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Abstract

Anomalies in many video surveillance applications have

local spatio-temporal signatures, namely, they occur over

a small time window or a small spatial region. The dis-

tinguishing feature of these scenarios is that outside this

spatio-temporal anomalous region, activities appear nor-

mal. We develop a probabilistic framework to account for

such local spatio-temporal anomalies. We show that our

framework admits elegant characterization of optimal deci-

sion rules.

A key insight of the paper is that if anomalies are lo-

cal optimal decision rules are local even when the nomi-

nal behavior exhibits global spatial and temporal statisti-

cal dependencies. This insight helps collapse the large am-

bient data dimension for detecting local anomalies. Con-

sequently, consistent data-driven local empirical rules with

provable performance can be derived with limited training

data. Our empirical rules are based on scores functions de-

rived from local nearest neighbor distances. These rules ag-

gregate statistics across spatio-temporal locations & scales,

and produce a single composite score for video segments.

We demonstrate the efficacy of our scheme on several video

surveillance datasets and compare with existing work.

1. Introduction

Video surveillance has been an area of significant interest

in both academia and industry. Recently, anomaly detection

for video surveillance has gained importance [2, 7, 15, 8, 5,

14, 9, 11, 3, 21, 13, 16]. Our focus is on problems, where we

are given a set of nominal training videos samples. Based

on these samples we need to determine whether or not a test

video contains an anomaly. We consider anomalies in mo-

tion attributes. Such outliers can include (un)usual motion

patterns of (un)usual objects in (un)usual locations. These
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encompass anomalies such as dropped baggage, illegal U-

turns, and sudden movements.

We focus on anomalies that have local spatio-temporal

signatures. By locality we mean that the spatio-temporal

region surrounding the anomalous region appears to follow

the nominal activity and carries little information about the

anomaly itself. For instance, the appearance of a bicyclist

as shown in Fig. 1 illustrates spatio-temporal locality. As

is seen outside a small window in time or in space the op-

tical flow magnitudes look remarkably similar to nominal

activity. We also consider other cases where locality is only

temporal. These include cases such as sudden crowd move-

ment [1] or illegal U-turns [5].
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Figure 1. Illustration of local anomaly. Top: Illustrates frame of a

video segment [15] with anomaly (bicycle). Bottom Panel (Left):

Optical flow magnitude averaged over the red block vs. frame

number for nominal and anomalous video segments. (Right): Op-

tical flow magnitude averaged over different blocks along horizon-

tal pixel blocks for different nominal and anomalous video. The

magnitude outside “anomalous region” looks similar to nominal in

both space and time.

We exploit these ideas by building on recent statisti-

1



cal non-parametric notion of locality [18] and derive data-

driven rules for video anomaly detection with predictable

performance and statistical guarantees. Our approach is re-

lated to a number of other non-parametric data-driven ap-

proaches such as [19, 23] with key differences. Existing

statistical approaches do not account for local anomalies,

i.e., anomalies that are localized to a small time interval

and/or spatial region. Our statistical locality notion leads to

an elegant characterization of anomaly detection and sug-

gests novel empirical rules. A fundamental insight gained

from theoretical results is that the optimal decision rules for

local anomalies are local irrespective of the global statisti-

cal dependencies exhibited in the nominal behavior. This

insight helps collapse the large ambient data dimension for

detecting local anomalies. Consequently, consistent data-

driven local empirical rules with provable performance can

be derived with limited training data. Our local empirical

rules fuse local statistics and produce a composite score for

a video segment. Anomalies are declared by ranking com-

posite scores for video segments.

The paper is organized as follows. In Sec. 2 we present

overview of our work and describe related work in video

anomaly detection. In Sec. 3 we present our locality model

structure to account for local spatio-temporal anomalies.

Sec. 4 describes the Neyman-Pearson characterization and

derives composite scoring schemes that lead to guarantees

on false alarm control. Sec. 5 presents empirical rules that

approximate the theoretical composite scores. Proofs of all

statements appear in the supplementary section. Sec. 6

presents simulations on benchmark video datasets as well

as comparisons to existing work.

