s’k is accepted with prob-

ability A(s’k, s
(τ)
k ) computed as in Equation (4). In

the case of acceptance, the new sample of the Mar-

kov chain is s
(τ+1)
k = s’k , otherwise the previous sam-

ple is copied, s
(τ+1)
k = s

(τ)
k

.

(5) Finally, only one every Lth samples is retained to

avoid excessive correlation, and the first B samples

are discarded. The final set of N samples provides an

estimate of the posterior distribution and the vehicle

position estimates are computed as the average of

the samples as in Equation (5).

4 Motion and interaction model
The motion model is defined in two steps: the first layer

deals with the individual movement of a vehicle in the

absence of other participants, and the second layer

addresses the movement of vehicles in a common space.

The tracking condition involves the assumption that

vehicles are moving on a planar surface (i.e., the road)

with a locally constant velocity. This is a very common

assumption at least in highway environments, and allows

to formulate tracking of vehicle positions with a first-

order linear model. Although linearity is lost in the ori-

ginal image sequence, due to the position of the camera,

which creates a given perspective of the scene, as stated

in Section 2 it can be retrieved by using IPM and work-

ing in the rectified domain. Hence, the evolution of a

vehicle position in time, si,k = (xi,k, yi,k), is modeled with

a first-order linear equation in both coordinates:

si,k = si,k−1 + ṽi,k�t + mk (6)

where ∆t is the elapsed time between frames, ṽi,k is

the prediction of the vehicle velocity at time k derived

from the previous positions as

ṽi,k = (si,k−1 − si,k−L)/(L · �t) , and mk = (mx
k, m

y

k) com-

prises i.i.d. Gaussian distributions corresponding to

noise in the x and y coordinates of the motion model:

p(mx
k) ∼ N (0, σ x

m)

p(m
y

k) ∼ N (0, σ
y
m)

In particular, from the experiments performed on the

test sequences, noise variances are heuristically set to

σ x
m = 10 and σ

y
m = 15 . The individual dynamic model

can thus be reformulated as

p (si,k |si,k−1) = N (si,k |si,k−1 + ṽi,k�t, σm) (7)

where σm = (σ x
m, σ

y
m) .

Once the expected evolution of each individual target

has been defined, their interaction must also be

accounted for in the model. A common approach to

address interaction is through MRFs, which graphically

represent a set of conditional independent relations. An

MRF (also known as undirected graph) is composed of a

set of nodes V, which represent the variables, and a set

of links representing the relations among them. The

joint distribution of the variables can be factorized as a

product of functions defined over subsets of connected

nodes (called cliques, xC). These functions are known as

potential functions and denoted jC (xC). In the pro-

posed MRF, the nodes Vi (representing the vehicle posi-

tions si ,k = (xi ,k, yi ,k)) are connected according to a

distance-based criterion. Specifically, if two vehicles, i

and j, are at a distance smaller than a predefined thresh-

old, then the nodes representing the vehicles are con-

nected and form a clique. The potential function of the

clique is defined as
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φC(xC) = 1 − exp

(

−αxδx2

w2
l

)

exp

(

−αyδy2

d2
s

)

(8)

where δx = | xi,k - xj,k | and δy = | yi,k - yj,k |. The

functions jC (xC) can be regarded as penalization factors

that decrease the joint probability of a hypothesized

state if it involves an unexpected relations among tar-

gets. Potential functions consider the expected width of

the lane, wl, and the longitudinal safety distance, ds. In

addition, the design parameters ax and ay are selected

so that ax = 0.5 and ay = 0.5 whenever a vehicle is at a

distance δx = wl/4 or δy = ds of another vehicle. Finally,

the joint probability is given by the product of the indi-

vidual probabilities associated to each node and the pro-

duct of potential functions in existing cliques:

p (sk|sk−1) =

M
∏

i=1

p (si,k|si,k−1)
∏

C

φC(xC) (9)

where C is the set of the two-node cliques. Let us now

introduce this motion model in the expression of the

posterior distribution in (2):

p (sk |z1:k) ≈ c · p (zk |sk)

N
∑

r=1

M
∏

i=1

p (si,k |s(r)
i,k−1)

∏

C

φC(xC) (10)

It is important to note that the potential factor does

not depend on the previous state, therefore (10) can be

rewritten as

p (sk |z1:k) ≈ c · p (zk |sk)
∏

C

φC(xC)

N
∑

r=1

M
∏

i=1

p (si,k |s(r)
i,k−1) (11)

Modeling of vehicle interaction thus requires only the

evaluation of an additional factor in the posterior distri-

bution, while producing significant gain in the tracking

performance.

5 Observation model
5.1 Appearance-based analysis

The first part of the observation model deals with the

appearance of the objects. The aim is to obtain the

probability pa(zi,k | si,k) of the current appearance obser-

vation given the object state si,k (note the subscript a

that denotes “appearance”). In other words, we would

like to know if the current appearance-related measure-

ments support the hypothesized object state. In order to

derive the probability pa(zi,k | si,k) we will proceed in

two levels. First, the probability that a pixel belongs to a

vehicle will be defined according to the observation for

that pixel. Second, by analyzing the pixel-wise informa-

tion around the position given by si,k, the final observa-

tion model will be defined at region level.

The pixel-wise model aims to provide the probability

that a pixel belongs to a vehicle. This will be addressed

as a classification problem, and it is therefore necessary

to define the different categories expected in the image.

In particular, the rectified image (see example in Figure

2.) contains mainly three types of elements: vehicles,

road pavement, and lane markings. A fourth class will

also be included in the model to account for any other

kind of elements (such as median stripes or guard rails).

The Bayesian approach is adopted to address this clas-

sification problem. Specifically, the four classes are

denoted by S = {P, L, V, U} , which corresponds to the

pavement, lane markings, vehicles, and unidentified ele-

ments. Let us also denote Xi the event that a pixel x is

classified as belonging to the class i ∈ S . Then, if the

current measurement for pixel x is represented by zx,

the posterior probability that the pixel x corresponds to

Xi is given by the Bayes rule

P(Xi |zx) =
p(zx |Xi)P(Xi)

P(zx)
(12)

where p(zx | Xi) is the likelihood function, P(Xi) is the

prior probability of class Xi, and P (zx) is the evidence,

computed as P(zx) =
∑

i∈S p (zx |Xi)P(Xi), which is a

scale factor that ensures that the posterior probabilities

sum to one. Likelihoods and prior probabilities are

defined in the following section.

