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Video Anomaly Detection with Compact Feature

Sets for Online Performance
Roberto Leyva, Victor Sanchez, Member IEEE, and Chang-Tsun Li, Senior Memeber IEEE

Abstract—Over the past decade, video anomaly detection has
been explored with remarkable results. However, research on
methodologies suitable for online performance is still very limited.
In this paper, we present an online framework for video anomaly
detection. The key aspect of our framework is a compact set of
highly descriptive features, which is extracted from a novel cell
structure that helps to define support regions in a coarse-to-fine
fashion. Based on the scene’s activity, only a limited number
of support regions are processed, thus limiting the size of the
feature set. Specifically, we use foreground occupancy and optical
flow features. The framework uses an inference mechanism that
evaluates the compact feature set via Gaussian Mixture Models,
Markov Chains and Bag-of-Words in order to detect abnormal
events. Our framework also considers the joint response of the
models in the local spatio-temporal neighborhood to increase
detection accuracy. We test our framework on popular existing
datasets and on a new dataset comprising a wide variety of
realistic videos captured by surveillance cameras. This particular
dataset includes surveillance videos depicting criminal activities,
car accidents and other dangerous situations. Evaluation results
show that our framework outperforms other online methods and
attains a very competitive detection performance compared to
state-of-the-art non-online methods.

Index Terms—video anomaly detection, online processing,
video surveillance.

I. INTRODUCTION

Automatic video surveillance is one of the most active

areas in computer vision. At the core of automatic video

surveillance are anomaly detection methods, which have been

shown to be highly effective to detect unusual events without a

priori knowledge about these events [1, 2]. Despite important

advances in video anomaly detection over the past decade,

there is a lack of methods specifically designed for online

processing, which deters its applicability in practical scenarios.

Within this context, online processing refers to attaining a

frame processing time that is shorter than the time it takes

to process a new frame according to the sequence’s frame

rate [3, 4]. Another important factor that also deters their

applicability in practical scenarios is the fact that research

on realistic surveillance videos is still very limited. State-of-

the-art methods have been mainly designed and tested using

datasets that poorly represent realistic abnormal events. These
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datasets usually contain simulated scenes with actors behaving

abnormally, e.g., [4–7]; or more realistic scenes but with a very

limited number of abnormal events, e.g., [8–10].

In this paper, we propose a new video anomaly detection

framework suitable for online processing. Our framework

employs a novel cell structure that helps to extract the scene’s

motion information based on local activity. This significantly

reduces the number of features to be processed during the

training and inference stages, which consequently reduces

computational times. The main characteristics of our frame-

work are:

• The extracted compact set of features comprises features

from foreground occupancy and optical flow. Features

from foreground occupancy help to efficiently capture

events associated with weak motion, such as loitering or

the abnormal presence of subjects; while features from

optical flow are useful to detect events associated with

sudden motion, such as panic or fights.

• Multiple inference models are employed to accurately

describe the activity of challenging scenes, where anoma-

lous events can be due to sudden motion, weak motion,

or both. This is particularly useful to attain a good

performance on scenes depicting realistic events; e.g.,

robberies, car accidents and other dangerous situations.

We test our framework on popular existing datasets and on a

new rich collection of real sequences captured by surveillance

cameras and depicting realistic events. Evaluation results show

that our framework achieves competitive results compared to

non-online methods, and outperforms online methods. In both

cases, our framework attains frame processing times that are

suitable for online processing of sequences with frames rates

of up to 30 frames per second (FPS).

The rest of the paper is organized as follows. In the next

section we discuss the related work and the contributions

of our framework. In Section III, we describe in detail our

proposed framework. In Section IV, we briefly describe the

datasets used for evaluation and present the performance

evaluation results. We conclude this paper in Section V.

II. RELATED WORK

Anomaly detection methods can be classified into two main

categories: accuracy-oriented methods, which are mainly con-

cerned with improving the detection accuracy, and processing-

time-oriented methods, which are mainly concerned with

reducing frame processing times. The latter category aims at

attaining online performance.

mailto:M.R.Leyva-Fernandez@warwick.ac.uk
mailto:V.F.Sanchez-Silva@warwick.ac.uk
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The class of accuracy-oriented methods has seen important

contributions over the past decades. However, the good per-

formance of these methods is usually attained at the expense

of increasing frame processing times. These methods are

characterized by employing various techniques to first select

the spatio-temporal regions of the scene to be modeled and

analyzed. Such techniques include dense scanning [3, 11],

multi-scale scanning [12–14] and convolution-based Spatio-

Temporal Interest Point (STIP) detection [15, 16]. These tech-

niques usually provide sufficient data to capture the scene’s

dynamics and spatio-temporal compositions; however, the

number of spatio-termporal regions selected for analysis may

result in a large number of features to be processed [3, 11–

13, 15–17]. Although important efforts have been made to

reduce the complexity associated with the definition of a

scene’s spatio-temporal compositions [3, 15], many of the

proposed improvements may still require considerably long

computations [3, 11, 15]. Another important characteristic of

these accuracy-oriented methods is their highly descriptive

features used to improve performance. Among these, optical

flow features have been shown to increase detection accuracy

[18, 19]. For example, in [19] the authors propose a fully

unsupervised non-negative sparse coding based approach that

employs histograms of optical flow (HOFs) to detect abnor-

malities in crowded scenes with promising performances. In

[12], the authors adopt Multi-scale HOFs (MHOFs), which

preserve temporal contextual information, to detect anomalies

in crowded scenes as a matching problem. Computing such

descriptive features, however, may require long processing

times [3, 11, 14, 19, 20]. For example, local descriptors

computed using dense scanning techniques have been shown to

improve performance, but at the expense of multiple repeated

computations [3, 13].

Processing-time-oriented methods have recently gained in-

terest within the area of video anomaly detection [3, 21, 22].

These methods usually reduce computational times by re-

ducing the number of features to be processed per frame

[21–23] or by employing local low-complexity descriptors

[3, 15, 21, 22]. For example, the work of Lu’s et al. [21]

and that of Biswas and Babu [22] manage to model a small

number of features even though they employ multi-scale

scanning techniques. Processing-time-oriented methods may

also employ features that are fast to compute, but not highly

descriptive. For example, in [22] the authors employ the

motion vectors of a video sequence as features in a histogram-

binning scheme. In [21], the authors employ local temporal

gradients extracted in a multi-scale fashion as the main feature.

Another common approach to reduce processing times is by

employing cell-based methods to extract features from fixed

spatio-temporal regions [12, 13, 20, 23]. Cell-based methods

therefore do not require STIPs or other saliency detection

techniques; moreover, they can be used to limit the number of

extracted features [13].

It is evident that there is a trade-off between detection

accuracy and processing times in video anomaly detection

methods. The challenge is then to appropriately balance this

trade-off by employing few, but highly descriptive, features

in order to attain online performance with a competitive

accuracy. Our proposed framework balances this trade-off

by employing a compact set of optical flow and foreground

occupancy features that are highly descriptive. This is achieved

by defining a novel cell structure on the scene, from which

features are extracted only from those cells that are deemed

to be relevant to the analysis. The main differences between

existing approaches and our framework are as follows:

1) Although other cell structures have been previously

proposed, e.g., [13, 23, 24], our framework employs a

novel fine-to-coarse cell structure that is computationally

efficient and uses cells of multiple sizes. The latter helps

to take into account the intrinsic camera-object distance

in the analysis.