2. Overview and Related Work

Our anomaly detection algorithm is described in Fig. 2.

Our setup extracts local low-level motion descriptors and

resembles other common approaches. Adam et al.[2] use

histograms of optical flows at specific “local monitors” to

derive decision rules for anomaly detection at those loca-

tions. Itti and Baldi consider low-level feature descriptors

at every location [10] and use possion statistics for model-

ing nominal activity.

We propose a joint probability distribution of the low-

level motion descriptors under nominal as well as anoma-

lous distributions. Such joint distributions have also been

considered extensively. Kim et al. [13] also extract local op-

tical flow and enforce consistency across locations through

Markov Random Field models. Benezeth et al. [5] use

binary background subtraction to extract motion labels and

then model these local features using a 3D Markov Random

Field (MRF). Kratz et al. [14] extract spatio-temporal gra-

dient to fit Gaussian model, and then use HMM to detect

abnormal events. Mahadevan et al. [15] model the normal

crowd behavior by mixtures of dynamic textures.
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Figure 2. Overview of Anomaly Detection Algorithm. Motion

descriptors are first extracted and quantized into small blocks.

Spatio-Temporal filters at different scales are applied to obtain

smooth estimates at each spatio-temporal location for each feature

descriptor. Local KNN distance for each location is computed for

training and test video. These local KNN distances are aggregated

to produce a composite score for the test and training video. The

composite scores are ranked to determine anomalies.

We introduce novel structural assumptions on the joint

distributions to account for spatial and temporal locality of

anomalies. Our locality assumption leads us to consider

statistics on local 3D brick patches (space-time blocks)

across different overlapping locations. These statistics

are obtained through spatio-temporal filters as shown in

Fig. 2. Our 3D modeling superficially resembles Boiman

and Irani [7] but is different. They consider ensembles of

3D bricks and derive Gaussian models for matching test en-

sembles at a specific location with corresponding ensembles

in a database. However, our goal is statistical and does not

attempt to match 3D bricks at a location. Rather (see Fig. 2)

we first compute location specific K-nearest neighbor (NN)

distance for each 3D brick. We then normalize and com-

pute a composite score by aggregating weighted K-NN dis-

tances from all the locations. This composite score is ranked

against other such composite scores associated with train-

ing video segments. We then declare low scores as anoma-

lies. It turns out that fusing local 3D brick statistics in this

manner has theoretical significance. The empirical compos-

ite scoring and ranking scheme asymptotically converges to

the optimal decision rule for maximizing detection power

subject to false alarm constraints.

Our work is also related to Cong et. al. [8] who con-

sider dictionary learning methods. There 3D patches with

specific temporal and spatial scale are chosen to match each

scenario. A dictionary of representative patterns are learnt

based on training video. Anomalies are declared if the test

sample cannot be represented using a sparse set of dictio-

nary patterns. It is worth mentioning that we could incorpo-

rate their ideas into our scheme. Sparse decomposition for

each spatio-temporal scale can be viewed as a feature vector

that feeds into our local KNN block (see Fig. 2).



3. Spatio-Temporal Locality Model

We first describe an abstract problem and specialize it to

video setting in Sec. 3.1. Consider a collection of random

vectors, x = (xv)v∈V , indexed on a graph G = (V,E).
The set V is endowed with the usual graph metric d(u, v)
defined for any two nodes v and u.

We assume that baseline data x = (xv)v∈V is drawn

from the null hypothesis H0:

H0 : x ∼ f0(x) (1)

We describe the anomalous distribution as a mixture of lo-

cation and scale specific anomalous likelihood models. For

simplicity of exposition we only consider location specific

mixtures at a fixed scale s. Nevertheless, the techniques de-

veloped here can be generalized to mixtures across scales1.