5.1.1 Likelihood functions

In order to construct the likelihood functions, a set of

features have to be defined that constitute the current

observation regarding appearance. These features should

achieve a high degree of separation between classes

while, at the same time, be significant for a broad set of

scenarios. In general terms, the following considerations

hold when analyzing the appearance of the bird’s-eye

view images. First, the road pavement is usually homo-

geneous with slight intensity variations among pixels. In

turn, lane markings constitute near-vertical stripes of

high-intensity, surrounded by regions of lower intensity.

As for vehicles, they typically feature very low intensity

regions in their lower part, due to vehicle’s shadow and

wheels. Hence, two features are used for the definition

of the appearance-based likelihood model, namely the

intensity value, Ix, and the response to a lane-marking

detector, Rx. For the latter, any of the methods available

in the literature can be utilized [33,34]. For this work, a

lane marking detector similar to that presented in [35]

is used, whose response is defined in every row of the

image as

Rx = 2Ix − (Ix−τ + Ix+τ ) (13)

Arróspide et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:2

http://asp.eurasipjournals.com/content/2012/1/2

Page 7 of 20



where τ is the expected width of a lane marking in the

rectified domain. The likelihood models are defined as

parametric functions of these two features. In particular,

they are modeled as Gaussian probability density func-

tions:

p(Ix |Xi) =
1√

2πσI,i

exp

(

− 1

2σ 2
I,i

(Ix − μI,i)
2

)

(14)

p (Rx |Xi) =
1√

2πσR,i

exp

(

− 1

2σ 2
R,i

(Rx − μR,i)
2

)

(15)

where the parameters for the intensity and the lane

marking detector are denoted respectively by the sub-

scripts ‘I’ and ‘R’. Specifically, the distribution of the class

corresponding to unidentified elements, which would

intuitively be uniformly distributed for both features, is

instead also modeled as a Gaussian of very high fixed var-

iance to ease further processing. Additionally, likelihood

functions are assumed to be conditionally independent

on these features for all the classes Xi, thus it is

p(zx |Xi) = p(Ix |Xi)p(Rx |Xi) (16)

The parameters of the likelihood models in (14) and

(15) are estimated via EM. This method is extensively

used for solving Gaussian mixture-density parameter

estimation (see [36] for details) and is thus perfectly sui-

ted to the posed problem. In particular, it provides an

analytical maximum likelihood solution that is found

iteratively. In addition, it is simple, easy to implement

and converges quickly to the solution when a good initi-

alization is available. In this case, this is readily available

from the previous frame, that is, the results from the

previous image can recursively be used as starting point

in each incoming image. The data distribution is given

by

p(Ix) =
∑

i∈S
p(Xi)p(Ix |Xi) (17)

p(Rx) =
∑

i∈S
p(Xi)p(Rx |Xi) (18)

Since the densities of the features Ix and Rx are inde-

pendent, the optimization is carried out separately for

these features. Let us first rewrite the expression (17), so

that the dependence on the parameters is explicit:

p(Ix |	I) =
∑

i∈S
ωI,ip(Ix |	I,i) (19)

where ΘI,i = {µI,i, sI,i} and ΘI = {ΘI,i}iÎP,L,V. Observe

that the prior probabilities have been substituted by

factors ωI,i to adopt the notation typical of mixture

models. The set of unknown parameters is composed of

the parameters of the densities and of the mixing coeffi-

cients, Θ = {ΘI,i, ωI,i}iÎP,L,V. Thereby, the parameters

resulting from the final EM iteration are fed into the

Bayesian model defined in Equations (12)-(15). The pro-

cess is completely analogous for the feature Rx.

5.1.2 Appearance-based likelihood model

The result of the proposed appearance-based likelihood

model is a set of pixel-wise probabilities of each of the

classes. Naturally, in order to know the likelihood of the

current object state candidate, we must evaluate the

region around the vehicle position given by si,k = (xi,k, yi,

k). The vehicle position has been defined as the mid-

point of its lower edge (i.e., the segment delimiting the

transition from road to vehicle). Hence, we expect that

in the neighborhood above si,k, pixels display high prob-

ability to belong to the vehicle class, p(XV | zx), while

the neighborhood below si,k should involve low vehicle

probabilities if the candidate state is good. Therefore,

the appearance-based likelihood of the object state si,k is

defined as

pa(zi,k |si,k) =
1

(w + 1)h

⎛

⎝

∑

x∈Ra

p(XV |zx) +
∑

x∈Rb

(1 − p(XV |zx))

⎞

⎠

where Ra is the region of size (w + 1) × h/2 above si,k,

Ra = {xi,k - w/2 ≤ x < xi,k + w/2; yi,k - h/2 ≤ y <yi,k}, and

Rb is the region of the same size below si,k, Rb = {xi,k -

w/2 ≤ x < xi,k + w/2; yi,k <y ≤ yi,k + h/2}.

5.2 Motion-based analysis

As mentioned above, the second source of information

for the definition of the likelihood model is motion ana-

lysis. Two-view geometry fundamentals are used to

relate the previous and current views of the scene. In

particular, the homography (i.e., projective transforma-

tion) of the road plane is estimated between these two

points in time. This allows us to generate a prediction

of the road plane appearance in future instants. How-

ever, vehicles (which are generally the only objects mov-

ing on the road plane) feature inherent motion in time,

hence their projected position in the plane differs from

that observed. The regions involving motion are identi-

fied through image alignment of the current image and

the previous image warped with the homography. These

regions will correspond to vehicles with high probability.