2) Instead of employing common convolution-based STIPs,

e.g. [15, 16], our framework employs their binary coun-

terpart FAST (Fast Accelerated Segmentation Test) [25],

which is a binary-based technique that detects interest

points by comparing the intensity of a particular pixel

with that of its neighbors. FAST STIPs therefore also

contribute to attain online performance.

3) In order to extract highly descriptive features, our frame-

work employs two sources of motion information with

online performance for the first time. Specifically, it

employs optical flow and background subtraction in-

formation, both of which have been successfully used

separately in the past [3, 23].

4) Our framework successfully employs optical flow

features, which are known to be highly computationally

complex [3, 11], with online performance. This is

attained by extracting these features only from those

cells that are relevant to the analysis.

III. PROPOSED FRAMEWORK

In the same spirit of local-region based approaches proposed

in [12, 14, 17, 26, 27], we propose to analyze the motion in

local areas of the scene and build a probabilistic inference

model considering local spatio-temporal information. We are

interested in addressing the high computational complexity

and long processing times usually associated with state-of-

the-art anomaly detection methods in order to attain online

performance. The main core of the proposed framework is

then to efficiently describe the events in the scene without

computing a significant number of features. Hence, we focus

on an efficient scene representation using a compact set of

features. Our framework is graphically summarized in Fig.

1. In the Training Stage, we first construct a cell structure

for the whole scene to define the spatio-termporal regions, or

video volumes, to be analyzed (Section III-A). A compact set

of features is then extracted from a limited number of video

volumes. These features are based on foreground occupancy

and optical flow information (Section III-B). The compact set

of features is analyzed to construct various models. In the

Detection Stage, after extracting a compact set of features, the

models are used to detect anomalous video volumes (Section

III-C). Finally, an inference mechanism that considers the

local spatio-temporal neighborhood of cells is used to detect

abnormal events (Section III-D.)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Training Detection

Input frame Output frame

Foreground occupancy

Optical flow energy

HOF descriptor

GMM vote

GMM vote

Dictionary vote

Markov vote 

Foreground mask

Optical flow mask

Anomaly 
inference

Feature extraction

Inference model

Cell  
structure

Fig. 1: Proposed framework. In the Training Stage, we build a cell structure to define the support regions to be analyzed. Features from
foreground occupancy and optical flow are extracted to construct four models. In the Detection Stage, extracted features are evaluated using
the models constructed in the previous stage. The output of these models are then used to create two inference likelihood masks that lead
to the detection of anomalous events.

A. Cell Structure

Regions of the scene that are relatively close to the camera

provide more descriptive information than those located far

from it. Therefore, taking into account the camera’s position

in the scene to extract features can significantly enhance per-

formance [23, 28, 29]. To this end, we extract information from

the scene using a cell structure where cells are defined using a

non-overlapping grid over the spatial domain. An equal-sized

cell structure is intuitively not appropriate to deal with the

camera’s position and the associated scene’s perspective, as it

results in extracting features equally from all regions of the

scene regardless of their position relative to the camera. A

common solution to compensate for the scene’s perspective

is to track objects as they enter and exit the scene. However,

tracking objects is particularly challenging and computation-

ally complex in crowded scenes [30–32]. In this work, we

assume that the camera acquiring an unobstructed view of a

scene is installed in a high position looking downwards. This

is a valid assumption for the majority of video surveillance

cameras. When the camera looks downwards from a high

position to acquire an unobstructed scene, the lower region

of the scene then tends to be the one closest to the camera.

Based on this assumption, we propose to create a grid with

variable-sized cells where the largest cells are located at the

lower region of the scene (i.e., regions closest to the camera),

and the smallest cells are located at the upper region of the

scene (i.e., regions farthest from the camera). Large cells then

provide more information to compute features.

We create the cell structure and define the size of the

constituent cells according to the frame size. Starting from

the frame’s top border, let yk be the vertical dimension of the

kth cell as associated with its vertically adjacent cell, i.e., the

(k + 1)th cell, by:

yk+1 = αyk, (1)

where α > 1 is a growing rate that makes the (k + 1)th cell

larger than the kth cell. Thus, the vertical size of the frame,

denoted by Y , can be expressed in terms of the recursive

vertical dimension of each cell as follows:

Y =

n
∑

k=0

αky0, (2)

where n is the number of cells along the vertical dimension

and y0 is the vertical dimension of the smallest cell. To find

x

y

Y

y0

my 

mx 

(i ,j )

X

Fig. 2: Example cell structure for a scene. Cells of different size are
highlighted in different colors for illustration purposes. Largest cells
depict regions closest to the camera. The cell c at position (i, j) has
spatial dimensions of mx ×my .

n, we initially set y0 to an initial value. Eq. 2 can be easily

transformed into its geometric series form:

Y/y0 =
αn+1 − 1

α− 1
. (3)

The value of n can then be calculated as follows:

n = ⌊logα (Y/y0(α− 1) + 1)− 1⌉. (4)

We use Eq. 4 to adjust the vertical dimension of the smallest

cell. This adjusted dimension is denoted as ŷ0:

ŷ0 =
⌊ α− 1

αn+1 − 1
Y
⌋

. (5)

We follow a similar procedure to determine the size of the

horizontal dimension of the cells. Let X denote the horizontal

dimension of the frame. Starting at the top border of the frame,

at position X/2, i.e., the mid-section of the frame, we use the

same growing rate α to increase the horizontal dimension of

cells. Specifically, we modify this dimension in a symmetrical

manner from position X/2. We, however, do not adjust the

initial horizontal dimension, as we expect to find most of

the changes in objects’ size along the vertical dimension. An

example of our proposed cell structure is shown in Fig. 2.

Appendix A describes in more detail the construction of our

proposed cell structure.

B. Feature Extraction

Motion and change detection has an important impact on

the features extracted from the video sequences. Many motion

and change detection algorithms have been developed that
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a) Input frame c) Features from optical flow

Support region
STIP

b) Features from foreground

Foreground Active cell

Fig. 3: Features extraction. (a) Input frame. (b) From the foreground mask Bt, we extract features from active cells . (c) From absolute
frames differences, we detect FAST STIPs and the corresponding support regions are encoded using optical flow energy and HOF descriptors.
In (c), three example support regions of different size are shown for illustration.

perform well in some types of videos, but most are sensitive to

sudden illumination changes, environmental conditions, back-

ground/camera motion, and shadows. To this end, important

efforts have been made by the CDNET initiative to provide a

benchmark for testing and ranking existing and new algorithms

for change and motion detection [33–36]. In this work, we

employ motion and change detection algorithms that allows

us to extract a compact set of very descriptive features.