To this end, let fv(x), Pv be the likelihood function and

prior probability associated with location v at scale s. Then,

H1 : x ∼
∑

v∈V

Pvfv(x) (2)

We next introduce notation to describe our local model. Let

ωv,s be a ball of radius s around v:

ωv , ωv,s = {u | d(u, v) ≤ s}

With abuse of notation ωv will generally refer to a ball of a

fixed radius s at node v. We also denote by ωv,ϵ as the set

that includes all points within an ϵ radius of ωv , i.e.,

ωv,ϵ = {u ∈ V | d(u, v) ≤ ϵ, v ∈ ωv}

The marginal distribution of f0, fv on a subset ω ⊂ V is

denoted as f0(xω).

Definition 1. We say an anomaly is of local structure if the

distributions f0 and fv satisfy the following Markovian and

Mask assumptions.

(1) Markov Assumption: We say f0 and fv’s satisfy the

Markov assumption if the observation x forms a Markov

random field. Specifically we assume that there is an ϵ-
neighborhood such that xv, v ∈ ωv is conditionally inde-

pendent of xu, u ̸∈ ωv,ϵ when conditioned on the annulus

ωv,ϵ ∩ ω
c
v .

(2) Mask Assumption: The marginal distribution of f0 and

fv on ωcv is identical:

f0(xωc
v
) = fv(xωc

v
)

1H1 : x ∼

∑
s

∑
v∈V Pv,sfv,s(x) where Pv,s, fv,s(x) are likeli-

hood function and prior probability at location v and scale s.
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Figure 3. Illustration of Markov and Mask Properties. Markov im-

plies random variables in region ωv,s are independent of random

variables in ω
c
v when conditioned on the annulus. Mask assump-

tion means that the anomalous density and nominal density are

identical outside ωv .

3.1. Video Locality Model and Feature Descriptors

A video snippet x is typically a short segment of

video. Training data can consist of several snippets,

x(1), x(2), . . . , x(n). For theoretical purposes we assume

that the different snippets are independent of each other.

These snippets can be obtained by partitioning a longer

video into short non-overlapping segments.

For a video snippet, x, we associate a graph G = (V ×
T,E). The set V is associated with spatial locations and the

set T is associated with temporal locations in the video snip-

pet. Each location, v ∈ V and time t ∈ T is associated with

a feature descriptor xv,t. While it is theoretically possible to

consider all pixel locations and temporal instants, we quan-

tize into 10× 10× 5 non-overlapping blocks. We call these

blocks as atoms and we associate average values of features

for each atom. Two atoms are connected if they are either

temporal or spatial neighbors. The rest of development with

regards to Mask and Markov assumptions follow as in the

previous section (also see Fig. 4).

Feature Descriptors: We now describe local features that

are associated with each node (atom) of our graph. During

feature extraction we compute a feature value for each pixel.

Then, the pixel-level features are condensed into a multi-

dimensional vector for each atom by averaging each feature

component over all the pixels within the atom. We use the

following local features:

(1) Persistence: Activity is detected using a basic back-

ground subtraction method (as for instance in [5]). The

initial background is estimated using median of several hun-

dred frames. Then, the background is updated using the

running average method. We flag each pixel as part of the

background or foreground. Persistence, for an atom, is the

percentage of foreground pixels in the atom.

(2) Direction: Motion vectors are extracted using Horn and

Schunck’s optical flow method [6]. Motion is quantized

into 8 directions and an extra “idle” bin is used for flow

vectors with low magnitude. The feature for each atom is a

9-bin un-normalized motion histogram. The value for each



bin corresponds to the number of pixels moving in the di-

rection associated with the bin.

(3) Motion Magnitude: Magnitude of motion vectors for

each bin (except the idle bin) is computed and averaged over

all the pixels in the atom.

We thus have an 11-dimensional descriptor for each

atom. While our setup is sufficiently general and admits

other descriptors we use only these in this paper.