5.2.1 Homography calculation

The first step toward image alignment is the calculation

of the road plane homography between consecutive

frames. As shown in [37] the homography that relates

the points of a plane between two different views can be

obtained from a minimum of four feature
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correspondences by means of the direct linear transfor-

mation (DLT). Indeed, in many applications the texture

of the planar object allows to obtain numerous feature

correspondences using standard feature extraction and

matching techniques, and to subsequently find a good

approximation to the underlying homography. However,

this is not the case in traffic environments: the road

plane is highly homogeneous, and hence most of the

points delivered by feature detectors applied on the

images belong to background elements or vehicles, and

few correspond to the road plane. Therefore, the result-

ing dominant homography (even if using robust estima-

tion techniques) is in general not that of the road plane.

To overcome this problem, we propose to exploit the

specific nature of the environment. In particular, high-

ways are expected to have different kind of markings

(mostly lane markings) painted on the road. Therefore,

we propose to first use a standard lane marking detec-

tor (such as the ones described in [33-35]) and then to

restrict the feature search area in extended regions

around lane markings. Nevertheless, the resulting set

of correspondences will still typically be scarce, and

some of them may be incorrect or inaccurate, depend-

ing on the sharpness of the lane marking corners and

on the resolution of the image around them. Hence,

the instantaneous homography computed from feature

correspondences using DLT might be highly unreliable

(errors in one of the points will have a large impact in

the solution to the equation system of DLT), and

sometimes the number of points is not even sufficient

to compute it.

For the above-mentioned reasons, intermediate pro-

cessing of the instantaneous homography is necessary.

This is achieved in this study by means of a linear esti-

mation process based on Kalman filtering. Let us first

inspect the analytical expression of the homography

between two consecutive instants. Figure 3. illustrates

the situation of a vehicle with an on-board camera

moving on a flat road plane, π0 = (nT, d)T, where n =

(0, 1, 0)T and d is the distance between the camera and

the ground plane. The coordinate system of the camera

at time k1 is adopted as the world coordinate system,

where Z-axis indicates the driving direction. At time k2
the camera has moved to position C2, and rotation Rx

(a) might have occurred around the X-axis due to cam-

era shaking (a denotes the change in the pitch angle).

Additional rotation Ry (b) models variations in the yaw

angle (i.e., around the Y -axis), which must be consid-

ered in the case the vehicle changes lane or takes a

curve. From the previous discussion, and assuming a

pinhole camera model, the camera projection matrices

at times k1 and k2 are, respectively,

P1 = K[I |0]

P2 = KRx(α)Ry(β)[I| − C2]
(20)

The homography H relates the projections, x1 and x2,

of a 3D point, X Î π0, in two different images. Its

expression can be derived from Equation (20). In effect,

for the first view it is x1 = P1X = K[I|0] and hence any

point in the ray X = (xT
1(K−1)T , ρ)T projects to x1. The

intersection of this ray and the plane π0 determines the

value of the parameter r: it is π0
T
X = n

TK-1
x + dr =

0, and thus r = - nT K- 1
x1/d. The projection x2 of the

point X into the second view is

x2 = P2X = K Rx(α)Ry(β)[I | − C2]X

= K Rx(α)[Ry(β) | − Ry(β)C2] (xT
1(K−1)T , ρ)T

= K Rx(α)[Ry(β)K−1
x1 + tρ]

= K Rx(α)[Ry(β) − tn
T/d]K−1

x1

where t = - Ry(b) C2. This vector constitutes the

translation in the direction in which the vehicle is head-

ing and is thus given by t = (0, 0, 1)T v/fr, where v is the

velocity of the vehicle and fr is the frame rate. From the

above equations, the expression of the homography of

k
k

Figure 3 Relative pose of the camera at two different time points k1 and k2. The world coordinate system has its origin at the position of

the camera center at k1.
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the plane π0 between k1 and k2 is derived:

H = K Rx(α) [Ry(β) − tn
T /d] K−1 (21)

At each time k we have a noisy approximation of the

homography H of the road plane between the previous

and the current instant. However, the evolution of H in

temporal domain is assumed to be smooth due to the

intrinsic constraints in vehicle dynamics, therefore better

estimates can be obtained by filtering noisy measure-

ments in time. Temporally filtered estimates of the

homography are obtained by modeling H with a zero-

order Kalman filter whose state vector is composed of

the elements Hij of the homography matrix. The design

of the filter is summarized as follows:

x
T
k = {Hij, 1 ≤ i, j ≤ 3}

xk = xk−1 + wk

z
T
k = {Hk

ij, 1 ≤ i, j ≤ 3}
zk = xk + vk

The process and measurement noise, wk and vk, are

assumed to be given by independent Gaussian distribu-

tions, p(w) ~ N(0, Q) and p(v) ~ N(0, R). Observe that

the measurement vector is composed of the elements of

the instantaneous homography matrix, H k, computed

from image correspondences. As stated above, measure-

ments are expected to be prone to error due to the

usually small set of correspondences available, hence the

measurement error should be tuned to be larger than

the process noise (in the proposed configuration it is Q

= 10-6, R = 10-3).

The designed filter provides corrected estimates for

the homography at time k, Ĥk , built from the posterior

estimate of the filter state, x̂k . Most importantly, this

measure can be used as a prediction for the homogra-

phy in the next time point. This prediction provides an

effective reference to evaluate whether or not the com-

puted instantaneous measurement may be erroneous.

Indeed, at the current time k, we can compare the

instantaneous homography Hk to the prediction made in

the previous time instant Ĥk−1 : if Hk is close to the

expected value Ĥk−1 then the filter equations will be

conveniently updated; in contrast, if the matrices are

significantly different, then it is natural to think that

noisy correspondences were involved in the calculation

of Hk.

The distance between matrices is measured according

to the norm of the matrix of differences. Specifically, the

norm induced by the 2-norm of a Euclidean space is

used. This is obtained by performing singular value

decomposition (SVD) of the matrix and retaining its lar-

gest singular value [38]. The incoming matrices are

accepted and introduced into the Kalman filtering fra-

mework only if ||Hk − Ĥk−1|| < ta . Otherwise, the

measured homography is deemed to be unreliable and

the predicted homography is used. The threshold ta
modulates the maximum acceptable distance to the pre-

dicted matrix, which depends on the kinematic restric-

tions of the platform in which the camera is mounted.