Specifically, two sources of motion information are used,

namely, background subtraction and optical flow information,

in order to extract foreground occupancy and optical flow

features, respectively.

1) Foreground occupancy features: Foreground information

is very useful to determine occupancy and long term events

[23]. Foreground occupancy refers to the information that

captures the size of objects in the scene and their correspond-

ing duration in that scene [23]. To this end, we first employ

background subtraction to detect the objects in the scene [37].

Applying background subtraction results in a collection of

binary masks, one for each frame, where true logical values

represent the foreground. We denote each of these binary

masks as Bt for frame t. For each cell c located at position

(i, j) in the cell structure proposed in Section III-A, we

define a video volume u ∈ R
3 on Bt. Video volume u has

dimensions mx×my×mt, where dimensions mx and my are

determined by the horizontal and vertical dimensions of the

cell, respectively, and mt denotes the number of frames, which

is fixed for all video volumes. The size of the detected objects

and their duration in the scene can then be easily computed

by counting the number of foreground pixels in each video

volume u. For each video volume u associated with cell at

postion (i, j), we then compute feature F (i, j) ∈ R, which

represents the foreground occupancy, as follows:

F (i, j) =
1

N

N
∑

n=1

u(n), (6)

where N is the number of pixels in u.

Only those cells whose associated video volumes that have

a foreground occupancy F (i, j) above a threshold are con-

sidered as active. Specifically, a cell is considered as active

if at least 10% of the pixels in the associated video volume

belongs to the foreground (see Fig. 3b). Only video volumes

associated with active cells are further analyzed. This helps to

avoid analyzing regions that mostly depict background, thus

reducing frame processing times and false alarms.

mx

my 

mt 

0
π/5

2π/53π/5

4π/5

FAST point

Associated cell Support region

(xp, yp, tp)

v

wp (xp, yp, tp)Bins

Fig. 4: HOF descriptors are extracted from video volume v, which
is the support region for the FAST STIP at position (xp, yp, tp). The
size of v is determined according to the cell in which the space
location (xp, yp) falls into.

2) Optical flow features: To extract features from optical

flow, we first detect STIPs using the FAST detector [25].

FAST is a binary-based technique that detects interest points

by comparing the intensity of a particular pixel p with that

of its neighbors. If all neighbouring pixel intensities are

greater or less than the pixel intensity of p, then the pixel is

considered to be an interest point. This particular binary-based

detector has significant advantages in terms of speed over

convolution-based detectors [15, 38]. Note that although 3D

spatio-temporal detectors have been widely used for the same

purpose, their computational times are considerably long for

online processing. In order to discard background information,

we apply the FAST detector on the absolute temporal frame

differences (see Fig. 3c). For each space location (xp, yp)
detected by FAST at the frame difference tp, we generate a

video volume v ∈ R
3 of size mx × my × mt centered at

(xp, yp, tp). Sizes mx and my are determined by the size of

cells in the structure proposed in Section III-A and size mt is

fixed for all video volumes. Specifically, mx and my are equal

to the horizontal and vertical size, respectively, of the cell in

which the space location (xp, yp) detected by FAST falls into.

We compute optical flow energy and a HOF descriptor [39] to

generate the feature pair {Op(xp, yp, tp), wp(xp, yp, tp)} for

each STIP detected by FAST, where

• Op(xp, yp, tp) is the optical flow energy computed as:

Op(xp, yp, tp) =
1

N

N
∑

n=1

∥

∥

∥

[

v(n)x , v(n)y

]
∥

∥

∥

2
, (7)

where vx and vy correspond to the horizontal and vertical

optical flow components, respectively, for the N pixels in

video volume v; and
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• wp(xp, yp, tp) is a HOF descriptor; a 5-bin optical flow

histogram calculated in the range [0, 4/5π] (see Fig. 4).

The histograms are normalized using ℓ1 normalization.

C. Inference Model

We build an inference model to detect anomalous video

volumes. The model, as depicted in Fig. 1, is composed of

four sub-models. Foreground occupancy features and optical

flow energy features are analyzed separately by two distinct

Gaussian Mixture Models (GMMs). The HOF descriptors are

analyzed by a Dictionary Model and a Markov Model.

1) GMM for foreground occupancy: to capture variable-

sized objects and long-term activity, we use the foreground

occupancy information of the scene. This information allows

us to deal efficiently with objects that appear for different peri-

ods of time in the scene. Foreground occupancy also provides

information about the size of objects, which is captured by

the number of active cells, as described in Section III-B1. The

foreground occupancy of each cell (see Eq. 6) is analyzed by a

GMM (see Eq. 8) with parameters θF = {πF
k , µ

F
k , σ

F
k }, repre-

senting the weight, mean and standard deviation, respectively,

of the kth component of the GMM. The model’s elements are

determined exhaustively by iterating the Akaike Information

Criterion (AIC) over the model:

pFG(F (i, j) | θF ) =
∑

k

πF
k N (F (i, j) | µF

k , σ
F
k ), (8)

where N is a normal distribution. For the GMM model of

Eq. 8, the AIC compares models in the light of information

entropy as a measure of Kullback-Leibler divergence. The AIC

for the given model is:

AIC(k, F ) , log
(

pFG(F | θFMLE)
)

− dof(k), (9)

where F represents the values to be modeled, whose likelihood

is to be maximized by the corresponding distribution of

parameters; and θFMLE is the corresponding set of parameters

that results in the maximum likelihood estimation (MLE).

Experimentally, we observe that more than 10 degrees of

freedom (dof ) usually do not provide relevant information.

Thus, we limit the number of iterations to k = 10.

To evaluate the likelihood of the current cell’s foreground

occupancy, F (i, j), we also consider the likelihood of the

immediate neighboring cells, as follows:

pFGL(F (i, j)) =

i+1
∏

x=i−1

j+1
∏

y=j−1

δx−i,y−jpFG(F (x, y) | θF ),

(10a)

δa,b =

{

1, a = 0, b = 0

0.2, otherwise
, (10b)

where δ is an exception-modified Kronecker delta function.

2) GMM for optical flow energy: events like panic and

other sudden variations in the scene might not be properly

described by the number of objects in the scene, their size or

long-term activity, but rather by the speed of their motion. In

order to capture sudden variations in the scene, we therefore

use a GMM of optical flow energy with parameters θO =

{πO
k , µO

k , σ
O
k }, representing the weight, mean and standard

deviation, respectively, of the kth component of the GMM,

as follows:

pOF (Op(xp, yp, tp) | θ
O) =

∑

k

πO
k N (Op(xp, yp, tp) | µ

O
k , σ

O
k ).

(11)

The model in Eq. 11 is also estimated by recursively mini-

mizing the AIC metric, as done for the GMM of foreground

occupancy. The Akaike criterion for model pOF is then:

AIC(k,Op) , log
(

pOF (Op | θOMLE)
)

− dof(k), (12)

where Op represents the values to be modeled and θOMLE is the

corresponding set of parameters that results in the maximum

likelihood estimation.