4. Neyman-Pearson Characterization

We drop the explicit notation that indexes space and time

described in Sec. 3.1 for notational convenience. Thus we

are given a graphG = (V,E) and associated features xv for

v ∈ V . An anomaly detector is a decision rule, π, that maps

observations x = (x)v∈V to {0, 1} with zero denoting no

anomaly and one denoting an anomaly. Let Ωπ = {x |
π(x) = 1}. The optimal anomaly detector π minimizes the

“Bayesian” Neyman-Pearson objective function.

Bayesian: max
π

∫

Ωπ

∑

v∈V

Pvfv(x)dx (3)

subject to

PF ,

∫

Ωπ

f0(x)dx ≤ α

The optimal decision rule can be characterized as

∑

v

PvLv

anomaly

>
<

nominal

ξ (4)

where the likelihood ratio function Lv is defined as Lv =
fv(x)/f0(x) and ξ is chosen such that the false alarm prob-

ability is smaller than α. Lemma 1 (see Supplementary Sec-

tion for the proof) shows that the likelihood ratio function

Lv simplifies under our assumptions of Definition 1.

Lemma 1. Let ωv be a ball around v and ωv,ϵ be the ϵ-
neighborhood set such that the Markovian assumption of

Definition 1 is satisfied. Then we have,

Lv(x) =
fv

(

xωv,ϵ

)

f0
(

xωv,ϵ

) (5)

Several issues arises in applying this decision rule. Both

Pv and the likelihood model fv are unknown and we only

have nominal training data. A uniform prior (Pv = 1/|V |)
or a worst case prior are options for dealing with unknown

Pv . The worst-case prior turns out to be uniform under un-

der symmetrizing location invariance assumptions. The is-

sue of unknown fv is an important aspect in anomaly detec-

tion and we follow the conventional practice and assume a

uniform distribution over the support of f0(·). Now Lv(x)

is location dependent since support of f0 varies with loca-

tion. To account for this situation, we suppose that at lo-

cation v, the collection of features xωv,ϵ
corresponding to

the spatial ball, ωv,ϵ, lies in a set of diameter λv in the fea-

ture space. Note from before that the spatial ball ωv,ϵ has a

spatial diameter s+ ϵ. With this notation, Eq. 5 reduces to:

Lv(x) =
λ
−(s+ϵ)
v

f0
(

xωv,ϵ

) (6)

4.1. Composite Scores with Guarantees

While Equation 4 characterizes the optimal decision

rule, it is unclear how to choose a threshold to ensure false

alarm control. To this end we let G(x) be a real-valued

statistic of the raw data. Consider the score function:

R(η) = Px∼f0 (x : G(x) ≥ G(η)) (7)

It is easy to show that this score function is distributed uni-

formly for a large class of statistics G(x). This includes:

(1) NP detector: GSUM (x) =
∑

v Lv(x).
(2) GLRT [12]: GMAX(x) = maxv Lv(x).
(3) Entropy: GENT (x) = −

∑

v log(Lv(x)).

Lemma 2. Suppose statistics G(x) has the nestedness

property, that is, for any t1 > t2 we have {x : G(x) >
t1} ⊂ {x : G(x) > t2}. ThenR(η) is uniformly distributed

in [0, 1] when η ∼ f0.

This lemma implies that we can control false alarms via

thresholding the statistic R(η).

Theorem 3. If G satisfies the nestedness property, by set-

ting the detection rule as R(η) ≤ α, we control the

FA at level α. Furthermore, if R(η) is computed with

GSUM (x) =
∑

v Lv(x), then it is optimal solution to

Equation 3 for the uniform prior.

5. Empirical Composite Scores

The goal in this section is to empirically approximate

R(·) given training data (x(1), · · · , x(n)), a test point η and

a statistic Gn(·). Consider the empirical score function:

Rn(η) =
1

n

n
∑

i=1

I{Gn(x(i))≥Gn(η)} (8)

where Gn is a finite sample approximation of G and I{·}

is the indicator function. Here we propose local nearest

neighbor based statistics and the reasons for this choice will

be described shortly. We denote it as a local neighborhood

based composite score (LCS). This is because Gn(·) as de-

scribed in the previous section combines statistics over local

neighborhoods of a data sample and the ranking function

produces a composite score for an entire random field.