In the case of highways, vehicle dynamics are bounded

by the maximum speed, the maximum turning angle (i.

e., yaw angle, b) and the maximum variation in the

pitch angle, a, for a given frame rate. The maximum

velocity is considered to be v = 120 km/h (33.3 m/s), as

enforced by most nation governments. Additionally, a

maximum pitch angle variation of a = ±5° is considered,

and an upper bound of b = ±3° is inferred for the turn-

ing angle according to the standard road geometry

design rules. Taking into account these bounds, and

assuming an image processing rate of at least 1 fps, the

threshold is experimentally found to be ta = 60.

5.2.2 Motion-based likelihood model

Once a time-filtered estimate of the homography Ĥk is

available, reliable image alignment can be performed.

Image alignment allows for the location of regions of

the image likely featuring motion (and therefore likely

containing vehicles). The previous image is aligned with

the current image by warping it with Ĥk . Image align-

ment is exemplified in Figure 4. In the upper row, the

snapshots of a sequence at times k - 1 and k are dis-

played. In Figure 4.c, the image in Figure 4.a warped

with Ĥk is shown. Observe that this is very similar in

the road region to the actual image at time k (Figure 4.

b).

As suggested in the overview of Section 5.2, the rea-

son for image alignment is that all elements in the road

plane (except for the points of the vehicle that belong to

this plane) are static, and thus their actual position

matches that projected by the homography. In contrast,

vehicles are moving, hence their positions in the road

plane at time k significantly differ from those projected

by the homography, which assumes they are static.

Therefore, the differences between the image at time k

and the image at time k - 1 warped with Ĥk shall be

null for all the elements of the road plane except for the

contact zones of the vehicles with the road. The differ-

ences in these regions will be more significant when the

velocity of the vehicles is high. Figure 4.d illustrates the

difference between the current image-Figure 4.b-and the

previous image warped-Figure 4.c-for the example

referred below. As can be observed, whiter pixels-indi-

cating significant difference-appear in the areas of

motion of the vehicles in the road. The transformation

of the elements outside the road is naturally not well

represented by Ĥk (this is the homography of the road
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plane) and thus random regions of strong differences

arise in the background, which will be considered

clutter.

The pixel-wise difference between the current image

and the previous image warped provides information on

the likelihood of the current object state candidate, si,k.

Analogously to the appearance-based likelihood model-

ing, the region around the vehicle position indicated by

si,k will be evaluated in order to derive its likelihood.

Also, to preserve the duality with the appearance-based

analysis, the processing is shifted to the rectified domain

using the transformation T defined in Section 2. The

resulting image, denoted Dr, is illustrated in Figure 4.e

for the previous example. In particular, the likelihood of

belonging to a region of motion is maximum in xmax =

argmax(Dr (x)), hence a map of probabilities that the

pixel x belongs to a moving region, denoted p(m|x), can

be inferred for the whole image as p (m|x) = Dr (x)/Dr

(xmax).

From the above discussion, observe that the regions of

strong differences are between the current vehicle posi-

tion and the position that it would occupy if it were sta-

tic (which is always closer to the camera). Therefore, as

opposed to the appearance-based modeling (Section

5.1.2), we expect that in the neighborhood below the

current vehicle position, si,k, pixels have high likelihood

values p(m | x), whereas the neighborhood above x

should involve small or null probabilities of motion.

Hence, the likelihood of the current vehicle state si,k
regarding the motion analysis is defined as

pm(zi,k |si,k) =
1

(w + 1)h

⎛

⎝

∑

x∈Ra

(1 − p(m |x)) +
∑

x∈Rb

p(m |x)

⎞

⎠

where the regions Ra and Rb are those defined in Sec-

tion 5.1.2, and the subscript m in the probability denotes

that it refers to motion observation. The likelihood

result obtained from the motion-based analysis is finally

combined with that achieved after appearance-based

analysis. The joint likelihood of a candidate state si,k is

simply defined as the arithmetic mean of likelihoods:

p(zi,k |si,k) =
1

2
(pa(zi,k |si,k) + pm(zi,k |si,k)) (22)

Note that, although the product of likelihoods could

have been used instead, the mean is preferred in order

to avoid that the calculation be biased by likelihood

values that are too small.

6 Vehicle detection
Up to this point, the method for vehicle tracking has

been explained. However, in normal driving situations it

is natural that vehicles come in and out of the field of

view of the camera throughout the sequence of images.

While management of outgoing vehicles is fairly

straightforward (the track simply exceeds the limits of

the image), a method for incoming vehicles must be

designed. The method proposed in this study follows a

two-step approach. In the first stage, hypotheses for

vehicle positions are made using the results of appear-

ance-based classification explained in Section 5.1. In the

second, they are verified according to the analysis of a

set of features in their associated regions in the original

domain.

6.1 Hypothesis generation

Exhaustive search of a certain pattern in the entire

image is too time-consuming for applications requiring

real-time operation. Hence, it is common to perform

some kind of fast pre-processing that restricts the search

areas. In this case, we exploit the information extracted

from the construction of likelihood models for tracking

and use it to generate a set of candidate regions that

will be further analyzed. In particular, two types of

inputs could be used that correspond to the appear-

ance-based analysis in Section 5.1 and the motion-based

analysis in Section 5.2. As referred to in the correspond-

ing section, the latter usually involves noise due to

Figure 4 Example of image alignment. Image (a) and (b) correspond to times k - 1 and k, respectively, of the video sequence; (c) is the

image at k - 1 warped with Ĥk ; (d) is the difference between aligned images, i.e., (b) and (c); and (e) is the corresponding image of

differences in the rectified domain. Both (d) and (e) have been binarized for better visualization: white regions correspond to regions of

difference, which usually correspond to the lower edge of vehicles.
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background structures, thus appearance-based informa-

tion is more suitable for hypothesis generation.