3) Dictionary model for HOF descriptors: we are inter-

ested in capturing the intrinsic activity information of the

scene by taking into account the fact that the activity may

vary within the scene. For instance, in a scene depicting a

traffic intersection, the activity in the sidewalk may differ a

lot from the activity in the road. However, anomalous events

may occur in both, the road and the sidewalk. Based on this,

we propose to create individual dictionaries, one per cell,

instead of creating a global dictionary as in [3, 15, 23, 40]. It

has been previously shown that individual Bag-of-Words can

significantly enhance performance in action recognition [41].

Each cell defined as described in Section III-A is assigned a

dictionary that is generated from the set S of HOF descriptors

within the cell. To this end, we use k-means to define the

cluster centroid zi ∈ R
5 in a dictionary, as follows:

zi : argmin
S

k
∑

i=1

∑

wp∈S

∥

∥

∥
wp − zi

∥

∥

∥

2

2
, (13)

where wp ∈ R
5 is a HOF descriptor as defined in Section

III-B2. The dictionary generated is associated with a prob-

abilistic vote according to the ℓ2 distance. The distance d to

those seen words is expected to be ℓ2 ≃ 0 if the word is present

in the dictionary and ℓ2 ≫ 0 otherwise. We calculate the

posterior likelihood of the distance of the observed words as a

normal distribution with parameters θDIC = {µDIC , σDIC},

representing the mean and standard deviation of the distribu-

tion, respectively:

pDIC(dp | θDIC) = N (dp | µDIC , σDIC), (14)

where dp is the ℓ2 distance of the word wp ∈ S to the cluster

centroid zi.
4) Markov model for HOF descriptors: in order to capture

unusual word ensembles [3], we employ a Finite-State Markov

Chain (FSMC). Markov Models have been successfully used to

detect anomalous events in the context of long-term activities

[42, 43]. However, these models are usually designed to detect

anomalous events in a global context. A global context may

be difficult to address if the activity in the scene varies

significantly across different regions, e.g., the activity in a

sidewalk and the road in a scene depicting a traffic intersection.

Thus, we use a local model to detect anomalous events by

considering the Markov Model of different regions. Let us
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Fig. 5: Individual dictionaries are built from the set S of HOF
descriptors within each cell. The dictionaries are aligned to ensure
the correct FSMC transitions.

consider the current state Xl given by the matching label l of

the local dictionary, the FSMC probability is then:

pMRV (X1:L) = p(X1)

L
∏

l=2

p(XL | Xl−1), (15)

where L is the number of transitions defined by the total

number of labels L in the local dictionary. The matching label

index, l, is defined as:

l : argmin
l

∥

∥

∥
wp − zl

∥

∥

∥

2

2
, (16)

and the associated transition matrix, A, is defined as:

Aij = p(Xl = j | Xl−1 = i), (17a)
∑

j

Aij = 1. (17b)

We are interested in knowing how likely it is that words i and

j co-occur. The probability of observing the two words {i, j}
is given by the occurrence n of the words, as follows:

Aij(n) = p(Xl+n = j | Xl = i). (18)

The order of occurrence of words is not important if the

number of analyzed frames is limited, as it is in this case.

Therefore, we can discard their order of occurrence making

matrix A symmetrical.

Since we use a number of different isolated dictionaries,

i.e., one per cell, the FSMC requires that the transition states

between neighboring regions correspond to the same matching

labels. For example, in the case of two neighboring cells, a
and b, with different labels associated to the same word (see

Fig. 5). We therefore align a pair of neighboring dictionaries,

za ∈ R
k×5 and zb ∈ R

k×5, computed using k-means, as

follows:

i : argmin
i

∥

∥

∥
zaj − zbi

∥

∥

∥

2

2
, (19a)

zcj = zbi , (19b)

where zaj ∈ R
5 and zbi ∈ R

5 are the words j and i associated to

the dictionaries for cells a and b, respectively; and zc ∈ R
k×5

is an empty auxiliary dictionary. By setting zb equal to zc,

the dictionary alignment is performed. After this alignment

procedure, the matching labels lap and lbp for the word wp in

dictionary a and b, respectively, are the same, i.e., lap = lbp.

This ensures that the FSMC transition is the same in a local

spatial region of the scene.

D. Anomaly Inference

The anomaly inference mechanism works in two joint

phases. In the first phase, the models are analyzed for potential

anomalous events to generate two likelihood binary masks. In

the second phase, the posterior vote of these two binary masks

is jointly analyzed to determine anomalous events.

1) First phase - mask generation: two binary masks are

generated in this phase. The first mask is generated by thresh-

olding the posterior likelihood of the foreground occupancy

model. Fig. 6b shows a sample foreground occupancy likeli-

hood map before thresholding. The second mask is generated

by thresholding the likelihood of the optical flow energy and

HOF descriptor model. Fig. 6c shows a sample optical flow

likelihood map before thresholding. The foreground occupancy

binary mask, MASKFG, is then generated by the posterior

likelihood of each active cell given by the pdf of the model

in Eq. 6, as follows:

γFG = − log (pFGL) , (20a)

MASKFG =

{

anomalous, γFG > ǫFG

normal, γFG 6 ǫFG

, (20b)

where ǫFG is a threshold used to determine if the foreground

model vote is normal.

Similarly, we capture the posterior likelihood of the op-

tical flow energy and HOF descriptors into binary mask

MASKOF , as follows:

γOF = − log
(

∏

{pOF , pDIC , pMRV }
)

, (21a)

MASKOF =

{

anomalous, γOF > ǫOF

normal, γOF 6 ǫOF

, (21b)

where ǫOF is a threshold used to determine if the optical flow

model vote is normal.

2) Second phase - mask joint analysis: in the second phase,

we evaluate MASKFG and MASKOF using a joint criterion.

Specifically, if a cell is deemed anomalous in any of the

individual masks, then the corresponding frame at time t
is marked as anomalous in that region using MASKt, as

follows:

MASKt = MASKFG,t ∨ MASKOF,t. (22)

In order to make the inference mechanism more resilient to

noise, we use the two consecutive frames at times {t, t+1} to

determine the abnormality of frame at time t, as follows [23]:

ˆMASKt = MASKt ∧ MASKt+1. (23)

The binary mask ˆMASKt then represents the abnormal

regions in the current frame as the combination of the models

of foreground occupancy and optical flow (see Fig. 6). Note

that one of the advantages of using variable-sized cells is

that the anomaly inference mechanism can locate abnormal

regions at different levels of spatial granularity according to

their position relative to the camera. In the example shown

in Fig. 6, the exact anomalous regions depicting a robbery

is detected. The region occupied by the anomalous vehicle is

much smaller than those regions occupied by other vehicles

closer to the camera.
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a) Input frame c) Optical flow likelihood map

Normal Abnormal 

d) Labeled frameb) Foreground occupancy likelihood map

Fig. 6: Anomaly inference mechanism. From (a) incoming frames, the posterior likelihood models are evaluated by thresholding the (b)
foreground occupancy likelihood map and the (c) optical flow likelihood likelihood map. (d) The frame is labelled by evaluating consecutive
frames.