Definition 2. We define the d-statistic dωv,ϵ
(η) for window

ωv,ϵ at an arbitrary point η as the distance of ηωv,ϵ
to its k-th

closest point in
(

x
(1)
ωv,ϵ , · · · , x

(n)
ωv,ϵ

)

.

We generally choose Euclidean distance for computing

the distances. In general, we can apply any distance metric

customized to specific application. To approximate G(x)
for different cases we need to determine the support param-

eter λv . To this end we let d
(j)
ωv,ϵ as the ordered the distances

of dωv,ϵ
(x(j)) (j = 1, 2, · · · , n) in decreasing order and we

approximate the support as an ξ percentile:

λv = d(⌊nψ⌋)ωv,ϵ
(9)

where ⌊nψ⌋ denotes the integer part of real number and

can be tuned (in simulations we usually use the 95th per-

centile). Now GSUM (x) =
∑

v Lv(x) can be approxi-

mated by SUM LCS, Gn,SUM :

Gn,SUM =
∑

v

(

dωv,ϵ
(η)

λv

)s

(10)

Similarly, we can take a max statistic to obtain MAX LCS:

Gn,MAX = max
v

dωv,ϵ
(η)

λv
(11)

Observe that when s is equal to dimension of x the two

statistics max and sum coincide. Inverse of the near-

est neighbor distance have concentrate around the den-

sity [17] and motivate our choice for using such distances.

Our resulting LCS statistics Eq. 8 is identical to the K-

nearest-neighbor ranking (KNN-Ranking) scheme of [23]

for anomaly detection.

Practical Issues with GSUM (·): Recall from Section 4,

GSUM (x), appears to be optimal for uniform priors and

minimax optimal under symmetrizing assumptions. How-

ever, it is difficult to reliably approximate GSUM (x) for

several reasons. (1) Sum is no longer optimal if the prior is

not uniform. (2) Errors can accumulate for the summation

but max is relatively robust. (3) The additional s exponent

term in the expression of SUM LCS (which compensates

for the dimension) leads to sensitivity to parameters such as

λv . (4) For large values of s, since max distance is a dom-

inant term in GSUM (x) the theoretical difference between

the two statistics maybe negligible. Therefore, we adopt

MAX-LCS in this paper.

Theoretical Properties The theoretical properties for

MAX-LCS and SUM-LCS are described in [18]. We pro-

vide some of the main results for MAX-LCS here. It turns

out that under sufficient smoothness conditions on f0(·), if

η ∼ f0, then the score Rn,MAX(η) converges to a uniform

distribution on the unit interval.

Rn,MAX(η) =
1

n

n
∑

i=1

I{Gn,MAX(x(i))≥Gn,MAX(η)}
d
→ U [0, 1]

Consequently, to control false alarms at level α asymptoti-

cally our decision rule is to:

Rn,MAX(η)

nominal

>
<

anomaly

α

6. Experiments and Comparisons

To test the performance of our proposed algorithm, we

apply it to several published datasets and compare our re-

sults with existing work. We used the UCSD dataset [20],

the UMN dataset [1] of crowd anomalies, the Uturn dataset

[5] and the Subway dataset [2].

6.1. Algorithm for Video Anomaly Detection

Recall we are given training video samples and a test

video sample. To reduce real-time delay we breakup the test

video sample into test video snippets, η(1), η(2), . . . , η(m).

