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Abstract

Background The intra-operative three-dimensional (3D) structure of tissue

organs and laparoscope motion are the basis for many tasks in computer-

assisted surgery (CAS), such as safe surgical navigation and registration of

pre-operative and intra-operative data for soft tissues.

Methods This article provides a literature review on laparoscopic video-

based intra-operative techniques of 3D surface reconstruction, laparoscope lo-

calization and tissue deformation recovery for abdominal minimally invasive

surgery (MIS).

Results This article introduces a classification scheme based on the motions of

a laparoscope and the motions of tissues. In each category, comprehensive dis-

cussion is provided on the evolution of both classic and state-of-the-art methods.

Conclusions Video-based approaches have many advantages, such as pro-

viding intra-operative information without introducing extra hardware to the

current surgical platform. However, an extensive discussion on this important

topic is still lacking. This survey paper is therefore beneficial for researchers in

this field. Copyright © 2015 John Wiley & Sons, Ltd.

Keywords visual SLAM; surface reconstruction; tissue deformation; feature de-

tection; feature tracking; laparoscopy; pose estimation; camera tracking

Introduction

Compared with traditional open-cavity surgeries, the absence of large incisions

in minimally invasive surgery (MIS) benefits patients through smaller trauma,

shorter hospitalization, less pain and lower infection risk. In abdominal MIS,

the abdomen is insufflated and surgeons gain access to the tissue organs

through small incisions. Laparoscopic videos provide surgeons with real-time

images of surgical scenes, based on surgical instruments that are precisely ma-

nipulated. However, laparoscopic videos are two-dimensional (2D) in nature,

which poses several restrictions on surgeons. For example, depth information

is lost in 2D images, so surgeons have to estimate the depth, based on their ex-

perience. Stereo images from stereoscopic laparoscopes must be fed to the left

and right eyes separately to have a sense of depth, whereas depth information
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exists only in the surgeon’s mind and has not yet been ex-

plicitly calculated (1). In addition, a laparoscope gives a

narrow field of view, which makes it difficult for surgeons

to understand the position and orientation of the laparo-

scope and the surgical instruments (2). Moreover, cur-

rently, the most significant limitation of an endoscopic

video is that it is unable to provide any information about

tissue structures underneath organ surfaces. For example,

in colon surgeries, surgeons have to spend a large amount

of time dissecting tissues to identify the ureters underneath.

To overcome the inherent restriction of 2D laparoscopic

videos, computer-assisted surgery (CAS) has been proposed

to guide a surgical procedure by providing accurate ana-

tomical information about the patient. In CAS, a key step

is to register pre-operative data, such as magnetic reso-

nance imaging (MRI) and computed tomography (CT),

with intra-operative data, so that the pre-obtained patient

anatomy can be accurately displayed during surgery. Regis-

tration has been a longstanding research topic in the litera-

ture. Notably, registration in neurosurgery has become

successful due to the availability of fixed structures, such

as bones. A wide range of medical image registration

methods and augmented reality techniques have been pro-

posed for neurosurgery. Maintz and Viergever (3) pre-

sented a comprehensive survey on medical image

registration methods and provided nine criteria to classify

those methods into different categories. One major dichot-

omy used in (3) was whether those obtained correspon-

dences were from extrinsic or intrinsic sources; extrinsic

registrationmethods rely on foreign objects, such as fiducial

markers, and intrinsic methods are based on anatomical

structures. Another survey on medical image registration

is available in (4). Recently, Markelj et al. (5) provided a de-

tailed review on registration of three-dimensional (3D) pre-

operative data and 2D intra-operative X-ray images.

A fundamental task in medical image registration is to

overlay images of the same scene taken at different times

or from different modalities. Many methods have been

proposed, and a survey paper (6) for neurosurgery has

been presented. Another important task of medical image

registration is to overcome the morphology issues of soft

tissues, such as the brain and the lung, which might shift

and deform and cause error to the global rigid registra-

tion. In the research community, multiple survey papers

(7,8) on deformable medical image registration have been

presented. Thorough evaluation experiments of localiza-

tion and registration accuracy in clinical neurosurgery

are available (9,10).

Despite the success of medical image registration in

neurosurgery, its application in abdominal surgery has

presented many challenges, due to the deforming envi-

ronment of the abdomen. It is difficult to find rigid ana-

tomical landmarks on the abdomen because the

abdominal shape changes after gas insufflation. Moreover,

even if the global patient–CT registration is available, reg-

istration in the abdominal area is not likely to be accurate

because tissues and organs can easily slide and deform,

due to gas insufflation, breathing or heartbeats. To over-

come these limitations and the challenges of registration

in the abdominal environment, intra-operative 3D recon-

struction of surgical scenes and laparoscope localization,

based on video content, are the fundamental tasks in

CAS for abdominal MIS. For example, recovery of the

time-varying shapes of the deforming organs can be used

to determine the tissue morphology. Laparoscope

localization can help surgeons determine where the in-

struments are when operating, with respect to the human

anatomy.