Fig. 7: Example frames of the UMN dataset (first column), the UCSD dataset (columns 2 and 3) and the Subway dataset (fourth column).
Abnormal regions are highlighted by boxes.

We finish this section with discussions about the suitability

of our framework for online processing. Our framework gener-

ates a limited number of features, thus reducing computational

times. Specifically, it generates foreground occupancy features

(see Eq. 6) only for those video volumes whose associated

cells are considered as active, thus considerably reducing the

number of encoded features of this type. The number of en-

coded foreground occupancy features may as low as zero if no

activity is detected in the scene. This is an important advantage

compared to other methods, e.g., [3, 24], that densely extract

features from the entire sequence regardless of the activity

in the scene. Similarly, the number of generated optical flow

features is limited by the number of strongest STIPs detected

by FAST. In this work, we limit the number of FAST STIPs to

the 40 strongest detections. This also considerably reduces the

overall number of encoded features of this type. Moreover, we

create dictionaries for only those cells where HOF descriptors

are found, thus limiting the number of dictionaries to be

processed. In Section IV-E, we show that extracting features

is one of the most time consuming steps. When classifying

the current frame (see Eqs. 20-21), the posterior function is

evaluated considerably fast due to the linear complexity of

the associated normal distribution, N . The FSMC model (see

Eq. 18) is a simple memory access procedure where the label

given by dictionary matching gives the matrix index (i, j) (see

Eq. 17), thus the associated computational complexity is very

low. The generation of the final mask (see Eqs. 22-23) only

involves evaluating two binary masks representing the vote

given by the models. Both masks can be evaluated remarkably

fast due to their binary nature and the fact that only AND/OR

operations are required. Overall, our framework is designed to

detect anomalous events in the shortest time possible, making

it suitable for online processing. This will be further confirmed

in the next Section.

IV. PERFORMANCE EVALUATION

A. Datasets

The UMN [5], USCD [8] and Subway [4] datasets are

used for performance evaluations. In order to evaluate our

framework on realistic video surveillance data, we also use

a new collection of realistic videos captured by surveillance

cameras with challenging events to be detected. This dataset is

hereinafter referred to as the Live Videos dataset (LV dataset).

We summarize these datasets next.

1) UMN dataset: 11 video sequences depicting people

walking in random directions and suddenly simulating panic

(see Fig. 7). Videos are captured in three different scenarios

with no camera motion and insignificant illumination changes.

Specifically, it comprises two outdoor scenarios with good

illumination and one indoor scenario with poor illumination.

The videos are captured at 30 FPS. Ground truth of the instants

of time when the abnormal events occur is provided; however,

no ground truth of the specific abnormal regions is provided.

2) UCSD dataset: 96 sequences with different crowd den-

sities where the abnormal events correspond to the presence of

non-pedestrians entities on a sidewalk (see Fig. 7). Videos are
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a) Wrong Way Sequence: traffic goes in a single direction; suddenly men come out of three cars and people start running; one of them starts
shooting (top right corner of frame) and traffic slows down; motorcycles start circulating in the wrong way.

b) Robbery Sequence: a security guard is at the exit of a supermarket; costumers exit the scene after payment; three armed men suddenly
brake into the supermarket; they force some costumers to lie on the floor and beat one of the cashiers.

c) Panic Sequence: video surveillance of costumers in a convenience store; suddenly (captured by another surveillance camera) four armed
men enter the store and costumers start running; some costumers try to hide first and later escape through the exit.

d) Traffic Accident Sequence: a two-way road with sidewalks, where pedestrians are walking; a truck crashes into a house hitting a car and
a light pole

Fig. 8: Example frames of the LV dataset. Abnormal events are highlighted by boxes.

captured with no changes in illumination or camera motion

from two different perspectives overlooking two different

sidewalks, resulting in two different scenes: the Peds1 and

Peds2 scenes. The ground truth provided allows evaluation at

the frame and pixel-levels. For scene Peds1, we use 36 videos

for testing and 34 videos for training. For scene Peds2, we

use 16 videos for testing and 12 videos for training.

3) Subway dataset: two scenes from the entrance and exit

of a subway station. Three actors perform unusual activities

which include entering without payment, wrong-way direction,

loitering and irregular interactions. (see Fig. 7.)

4) LV dataset: 28 realistic sequences of different frame

sizes captured at different frame rates in indoors and out-

doors scenarios with several illumination changes and some

camera motion. All sequences are captured by surveillance

cameras (see Fig. 8 for some examples). The videos depict

various crowd densities, from empty scenes to the presence of

thousands of people. Anomalous events last from a couple

of frames to thousands of frames. All videos comprise a

number of test and training frames. Ground-truth at the region

of interest (ROI)-level is provided as a separate sequence

of binary masks. No pixel-level ground truth is provided

as this type of ground truth is usually very challenging to

determine in realistic videos if the abnormal regions contain

both foreground and background pixels. As discussed in [8],

a method might correctly classify a whole frame as abnormal

by incorrectly detecting any region where no abnormal event

actually happens. In this case, the system is just lucky as the

frame is classified as abnormal without correctly detecting

the abnormal event. Evaluations at the ROI-level, using the

appropriate ground truth, can therefore avoid this situation.
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TABLE I: Main characteristics of the new LV dataset.

Duration 3.73 hours
Frame rate 7.5 - 30 fps
Resolution minimum: QCIF (176× 144)

maximum: HDTV 720 (1280× 720)
Format Video MP4 in H.264
No. of videos 28
Dataset and ROI-level
ground truth URL

https://cvrleyva.wordpress.com/

Anomalous frames 69996
Events of interest 32
Scenarios Outdoor and indoor, uncontrolled en-

vironments, streets, highways, traffic
intersections and public areas.

Synthetic sequences None
Crowd density Scenes with no subjects to very

crowded scenes

The main characteristics of the LV dataset are summarized in

Table I.

B. Experimental Setup

We have evaluated our framework against a number of state-

of-art video anomaly detection methods [3, 4, 12–16, 19, 21–

23, 43]. In this work, a method is considered to be suitable

for online processing if frames are processed within the FPS

rate. For example, for a 30 FPS sequence, frame processing

times should be shorter than 33 ms; i.e., (1/30s). Based on this

criterion, a very limited number of methods can be considered

as being able to attain online performance. Among these, the

method proposed by Lu et al. in [21] and that proposed by

Biswas and Babu in [22] are among the state-of-the-art.

To extract the foreground of the sequences, we use the

implementation of Alekhin [44]. For the UMN and UCSD

datasets, we learn the background from 200 frames using a

learning rate of 10−2. During testing, the learning rate is set

to 10−3. For the LV dataset, we use the same learning rate

parameter of 10−2 considering 300 frames. To evaluate the

proposed method of Lu et al. [21], we use the code available in

[45] with the parameters suggested in the demo code section.

To evaluate the method of Biswas and Babu [22], we use the

code available in [46] to estimate the interpolation steps; a

maximum of five GMM model components are used. The other

parameters are kept as proposed by the authors.