Our task is to determine which of the test snippets contain

an anomaly. For convenience, we partition training video

in to snippets (x(1), · · · , x(n)) each of the same length as a

test snippet η , η(j). Our algorithm consists of three steps:

(1) Local Scores: For any snippet y, which denotes ei-

ther a test or training snippet, a local score at spatial lo-

cation v, temporal instant, t, and at spatio-temporal scale

s, is computed (see Algorithm 1). We choose a uniform

Algorithm 1 Score for y at location (v, t), at scale s.

Input: {x(j)}; KNN parameter: K, location:(v, t); Scale:

s
Output: dy,v,t(s)

1: Filter at scale s: x(j) ← Filters(x
(j))

2: Distance Computation: dj ← dist(yv,t, x
(j)
v,τ ), ∀ j, τ

3: Compute d(ℓ) the ℓth nearest neighbor distance by sort-

ing dj .

4: Average:dv,t ←
1
K

∑2K
ℓ=K+1 d(ℓ)

5: Normalize dy,v,t(s)←
dv,t(s)
Dv

; where Dv = maxt dv,t

spatio-temporal filter with support equal to s for simplicity

in Algorithm 1.

(2) Snippet Score: Compute composite score for each

snippet—test and training snippets—from local scores ob-

tained in Algorithm 1:

dy(s) = max
v,t

dy,v,t(s) (12)

(3) Anomaly Detection: Rank test snippet, η at scale s:

Rs(η) =
1

n

n
∑

j=1

I{d
x(j) (s)>dη(s)}

Note that our feature descriptors–magnitude, direction,

persistency—have different dynamic ranges. In this paper



we ranked separately with respect to the different descrip-

tors. Anomalies are declared if the score at scale s, Rs(η),
for any descriptor falls below the desired false alarm thresh-

old, α. If an anomaly for a snippet is declared, the anomaly

is localized by identifying the spatio-temporal locations,

v, t in the snippet that achieve the maximum in Eq. 12.

Tuning Parameters: Our algorithm requires only two pa-

rameters, namely, K for KNN distance computation and

scale s. It turns out that our results are generally robust

to a wide range of K and is not an issue. In all our simu-

lations we choose K to be about 50. Scale s can be dealt

with in two possible ways: (1) Compute ranks over differ-

ent scales and declare anomaly if the rank at some scale falls

below the threshold. This procedure is conservative; Nev-

ertheless, it controls false alarms at desired level asymp-

totically. (2) Use context to determine sensible temporal

and spatial scales. This idea has been used before by Cong

et. al. [8], who choose appropriate basis depending on the

scenario. We choose small scales if small scale anomalies

(abandoned or unusual objects) are important and choose

larger scales for spatial anomalies such as U-turns or global

change in behavior.

Computational Issues: KNN distance computation is our

main bottleneck. It scales linearly with the number of 3D

bricks. To overcome this drawback recent approaches for

computing approximate nearest neighbors based on locality

sensitive hashing(LSH) [4] can be used. While we do not

present results based on LSH here, in our preliminary ex-

periments we have noticed that it can drastically reduce the

computation time (scaling as fourth root of the number of

3D bricks) with little loss in performance.

6.2. UCSD Ped1 dataset [20]

The UCSD Ped1 dataset contains 34 training clips of

nominal patterns and 36 testing clips of various abnormal

events, e.g. bicycles, skaters, carts, etc. Each clip has 200
frames (20 seconds), with a 158 × 238 resolution. The

challenge in this dataset is that the scenes are extremely

crowded. To apply our algorithm, first we calculated op-

tical flow and aggregated optical flow into histogram and

magnitude features. We divided the videos into overlapping

spatio-temporal blocks of 30pixels×20pixels×5frames (the

block size was chosen such that each block does not con-

tain too many objects which may interfere with one another)

and then we applied our algorithm on snippets consisting of

5 frames. We also experimented with larger snippets and

noticed little performance degradation.

Some image results are shown in Figure 4. Our algo-

rithm can detect different types of anomalies. In Figure 5,

we compared ROC curves of our method with SRC pro-

posed in [8] and MDT proposed in [15]. We also compared

our method with Social force and MPPCA, etc. It is easy to

see that our method outperforms all the other algorithms. In
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Figure 4. Abnormal event detections for UCSD Ped1 datasets. The

objects such as cars, bicycles, skaters are all well detected.