Specifically, based on the appearance analysis, for each

pixel the probability that it belongs to a vehicle, p(XV |

zx) is available. We expect that if there is a new vehicle

appearing in the image, a compact zone of high prob-

abilities must be observed in the surrounding of its posi-

tion. Therefore, in order to localize new vehicles, a

binary map Bm is created containing the pixels in which

the probability of the vehicle class is larger than that of

the other classes, p(XV | zx) > p(Xi | zx), i Î P, L, U. For

example, the binary map obtained for the image in Fig-

ure 5.b is shown in Figure 5.c. Connected component

analysis is performed over Bm to extract the regions

with a high probability of belonging to vehicles. Result-

ing regions are filtered according to a minimum area

criterion in order to remove noise.

Naturally, regions corresponding to the tracked vehi-

cles should exist in Bm. Besides, if there is an additional

region in Bm this is regarded as a potential new vehicle

in the image and it is further analyzed in the hypothesis

verification stage. In particular, in the example in Figure

5.c three regions are obtained: the upper two regions

correspond to existing vehicles, labeled 1 and 2, while

the small region in the lower left corner constitutes a

potential new vehicle (in this case it is actually a vehicle,

as can be observed in Figure 5.a). Since only the lower

part of the vehicles is reliable in the rectified domain,

candidates are characterized by their position and width.

As potential vehicles are verified according to their

appearance in the original image, their position and

width in this domain are computed by means of the

inverse transformation T-1. Finally, a 1:1 aspect ratio is

initially assumed for the vehicle so that a bounding box

Rh can be hypothesized for vehicle verification.

6.2 Hypothesis verification

Vehicle verification is based on a supervised classifica-

tion stage based on SVM. A database of vehicle rear

images is generated for the training of the classifier as

will be explained in Section 6.2.2. Most importantly the

database separates images according to the region in

which the vehicle is found (close/middle range in the

front, close/middle range in the left, close/middle range

in the right, and far range). Indeed, the view of the vehi-

cle rear changes in these areas and thus affects its

intrinsic features. This is taken into account in the

design of the feature description, which adapts to the

particularities of the different areas. Besides, a different

classifier is trained for each of them using the corre-

sponding subsets of images in the database.

As for the feature description, a new descriptor is

proposed based on two characteristics that are inher-

ent to the vehicles: high edge content and symmetry.

Indeed, the method automatically adapts the area for

feature extraction according to a vertical symmetry-

based local window refinement. This allows for the

correction of position offsets in the hypothesis genera-

tion stage and for the adaptation to the vehicle rear

contour. Regarding the feature extraction within the

refined region, a new descriptor that exploits the

inherently rectangular structures of the vehicle rear is

designed. The descriptor, called CR-HOG, is based on

the analysis of HOG in concentric rectangles around

the center of symmetry.

6.2.1 CR-HOG feature extraction

HOGs evaluate local histograms of image gradient

orientations in a dense grid. The underlying idea is that

the local appearance and shape of the objects can often

be well characterized by the distribution of the local

edge directions, even if the corresponding edge positions

are not accurately known.

This idea is implemented by dividing the image into

small regions called cells. Then, for each cell, a histo-

gram of the gradient orientations over the pixels is

extracted. The original HOG technique, proposed by

Dalal and Triggs [12], presents two different kinds of

configurations, called Rectangular HOG (R-HOG) and

circular HOG (C-HOG), depending on the geometry of

the cells used. Specifically, the former involves a grid of

rectangular spatial cells and the latter uses cells parti-

tioned in a log-polar fashion.

Figure 5 Example of generation of a new vehicle hypothesis. The sequence of images is the following: (a) original image, (b) rectified

image, (c) binary map Bm corresponding to appearance analysis in (b): pixels in white indicate potential location of vehicles. In the example, the

regions labeled 1 and 2 correspond to existing vehicles, while the small region arising in the lower left corner constitutes a potential new

vehicle.
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As stated, in this study we present a new configura-

tion for the cells that better adapts the characteristics of

the vehicles. Indeed, the rear of the vehicles presents an

inherently rectangular structure: not only is the outer

contour of the vehicle rear quasi-rectangular, but the

inner structures such as the license plate and the rear

window are also rectangular. Hence, we naturally define

a new configuration of HOG composed of concentric

rectangular cells as shown in Figure 6.a. This structure

will be referred to as CR-HOG (for concentric rectan-

gle-based HOG). The layout of the CR-HOG has five

parameters: the number of concentric rectangles b, the

number of orientation bins n, the center cs of the win-

dow, its height hs, and its width ws.

In practice, the hypothesized region for vehicle verifi-

cation, Rh, may not perfectly fit the actual bounding box

of the vehicle in terms of size and alignment. Specifi-

cally, it is often the case that the vehicle is not perfectly

centered in Rh, especially on the horizontal axis. There-

fore, direct application of CR-HOG (or of standard

HOG) over Rh will possibly result in degraded perfor-

mance. Instead, we refine the region likely containing

the vehicle through the analysis of vertical symmetry in

the intensity of the region. In particular, the subregion

within Rh giving the maximum degree of vertical sym-

metry is kept for HOG computing. Vertical symmetry is

calculated using the method in [39]. As a result, we

obtain the axis of vertical symmetry, xs and the width of

the region that maximizes the symmetry measure, ws.

The height hs of the window for HOG application is

taken as that of Rh and its center is thus given by cs =

(xs, hs/2).

Figure 6.b illustrates the window adaptation approach

based on symmetry analysis. Observe that the refined

vertical side limits (colored in red) fit much better the

bounding edges of the vehicle rears. In practice, the area

for calculation of CR-HOG is extended by a 10% so that

the outer edges of the vehicle are also accounted for in

the descriptor.

The steps for the calculation of CR-HOG on the

refined window are the following. First, the gradient

magnitude and orientation are computed at each point

of the window using a standard operator (Sobel 3 × 3

masks are used in our implementation). Then, in order

to create a histogram of orientations, a number of orien-

tation bins is defined and each pixel votes for the bin

that contains its corresponding angle. The votes are

weighted by the magnitude of the gradient at that point.

Three possible configurations have been considered

involving n = 8, 12, and 18 bins evenly spaced over [0,

180), as illustrated in Figure 7.

The bins have been shifted so that the vertical and

horizontal orientations, which are very frequent in the

rear of vehicles, are in the middle of their respective

bins. This way, small fluctuations around 0° and 90° will

not affect the descriptor. The histogram of each cell is

finally normalized by the area of the cell so that histo-

grams of different cells are in the same order of magni-

tude. The CR-HOG descriptor is composed of the

normalized histogram of orientations of all the cells.