For our framework, we empirically determine the value of

parameters α, which is the cell growing rate in the proposed

cell structure, and ǫFG and ǫOF , which are the thresholds in

Eq. 20-21. To this end, we evaluate the effect of these parame-

ters on our frameworks’ performance, at the pixel-level, using

the Peds1 scene of the UCSD dataset. This particular scene

contains relatively small frames with challenging abnormal

events to be detected. Therefore, this scene can be used to

determine values for α, ǫFG and ǫOF that are appropriate for

the other tested datasets. To determine the value of α, the

pixel-level Receiver Operating Characteristics (ROC) curve is

computed using different values of α (see Fig. 9a). The ROC

curve corresponds to the Equal Error Rate (EER) over the

Area Under the Curve (AUC) of the evaluated method, i.e.,

b) EER UCSD PEDS1

60
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Fig. 9: Pixel-level Equal Error Rate (EER) for scene Peds1 of the
UCSD dataset using different values for parameters a) α and b) ǫFG

and ǫOF .

EER/AUC, and denotes its precision in terms of its sensitivity.

As α → 1, all cells tend to have the same initial size,

y0. If α ≫ 1, cells tend to increase in size starting from

position (x = X/2, y = 0) in the frame, towards x = 0,

x = X and y = Y , where X and Y denote the vertical

and horizontal dimensions of the frame, respectively. Details

about the construction of the cell structure may be found in

the Appendix A. Results in Fig. 9a show that for values of α
close to one, i.e., α = 1.02, the AUC is reduced. This trend is

also evident for large values of α, i.e., α = 1.3. For this scene,

we can observe that α = 1.06 provides the largest AUC. We

thus use α ∈ [1.06, 1.2] in our experiments.

From Fig. 9b, we observe that tuning ǫOF has a more

profound impact on pixel-level EER than tuning ǫFG. Note

that ǫFG values above 80 in conjunction with ǫOF values

above 6.5 attain the lowest pixel-level EERs. We have thus set

ǫFG = 80 and ǫOF = 6.5 in our experiments to accommodate

for the different characteristics of the evaluated datasets.

Table II summarizes the most important parameters of our

framework and the recommended range of values.

TABLE II: Most important parameters of the proposed framework.

Parameter Description Recommended
values

α Cell size growing rate 1.06 – 1.2
ǫFG Anomaly inference fore-

ground occupancy model
threshold

80 –125

ǫOF Anomaly inference optical
flow model threshold

5.5 – 8.5

Some of the sequences in the LV dataset contain very large

frames, e.g. HD 1200×720. In order to reduce complexity, we

scale the frames by sub-sampling to a fixed size of 160×240.

Our framework is initialized as follows:

1) The cell structure is built according to α and an initial

size y0 (see Appendix A). This structure is used to de-

termine the spatio-temporal regions from which features

are extracted.

2) Features are extracted from the training frames and

stored.

3) Extracted features are processed to generate the GMMs,

dictionaries, and the FFSMC.

4) After training, the framework has all models required to

start inferring abnormal events.

https://cvrleyva.wordpress.com/
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C. Performance metrics

For the UMN, results are reported in terms of the AUC. For

this dataset, we use the provided top corner labels as ground

truth. Since this dataset provides no pixel-level ground truth,

for our framework we classify the whole frame as abnormal if

at least one region is classified as abnormal. This is the same

criterion used in the other evaluated methods. It is important to

note that the AUC and EER are similar metrics of a methods’s

performance. Specifically, AUC → 1 when EER → 0.

For the UCSD dataset, results are reported in terms of the

EER at the frame and pixel-levels. For this dataset, a frame is

deemed to be correctly classified if at least 40% of the pixels

are correctly classified [8, 47]. This is the criterion used in all

evaluated methods. The masks provided in [48, 49] provide

the pixel-level ground truth. For the Subway dataset, we rank

a method by counting the number of events that are detected

in each scene. For the LV dataset, results are reported in terms

of the ROC curve. Here, a frame is deemed to be correctly

detected as abnormal when at least 20% of the ROI is detected.

The corresponding event is thus classified as a true positive.

D. Results

Table III tabulates average AUC values for the UMN

dataset. Results for the compared methods are tabulated as

reported in the corresponding referred publication. Note that

our framework attains very competitive results compared to

non-online methods, which are expected to outperform online

methods. Compared to online methods, our framework attains

TABLE III: AUC values for the UMN dataset

Authors AUC
Frame

Processing
Time

On-line
Performance

Hu et al. [14] † 0.977 200 ms
Li et al. [43] 0.996 1100 ms
Cong et al. [50] 0.973 3800 ms
Zhu et al. [19] 0.997 4600 ms

Lu [21] 0.701 6 ms

Biswas and Babu [22] 0.736 14 ms

Ours 0.883 31 ms

† After optical flow and histogram calculations.

the highest AUC values. We also report the frame-level ROC

curve for this dataset. These results are shown in Fig. 10. It can

be observed that our framework outperforms the online method
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Zhu et al.

Biswas and Babu

Lu et al.

Li et al.

Fig. 10: ROC curve for the UMN dataset.

proposed by Biswas and Babu in [22] and that proposed by

Lu et al. in [21]. Our framework also attains very competitive

results compared to other non-online methods that have been

designed for performance, and not processing times, like the

one proposed by Zhu et al. [19].

Results for scenes Peds1 and Peds2 of the UCSD dataset

are tabulated in Tables IV and V, respectively. Results for the

other compared methods are as reported in the corresponding

referred publication. As expected, non-online methods tend

to attain the lowest EER values at both the frame and pixel-

levels. However, their frame processing times are considerably

long. For example, the best reported non-online method, i.e.,

the method in [3], attains a frame processing time six times

longer than that attained by our framework. This very long

frame processing time is mainly due to the dense multi-

scale sampling used, which is known to be computationally

complex. Our framework attains a pixel-level EER about 11%

lower than that attained by the online method of Biswas

and Babu in [22]. For scene Peds2, our proposed framework

achieves a better performance at the frame-level than that

attained by the online method in [22]. We also report the ROC

TABLE IV: EER for the Peds1 scene of the UCSD dataset.

Authors
EER

Frame
Level

EER
Pixel
Level

Frame
Processing

Time

On-line
Performance

Javan and Levine [3] 15 27 190 ms

Hu et al. [14] † 18 36 200 ms
Cheng et al. [15] 19.9 38.8 1100 ms
Cong et al. [50] 23 51.2 3800 ms
Zhu et al. [19] 15 – 4600 ms

Lu et al. [21] 15 59.1 6 ms

Biswas and Babu [22] 24.66 50.95 14 ms

Ours 21.15 39.7 31 ms

† After optical flow and histogram calculations.

TABLE V: EER for the Peds2 scene of the UCSD dataset.