Table 1, some evaluation results are presented: the Equal

Error Rate (EER) (ours 16% < 19% [8]), and Area Under

Curve (AUC) (ours 92.7% > 86% [8]). From these com-

parisons, we can conclude that our algorithm outperforms

other state-of-the-art algorithms. One additional advantage

of our algorithm is that while providing frame level results,

we can also provide anomaly localization by back-tracing

to the block with max statistics.

Method EER AUC

MPPCA [15] 40% 59%
SF [15] 31% 67.5%
MDT [15] 25% 81.8%
Sparse [8] 19% 86%
Ours 16% 92.7%

Table 1. Quantitative comparison of our algorithm with [8] and

[15]. EER is equal error rate and AUC is the area under ROC.

6.3. Subway dataset [2]

The subway dataset is obtained from Adam et al. [2]. In

our experiments, we used the “entrance gate” video which

is 1 hour 36 minutes long with 144249 frames. For our

experiments, we applied a 96pixels ×96pixels ×50frames

block (2 seconds).

In Figure 6, a few detected abnormal frames are shown

with abnormal blocks marked red. In Figure 7 we compare

the frame level ROC curves with results in [8]. It is ob-

vious that our algorithm outperforms SRC proposed in [8]

significantly for the subway dataset.
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Figure 5. The detection results of UCSD Ped1 dataset.
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Figure 6. Abnormal event detections for Subway datasets.
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Figure 7. The detection results of Subway dataset.

6.4. UMN dataset [1]

The UMN dataset [1] consists of 3 different scenes of

crowds of walking people who suddenly started running.

Scene 1 contains 1450 frames, scene 2 contains 4415 frames

and scene 3 contains 2145 frames all with a 320×240 reso-

lution. We used a 80pixels×80pixels×45frames block and

trained our algorithm using first 600 frames of each scene

and use the others for testing.

In Figure 8, we demonstrate some detected abnor-

mal frames using our proposed algorithm. Table 2 pro-

vides quantitative comparisons to other state-of-the-art al-
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Figure 8. Abnormal event detections for UMN datasets.

gorithms. Our proposed algorithm is comparable to [22]

and [8], and outperforms [16]. Note that our method is

simpler and requires little parameter tuning in comparison

to other methods. In Figure 9 we compare the ROC curves

with several other algorithms.

Method AUC

Chaotic Invariants [22] 99%
Social Force [16] 96%
Optical Flow [16] 84%
Sparse [8] 97.5%
Ours 98.5%

Table 2. Quantitative comparison of our algorithm with [8], [16]

and [22]. AUC is the area under ROC.
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Figure 9. The detection results of UMN dataset.

6.5. Uturn dataset [5]

The Uturn dataset is made available to us by Benezeth

et al. [5]. It is a video of a junction with cars driving in

different directions, trams passing by and pedestrians walk-

ing about. The anomalous activities in this case are ille-

gal U-turns and trams. The video contains 6057 frames. A

block of 120pixels ×240pixels ×60 frames is adopted in

our experiment. Anomalous frames are shown to illustrate

the detected anomaly in Figure 10. The results are depicted

in Figure 11. Also in the top panel of Fig. 11 illustrates

how direction histograms behave as a time series. The first

anomalous instance (marked as red in the truth) is the tram,

where direction 1, 2, 7 and 8 has large intensity. The rest

of the anomalous instances are Uturns, where the features



corresponding to the U-turn is spread out in all of the first 5
directions in the histogram. Both these types of anomalies

are distinct from normal activities.
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Figure 10. Abnormal event detections for Uturn dataset. Depicts

Uturn and Tram anomalies on the same spatio-temporal block on

different frames.
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Figure 11. The detection results of Uturn dataset.
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