The optimal configuration of the number of orientation

bins, n, and the number of cells, b, is discussed in Sec-

tion 7 for each region of the image.

6.2.2 Classification stage

The CR-HOG descriptors are introduced in a Support

Vector Machine-based classifier. A new database con-

taining 4,000 positive vehicle images and 4,000 negative

vehicle images is used to train and test the classifier

(this can be accessed in the Internet [40]). The core of

the database is composed of images from our own col-

lection. Additionally, images have also been extracted

from the Caltech [41,42] and the TU Graz-02 [43,44]

databases and included in the data set. The joint data-

base consists of images of resolution 64 × 64 acquired

from a vehicle-mounted forward-looking camera. Each

image provides a view of the rear of a single vehicle.

Some images contain the vehicle completely while

others have been drawn to contain it only partially (all

Figure 6 Combined HOG and symmetry based descriptor. (a) The structure of concentric rectangle HOG (CR-HOG) with its corresponding

parameters is illustrated. (b) The refined regions obtained after vertical symmetry analysis is shown for some examples: green and red lines

indicate respectively the symmetry axis and the width of the region yielding the maximum symmetry values.
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images contain at least 50% of the vehicle rear) in order

to simulate putative results of the hypothesis generator.

Images involve many different viewpoints of the vehi-

cle rear corresponding to vehicles in different locations

relative to the vehicle in which the camera is mounted.

Specifically, the space is divided into four main regions:

close/middle range in the front, close/middle range in

the left, close/middle range in the right, and far range.

The database contains 1,000 images of each of these

views. A set of 4,000 images not containing vehicles

have also been used to train and test the classifier. The

images are selected in such a way that the variability in

terms of vehicle appearance, pose, and acquisition con-

ditions (e.g., weather conditions, lighting) is maximized.

A classifier based on SVM using linear basis functions is

used for each of the four image regions.

7 Experiments and discussion
Experiments regarding the proposed method have been

performed twofold. On the one hand, the performance

of the novel CR-HOG based approach for vehicle detec-

tion is tested on the database referred to in Section

6.2.2. On the other hand, experiments have been carried

out in the complete system integrating vehicle detection

and tracking over a wide variety of video sequences.

7.1 Experiments on vehicle detection

The SVM-based classifier for vehicle detection explained

in Section 6 has been trained and tested in Matlab using

the Bioinformatics Toolbox. The method involves two

design parameters, namely the number of orientation

bins in the histogram, n, and the number of cells, b.

Experiments have been performed on the database for

values n = 8, 12, 18 and b = 2, 3, 4. A cross-validation

procedure is used to test the method. Specifically, 50%

of the images are randomly selected for the training set

and the remaining 50% are used for the testing set. This

process is repeated 5 times and the average is computed.

The accuracy or correctly classified rate of samples as

a function of these parameters is provided in Table 1

for each of the four regions. These results are graphi-

cally represented in Figures 8. and 9. to facilitate their

interpretation. In particular, Figure 8. shows the accu-

racy results as a function of the number of cells, b, by

averaging on n, for each area of the image. Analogously,

Figure 9. illustrates the average accuracy results as a

function of the number of orientation bins, n.

As a first conclusion of the experiments we can infer

that the accuracy decreases for b = 4 in all the areas of

the image. As for the number of orientation bins, a dif-

ferent behavior is observed for the frontal and the sides

views. Specifically, for the central close/middle and far

ranges similar results are obtained for n = 8 and n = 12,

while the performance decreases notably for n = 18. On

the contrary, for the left and right areas a significant

accuracy increase is observed from n = 8 to n = 12; a

further increase to n = 18 does not bring an additional

gain. This contrast is indeed reasonable since, from a

completely orthogonal viewpoint, the edges of a vehicle

are fairly invariant and mostly vertical and horizontal;

conversely, in the side views the upright edges corre-

sponding to the back window and its contour (especially

the furthest from the image center) tend to divert from

verticality. Consequently, more variability is found in

Figure 7 Possible configurations of CR-HOG regarding the number of orientation bins. The range of gradient orientation angles [0-180) is

divided in uniformly spaced sectors. Pixels with gradient orientations inside each sector accumulate to the corresponding bin of the histogram

proportionally to the magnitude of their gradient. Configurations with (a) 8, (b) 12, and (c) 18 bins are considered.

Table 1 Classification accuracy rates of CR- HOG

Close/Middle Left Right Far

b = 2 b = 3 b = 4 b = 2 b = 3 b = 4 b = 2 b = 3 b = 4 b = 2 b = 3 b = 4

n = 8 94,88 94,98 94,68 91,04 91,18 91,16 88,58 89,14 87,94 85,92 85,86 85,76

n = 12 94,96 94,80 95,14 91,46 91,82 91,46 89,28 89,42 88,16 85,32 85,24 85,16

n = 18 94,78 93,96 93,24 91,98 91,60 91,06 89,34 88,84 88,10 85,76 85,22 84,60
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the gradient orientation map, and therefore more bins

are necessary to capture fine-detail.

A good trade-off between complexity and performance

is achieved by selecting (b, n) = (2, 8) for the close/mid-

dle and far ranges, and (b, n) = (3, 12) for the left and

right views. This involves respective detection accuracies

of 94.88, 85.92, 91.82, and 89.42%, which results in an

average correct detection rate of 90.51%. The rate differ-

ence between left and right views is due to the particu-

larities of the traffic participants in the right lane, which

usually includes slow vehicles (buses, trucks, vans, etc.).

These involve a great appearance variety and hence

make classification much more challenging. Naturally,

the worst classification rate is obtained for the furthest

vehicles, in which the edge-details are degraded. The

results are improved to an overall accuracy of 92.77%

when using a Gaussian radial basis function kernel

(instead of the linear kernel), with respective correct

detection rates of 96.14, 89.92, 94.14, and 90.86% for the

different areas. However, the proposed method continu-

ously generates hypotheses for the potential vehicles.