Authors
EER

Frame
Level

EER
Pixel
Level

Frame
Processing

Time

On-line
Performance

Javan and Levine [3] 13 26 220 ms

Hu et al. [14] † 15 – 200 ms
Li et al. [43] 18.5 – 1100 ms

Lu et al. [21] 22.3 49.8 6.1 ms

Biswas and Babu [22] 29.6 42.3 12.5 ms

Ours 19.2 36.6 31 ms

† After optical flow and histogram calculations.

curves for the UCSD datasets in Fig. 11. From this Fig., one

can observe that our framework achieves a very competitive

performance compared to non-online methods. Specifically, at

the frame-level, our framework attains results very similar

to many of the best performing non-online methods (see

Fig. 11 (a) and (c)). Our framework’s results are comparable

with methods 10 to 20 times slower, e.g., Cheng et al.’s

method in [15], which have been designed for performance

and not for processing times. At the pixel-level, our framework

achieves also a competitive performance compared to non-

online methods, and significantly outperforms online methods

(see Fig. 11 (b) and (d)). Overall, our framework achieves a
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a) Frame-Level Peds1 ROC performance

Ours

Adam

Biswas and Babu

Lu et al.

Javan and Levine

b) Pixel-Level Peds1 ROC performance

c) Frame-Level Peds2 ROC performance d) Pixel-Level Peds2 ROC performance
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Fig. 11: ROC Curves for the UCSD dataset at the frame- and pixel-level. (a)-(b) Results for Peds1 scene. (c)-(d) Results for Peds2 scene.

very competitive performance on the UCSD dataset compared

to non-online methods, while outperforming some of the

online methods.

Results for the Subway dataset are tabulated in Table VI.

Results in this Table are reported following the convention

for this dataset, i.e., we report the number of detected events

by a method for the Entrance/Exit scenes, for each type of

anomalous event. The first row indicates the number events to

be detected (ground truth of the dataset). For example, for the

type of anomalous events Wrong Direction (WD), the ground

truth indicates that they are 26 of such anomalous events in

the Entrance scene and 9 in the Exit scene. This is indicated

as 26/9.

TABLE VI: Number of events detected for the Entrance/Exit Scene
of the Subway dataset for different types of anomalous events:
Wrong Direction (WD), No Payment (NP), Loitering (LT), Irregular
Interaction (II), Miscellaneous (MISC) and False Alarm (FA).

Authors WD NP LT II MISC FA
On-line

Performance

Ground Truth 26/9 13/0 14/3 4/0 9/7 0/0

Hu et al. [14] † 26/9 6/0 14/3 4/0 8/7 6/2
Zhao et al. [26] 25/9 9/0 14/3 4/0 9/7 5/2

Biswas and Babu [22] 24/8 5/0 6/2 2/0 5/3 14/10

Lu et al. [21] 25/9 7/0 13/3 4/0 8/7 4/2

Ours 21/6 9/0 8/3 2/0 4/2 12/7

† After optical flow and histogram calculations.

From Table VI, one can observe that our framework

achieves a competitive accuracy compared to other online

methods. It particularly outperforms other online methods for

the No Payment (NP) type of events, i.e., our framework is

able to detect 9 out of the 13 events. It is important to note that

these NP events are the most important ones in this dataset,

and correctly detecting them is one of the main motivations

behind this dataset. For the Wrong Direction (WD) type of

events, our framework also attains a competitive accuracy, very

close to the best performing non-online methods, which have

been designed specifically to attain a high detection accuracy.

Results for the LV dataset are plotted in Fig. 12 for our

framework, the online method of Biswas and Babu [22] and

that of Lu et al. [21] . We can see that our framework is

significantly better than the evaluated online methods. Specif-

ically, the attained EER is nearly 10%-18% lower than that

attained by the online methods in [21, 22]. It is important to

note that the ROC curves in Fig. 12a) are below the y = x
straight line. This is because we are counting as true positives

only those cases when a method successfully detects the ROI

depicting the abnormal event within a frame. If the method

fails to detect this ROI and detects other region, we count

the detection as a false negative. Consequently, this criterion

allows us to determine if a method is capable of detecting

exactly the region of the scene where abnormal events happen.

Alternatively, we can label the whole frame as abnormal

whenever any region is detected as abnormal in an abnormal

frame, i.e., following a frame-level criterion. This evidently

increases AUC values, but prevents measuring if the method

is capable of detecting the exact regions that generate the

anomaly. In order to have the most complete set of results, we

also plot in Fig. 12c) ROC curves using such a frame-level

criterion. It can be seen that the ROC curves now approach

the y = x straight line, as expected. Our proposed framework

also attains the best performance based on this frame-level

criterion.
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c) Frame-Level ROC methods performance

Fig. 12: ROC curves of compared online methods for the LV dataset. a) Our framework is evaluated with constant threshold values ǫFG

and ǫOF . b) ROC curves of the proposed framework for the LV dataset when ǫFG and ǫOF values are modified. c) ROC curve LV dataset
using a frame-level criterion.

Table VII tabulates frame processing times and AUC values

for the LV dataset. From this Table, one can observe that our

framework attains the highest AUC values and meets online

performance for 30 FPS videos, which is the highest frame rate

in the LV dataset. Although the other tested online methods

are capable of attaining shorter frame processing times for

this dataset, it is important to note that their AUC values are

close to 50% lower than that attained by our framework. The

shorter frame processing times attained by Lu et al.’s and

Biswas and Babu’s methods are mainly due to the fact that

these methods do not employ optical flow nor background

subtraction to collect motion features. They instead use simple

temporal gradients and the motion vectors associated with the

compressed video sequences. This inevitably decreases frame

processing times, but sacrifices detection performance.

TABLE VII: Frame processing times and AUC values of online
methods for the LV dataset.

Authors AUC Frame Processing Time

Lu et al. [21] 0.112 6.8 ms

Biswas and Babu [22] 0.151 13.2 ms
Ours 0.278 32.5 ms

We have also evaluated the effect on the ROC curve of

the LV dataset when ǫFG and ǫOF are varied. Specifically,

we have modified the optical flow model threshold (ǫOF ),

while keeping the foreground occupancy model threshold fixed

(ǫFG = 6.5). We have also evaluated the case of modifying

ǫFG, while keeping ǫOF = 80 fixed, and and the case of

modifying both thresholds. These thresholds are modified

using the range of values plotted in Fig. 9b). The values

that provide the highest detection accuracy for each video

sequence is selected. Results of this evaluation are shown

in Fig. 12b). As expected, tailoring both thresholds for each

sequence provides the best performance (see red curve in Fig.

12b)). It is interesting to note that tailoring ǫFG while keeping

ǫOF fixed provides a better performance than tailoring ǫOF

while keeping ǫFG fixed (see green curve vs. yellow curve

in Fig. 12b)). This is mainly because illumination changes

are more drastic than camera motion for the tested dataset.

Thus adjusting the ǫFG threshold has a more direct impact

on the framework’s performance. Adjusting thresholds in our

framework is a way of specifying how much the models

are to be trusted to efficiently describe a particular event.

Specifically, thresholds ǫFG and ǫOF represent trust levels that

indicate how much one can trust the model associated with

foreground occupancy and optical flow features, respectively.

If one wishes to minimize the effect associated with a par-

ticular model’s inference, the corresponding threshold should

be set to a high value. In this case, that particular model

is not trusted, and the overall inference mechanism mostly

depends on the other trusted model’s inference. Therefore,

our framework is flexible in this regard, as it can be adapted

according to scene characteristics, if these are known a priori.