Hence, even if a vehicle is not detected in a given frame,

it is usually detected in the following frames. Therefore,

the small latency incurred by the linear kernel-based

classification is usually negligible and it is not necessary

to use more complex kernels.

7.2 Experiments on vehicle tracking

In regard to vehicle tracking, the designed method has been

tested on a wide variety of sequences recorded on Madrid,

Brussels, and Turin. These sequences, which were acquired

in several sessions with different driving conditions (i.e.,

illumination conditions, weather, pavement color, traffic

density, etc.), amount to 22:38 min. Test sequences were

acquired from a forward-looking digital video camera

installed near the rear mirror of a vehicle driven in high-

ways. The method is able to operate near real-time at 10

fps on average over an Intel(R) Core(TM) i5 processor run-

ning at 2.67 GHz. Implementation is done in C++.

The above-mentioned test sequences are used to com-

pare the performance of the proposed tracking method

with the two methods most widely used in the literature.

Namely, those involve independent tracking of multiple

objects with a Kalman filter assigned to each object

(which will be referred to as KF-based tracking), or joint

tracking using PF based on importance sampling

Figure 8 Classification accuracy as a function of the number of cells, b. The results are broken down for images corresponding to (a) close/

middle, (b) left, (c) right and (d) far views.

Figure 9 Classification accuracy as a function of the number of

orientation bins, n. The results are broken down by zones: (a)

close/middle, (b) left, (c) right and (d) far.
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(shortly, SIS-based tracking). For the implementation of

KF-based tracking, appearance-based region labeling

through connected-component analysis is used as in

Section 6.1 to locate vehicles in every frame, and tracks

are formed temporally by matching the regions accord-

ing to a minimum distance criterion. As for SIS-based

tracking, a sequential resampling scheme is used (see

details of the algorithm in [21]). Additionally, the

motion model used for SIS-based tracking is exactly that

designed for the proposed method, while KF-based

tracking uses the same dynamic model for independent

motion of vehicles, but cannot accommodate any inter-

action model. Other parameters of the dynamic model

are wl = 90 and ds = 96. Regarding the observation

model, the dimensions of the local windows Ra and Rb

are set to w = h = 10. Also, the standard deviation of

the proposal density is optimally calculated for the pro-

posed method and for SIS-based tracking as sq = (2, 3)

and sq = (5, 8), respectively. Finally, the same number

of samples N = 250 is used for both methods.

To compare methods, the number of tracking failures

incurred by each of the methods on the same test

sequences is counted. A tracking failure occurs when

the tracker fails to provide continuous and coherent

measures for a given vehicle inside the region of interest

(ROI). The ROI is defined to be the scope of the IPM,

which usually comprises the own and the two adjacent

lanes, and extends longitudinally up to a distance df that

depends on the camera calibration. Comparative results

are displayed in Table 2. As expected, the proposed

method largely outperforms the others in terms of

tracking failures in the test sequences. Naturally, KF-

based tracking delivers the highest error rate as it is

unable to handle situations in which vehicles interact.

Notably, SIS-based tracking also outputs a significant

number of errors, since the number of particles is rela-

tively small and these fail to correctly sample the space

when the number of vehicles grows.

7.3 Analysis of computational complexity

The computational cost of the different processing

blocks of the method is summarized in Table 3. As can

be observed, the appearance analysis is naturally the

most costly module (44% of the processing time per

frame) as it constitutes the core for the definition of the

observation model and is in the basis of the hypotheses

generation for vehicle detection. Most remarkably, the

vehicle tracking algorithm consumes only 23.98% of the

processing time thanks to the efficient MCMC sampling.

Indeed, compared to traditional particle filtering based

on importance sampling, the processing load of sam-

pling is largely lightened. In MCMC, for a given number

of objects M, a Markov chain of length C · M is created,

in which the state of each object changes on average C

times (in each step of the chain only one random object

is moved). Hence, samples generated from the chain

may comprise a number of possible object state combi-

nations at the order of CM. In contrast, in SIS-based

sampling, particles are independently generated and

each corresponds to a possible state combination, there-

fore CM particles are necessary to obtain the same num-

ber of combinations as in MCMC. Consequently, since

each particle involves evaluation of the posterior density

in (11) both for MCMC and SIS, the complexity of the

proposed sampling algorithm is Ω (C · M) whereas that

of SIS-based sampling is Ω (CM). The Big Omega Ω is

used here to denote the lower bound, since a number of

lighter additional operations are also involved in sam-

pling besides posterior density evaluation. In other

words, the complexity of the sampling algorithm grows

linearly in the proposed method, while the traditional

SIS grows exponentially. Complexity comparison

between methods is summarized in Table 4.

The real-time operation requirement constrains the

processing time available for particle propagation and

thus the efficiency of the sampling is crucial to the per-

formance of the method. As shown in Table 5, if we

limit the number of particles to N = 250, for which near

real-time operation is attained (approximately 10 fps),

SIS-based tracking delivers 31 tracking failures in the

test sequences described above, whereas with the same

computational resources the proposed method outputs

only 9 failures. Even if the number of particles for SIS-

based tracking is increased to N = 1000, the tracking

failures still outnumber largely those of the proposed

method, while the average frame rate plummets far

from real-time. As a matter of fact, if we consider a

Table 2 Summary of tracking results

Method Tracking
failures

Number of
frames

Number of
vehicles

KF-based
Tracking

36

SIS-based
Tracking

31 33454 120

Proposed
Method

9

Table 3 Average processing time of the proposed algorithm per block

Appearance analysis Motion analysis Vehicle detection Sampling Total

Processing time (ms) 44.33 9.15 19.54 23.04 96.06

Processing load (%) 46.15 9.52 20.35 23.98 100
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mean number of M = 2 observed vehicles per image,

traditional sampling would theoretically require approxi-

mately (250/2)2 = 15625 particles to achieve a perfor-

mance similar to the proposed method. As a final

remark, the use of the interaction model explained in

Section 4 increases the processing time per frame from

94.78 ms to 96.06 ms and thus entails an overhead of

only 1.34% which is well compensated by the gain in

performance.