Example frames showing the anomalous events detected by

our framework are depicted in Fig. 13.

E. Discussions

1) Accuracy: Detecting abnormal events in realistic scenes

is challenging. However, our proposed framework is capable

of detecting challenging abnormal events outperforming other

online methods. For example, let us take the frame in row

5, column 1 of Fig. 13, which depicts a car accident. In

this sequence, our framework is able to detect most of the

frames depicting the accident. The evaluated online methods

in [21, 22] are not able to detect this event. The main reason

for the poor performance of these two other online methods on

this sequence is the fact that moving objects tend to slow down

when the abnormal event occurs. Consequently, the frame dif-

ferences, which are the core of both methods, cannot provide

features from the region where the accident takes place. This

sequence is also a good example to showcase the advantages of

the variable-sized cell structure, where small cells are defined

in the region depicting the abnormal event. Therefore, our

framework can accurately detect the ROI depicting the car

accident. Another example that demonstrates the advantages

of our proposed cell structure is the frame in row 5, column

2 of Fig. 13, which depicts a man in a wheelchair falling into

the subway tracks. In this case, the region where this abnormal

event takes place is very far from the camera, thus the ROI

to be detected is very small. The proposed coarse-to-fine cells

help to accurately detect this event as the region is described

by enough features at the correct size. The two other evaluated
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Fig. 13: Example frames showing the anomalous events detected by our framework. 1st Row. UCSD Peds1: a man with a trolley, cyclists,
small cars and skaters. 2nd Row. UCSD Peds2: small cars and cyclists. 3th Row. UMN: people in panic at the moment when they start
to run. 4th Row. Subway: (left to right) Entrance scene showing people entering without payment and walking in the wrong direction. 5th
Row. LV: (from left to right) a lorry hitting a car and capsizing in a highway; a man in a wheelchair falling into the subway tracks; a man
destroying private property; a woman being kidnapped outside a shopping mall; an armed robbery; a cashier being beaten by burglars.

online methods also fail to detect this particular event. Let us

take now the frame in row 5, column 3 of Fig. 13. In this case

the abnormal event corresponds to a man breaking into private

property and causing some damage to it. The scene is poorly

illuminated and consequently features based on STIPs are

expected to perform poorly. In this case, our framework profits

from the fact that two sources of features are available; those

from foreground occupancy information and those from optical

flow. Even if the features from optical flow are not descriptive

enough, those from foreground occupancy help our framework

to correctly detect this event. For this particular scene, the

other evaluated online methods fail to detect this ROI, and

instead, they incorrectly detect other regions as abnormal.

2) Time performance: Our proposed framework is imple-

mented in MATLAB and tested on a 2.7GHz CPU with 8GB

of RAM. Our full end-to-end MATLAB implementation is

available in https://cvrleyva.wordpress.com/. The code is not

parallelized and no GPU arrays are employed to speed up the

computations. Fig. 14 shows the proportion of time required

by various processes of our framework during the Detection

Stage for a single frame. It can be seen that encoding HOF

descriptors is the most expensive step. This is mainly because

the framework has to calculate every orientation of each

pixel in the spatio-temporal support regions defined for the

FAST STIPs. Note that the processing times of the likelihood

modeling are much lower than those of the feature extraction

process. This is mainly because our framework only extracts

Background Subtraction

Optical Flow Computation

Foreground Coding

HOF Coding

FAST detector

Foreground Posterior 
Likelihood Evaluation

Mask Inference 
Evaluation

Optical Flow Posterior
Likelihood Evaluation

Feature Extraction Stage

Anomaly Inference Stage

Fig. 14: Required time by various processes of our proposed
framework during the Detection Stage for a single frame.

features for a limited number of support regions and strongest

detected FAST STIPs. This significantly reduces the total

number of features to be encoded and processed. This is the

main aspect of our framework that helps to reduce overall

computational times.

V. CONCLUSIONS

In this paper, we proposed an online framework for video

anomaly detection. Our framework extracts a compact set

of features based on foreground occupancy and optical flow

information. The framework employs a novel variable-sized

cell structure which allows extracting features from a limited

https://cvrleyva.wordpress.com/
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Fig. 15: Example of cell structure generation.

number of different support regions in a fine-to-coarse fashion.

This helps to process a significantly smaller number of features

than those processed by dense-scanning based methods. We

evaluated our framework on the popular UMN, UCSD and

Subway datasets, as well on the LV dataset, which is a

new collection of realistic sequences captured by surveil-

lance cameras under challenging environmental conditions.

During the evaluation, we observed that there usually is a

trade-off between computational times and detection accuracy.

However, our framework manages to attain high detection

accuracies while achieving online performance thanks to the

compact set of features and the models used to efficiently

process them. Specifically, our framework outperforms online

methods, while being very competitive among non-online

methods.

As part of the evaluation, we also showed that our frame-

work is flexible to be tailored to the characteristics of the

sequences, if these are known a priori, in order to improve

performance. Our future work is aimed at further enhancing

our framework’s detection accuracy by exploiting this flex-

ibility; specifically, by considering the optimization of our

framework’s parameters given a particular set of environmental

conditions used to capture a sequence.

APPENDIX A

CONSTRUCTION OF THE CELL STRUCTURE

1) Define y0 > 0 (i.e., size of the smallest square cell) and

α > 1 (i.e., growing rate of the cell size). See Fig. 15a).

2) Adjust y0 to ŷ0 in order to fit an integer n number

of square cells across the vertical dimension Y of the

frame:

n = ⌊logα (Y/y0(α− 1) + 1)− 1⌉, (24)

and

ŷ0 =
⌊ α− 1

αn+1 − 1
Y
⌋

, (25)

3) Calculate the size of the n square cells to be created

across the vertical dimension Y using the recursive

equation yk+1 = αyk. For instance, for the set of pa-

rameters {ŷ0 = 10, α = 1.25}, and a vertical dimension

Y = 160, this recursive equation generates n = 6
cells of increasing sizes {10, 13, 20, 25, 30, 38} (see Fig.

15b)).

4) Starting at X/2, i.e., the mid pint of the frame along the

horizontal dimension X , populate an integer number of

square cells across the X dimension, as illustrated in

Fig. 15c). Repeat the same process for the remaining

sizes computed in step 3) (see Fig. 15d)). In our example

these sizes are {13, 20, 25, 30, 38}.

5) Fill in any horizontal gaps in order to completely cover

the frame in the horizontal dimension from X/2 to

X . This is done by adding one pixel to the horizontal

dimension of the cells populated in step 4) until the cells

completely cover the frame from X/2 to X (see Fig.

15e)). Note that due to this adjustment in the horizontal

size of the cells, the final cells may not be square.

6) Cover the other half of the frame using the cell sizes

computed in step 5) (see 15f)).

7) The first row of cells comprises the smallest cells. Our

experiments show that false alarms are often triggered

in this first row of cells. Based on this observation, we

discard the first row from the structure (see Fig. 15f)).
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