7.4 Discussion and examples

The strength of the method lies to a great extent in the

combination of two different sources of information

(appearance and motion) for the definition of the obser-

vation model. Indeed, the combination of information

ensures that whenever the two sources are available a

robust average estimate is produced, and most impor-

tantly, it allows for the tracking of the objects even if

one of the information sources is unavailable or unreli-

able. Figure 10.a illustrates the sampling process for the

original image in Figure 10.a1 whenever the two types

of information are available. In particular, Figure 10.a2

shows the rectified domain after IPM application, Figure

10.a3 corresponds to the appearance-based pixel-wise

classification (in which pixels likely belonging to the

lower parts of vehicles are colored in white as explained

in Section 5.1.2), and Figure 10.a4 contains analogously

the pixel-wise motion-based classification as explained

in Section 5.2.2.

The process of sample generation in the framework of

the Markov chain is superimposed on Figure 10.a3 and

Figure 10.a4. In particular, the segment between the

previous sample and the proposed sample is colored in

green whenever the latter is accepted and in red if it is

rejected. As can be observed, accepted samples concen-

trate in the area of high likelihood (i.e., the transition

between road and vehicles), while samples diverging

from this area are rejected. The final estimates for vehi-

cles positions are indicated in Figure 10.a5 with white

segments underlining the vehicle rears.

As stated, dual modeling from two sources prevents

the method from losing track whenever one of the

sources is unreliable. This is illustrated in Figure 10.b,

and Figure 10.c, where the sampling process is depicted

analogously to Figure 10.a for the images in Figure 10.

b1 and Figure 10.c1. In particular, in Figure 10.b the

motion-based observation provides no measurement for

the right vehicle (Figure 10.b4), however this is compen-

sated by the correct appearance-based observation,

which avoids particle dispersion. Therefore, the vehicle

is correctly tracked as shown in Figure 10.b5. In con-

trast, the particles for the left vehicle overcome an inac-

curate initialization and converge to its actual position

due to good appearance-based and motion-based obser-

vations. The opposite case is illustrated in Figure 10.c,

in which the appearance-based model fails to detect the

furthest vehicle (see Figure 10.c3), whereas the region of

motion is still observable in the difference between

aligned images in Figure 10.c4. The combinations of the

two sources results in the correct tracking of the vehicle,

as shown in Figure 10.c5.

Finally some graphical examples of the performance of

the method are shown in Figure 11. This figure displays

snapshots of the tracking process for four different time

points (from left to right) in three different example

sequences. In the first sequence, the method simulta-

neously tracks a vehicle that is being rapidly overtaken

by the own vehicle. Most interestingly, there is some

degree of interaction between the vehicles, in fact, they

are fairly close in Figure 11.a3. In traditional SIS-based

tracking methods, particles are prone to concentrate

around the object with the highest likelihood which

results in the loss of the other object. In contrast, the

designed interaction model allows for the prevention of

this situation and the successful tracking of the vehicles

until they part. In the second example, in Figure 11.b,

tracking of a vehicle driving at a slow pace in the right

lane is shown. At the same time, the method swiftly

detects a vehicle in the left hand side (Figure 11.b3) and

tracks it until it is far away, while also keeping track of

Table 4 Comparison of time complexity between SIS-

based tracking and the proposed method

SIS-based tracking Proposed method

Number of vehicles M M

Number of particles CM C · M

Time complexity Ω (CM) Ω (C · M)

Table 5 Performance comparison between SIS-based tracking and the proposed method

Method Number of
particles

Processing time for sampling
(ms)

Average time per frame
(ms)

Frame processing rate
(fps)

Tracking
failures

SIS-based
tracking

250 23.55 96.56 10.36 31

SIS-based
tracking

1000 114.33 187.34 5.34 22

Proposed
method

250 23.04 96.06 10.41 9
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Figure 10 Illustration of sampling process for different example images. From left to right, images correspond to the (1) original image, (2)

rectified domain, (3) appearance-based vehicle probability map, Bm, (4) motion-based vehicle probability map, and (5) tracking results. The

sampling process is illustrated in images (3) and (4): accepted and rejected particles are painted in green and red, respectively. Images (2)-(4) are

zoomed for better visualization of the sampling process. Images in (a) illustrate a normal sampling scenario, while images in (b) and (c) show

how combined sampling is able to overcome bad (b) motion-based and (c) appearance-based measurements.

Figure 11 Vehicle tracking for three different sequences (a)-(c). From left to right, the images show results at times k0, k0 + 200, k0 + 340, k0
+ 440; k0, k0 + 170, k0 + 215, k0 + 295; k0, k0 + 250, k0 + 360, k0 + 460 for sequences (a), (b), and (c), respectively.
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the vehicle in front of the own car. Finally, in Figure 11.

c simultaneous tracking of several vehicles is shown: the

vehicle ahead the own car moves from the lower-left

corner of the image to the upper-middle part, while at

the same time tracking is kept for the distant vehicle in

the right lane. Meanwhile, a new vehicle entering the

scene in the left hand is detected and tracked until it is

nearly at the same distance as the other vehicles.

8 Conclusions
In this article, a new probabilistic framework for vehicle

detection and tracking has been presented based on

MCMC. As regards vehicle detection, a new descriptor,

CR-HOG, has been defined based on the extraction of

gradient features in radial rectangular bins. The descrip-

tor has proven to have good discriminative properties

using a reduced number of features in a simple linear-

kernel SVM classifier, and is thus ideally suited for real-

time applications. In addition, the tracker is proven to

perform better than state-of-the-art methods based on

Kalman and particle filtering in terms of tracking fail-

ures. The power of the algorithm lies in the fusion of

information of different nature, especially regarding the

observation model. In effect, aside from appearance the

method incorporates the analysis of another feature that

is inherent to vehicles: their motion. In addition,

MCMC method is capitalized on to perform efficient

sampling and to avoid the performance degradation of

particle filter-based approaches in multiple object track-

ing arising from the curse of dimensionality. In sum-

mary, the method is able to overcome the common

limitations of particle filter-based approaches and to

provide robust vehicle tracking in a wide variety of driv-

ing situations and environment conditions.
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