Different methods of vision-based 3D reconstruction

and laparoscope localization have been proposed in the

literature. However, large-area 3D reconstruction, laparo-

scope localization and tissue deformation recovery in the

abdominal environment in real time remain open chal-

lenges to researchers. The difficulties are mainly from

the special environment of the abdominal MIS. First, com-

pared with general images taken in a man-made environ-

ment, MIS images usually contain homogeneous areas

and specular reflections, due to the smooth and wet tissue

surface (11,12). These properties significantly affect the

performance of state-of-the-art feature point detection

methods. Without reliable feature-point correspondences,

many feature-based 3D reconstruction and visual

simultaneous localization and mapping (SLAM) (13–15)

methods developed in computer vision do not perform

well. Second, surgical scenes are highly dynamic

and change from time to time during a surgical procedure,

e.g. surgical instruments are moving in the surgical site

and may cause occlusion problems, and soft tissues may

have non-rigid deformation due to respiration or interac-

tion with surgical instruments. In the dynamic and non-

rigid MIS environment, simultaneous 3D reconstruction,

laparoscope localization and deformation recovery in real

time are very difficult (16,17). This problem is referred to

as minimally invasive surgery visual SLAM (MIS–VSLAM)

in this paper. The purpose of this review is to provide a

comprehensive survey of the current state-of-the-art

MIS–VSLAMmethods for the abdominal MIS environment.

Focus and outline

The remainder of this article is organized as follows. First,

as fundamental tasks in 3D reconstruction and laparo-

scope localization, feature detection and feature tracking

methods are discussed. The discussion is focused on how

these detection and tracking methods are designed to

overcome the difficulties of MIS images, such as low con-

trast, specular reflection and smoke. Next, laparoscopic
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video-based 3D surgical scene reconstruction methods

without the estimation of camera motion are introduced,

and are summarized based on the adopted vision cues,

such as stereo, structured light and shadow. Note that,

in addition to the challenges from feature detection, 3D

reconstruction methods in MIS must overcome extra diffi-

culties from surgical instrument occlusion, the small base-

line of stereo cameras and the constrained environment.

Then, the camera motion is estimated during the 3D

reconstruction, and the scene is assumed to be rigid or

static. With the rigid scene assumption, visual SLAM

becomes relatively easier, and many methods have been

presented in the computer vision and robotics literature.

These methods and how they are applied in MIS to over-

come the corresponding difficulties are discussed. Finally,

the most difficult problem is considered – visual SLAM in

dynamic and deforming surgical scenes. This research

problem is similar to non-rigid structure from motion

(NRSFM) in computer vision. Various approaches have

been presented to tackle the problem from different

perspectives; these methods are summarized and their

key ideas are explained. The classification of MIS–VSLAM

methods based on camera motion and scene type is shown

in Figure 1.

Materials and methods

This section focuses on the introduction of state-of-the-art

methods in image feature detection and tracking, 3D re-

construction, deformation recovery and visual SLAM for

abdominal MIS. The review follows the organization

shown in Figure 1.

Abdominal MIS set-up and datasets

Typical abdominal MIS set-up

In MIS, multiple ports are needed for the insertion of the

laparoscope and surgical instruments. The laparoscope

usually has an attached monocular camera. Different

monocular laparoscopes might have different angles and

light configurations. Stereoscopic laparoscopes are widely

used in robotic surgery platforms, such as the da Vinci sur-

gical system (18). The intrinsic and extrinsic parameters

of the cameras attached at the tip of laparoscopes can

be calculated following the calibration procedure in

(19). A diagram of the typical MIS set-up is shown in

Figure 2.

Public MIS datasets

Public MIS datasets are valuable to the research commu-

nity, and multiple MIS datasets have been collected and

made available. Hamlyn Centre laparoscopic/endoscopic

video datasets (20) contain a large collection of MIS

videos for different organs, including lung, heart, colon,

liver, spleen and bowel; the videos in (20) include a vari-

ety of endoscope motions and tissue motions. Bartoli (21)

provided a uterus dataset, which contains tissue deforma-

tion caused by instrument interactions. In (12,22) an im-

age dataset was collected for evaluation of the

repeatability of feature detectors. The dataset in (22) con-

tains hundreds of images sampled from in vivo videos

Figure 1. Classification of MIS–VSLAM methods, based on camera motions and scene types

Video-based 3D reconstruction, localization and deformation recovery for abdominal MIS
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taken during colon surgeries; the images in this dataset

were taken at different viewpoints, and the ground truth

homography mappings are available. Puerto-Souza and

Mariottini (23) provided the hierarchical multi-affine

(HMA) feature matching toolbox for MIS images, which

contains 100 image pairs representing various surgical

scenes, such as instrument occlusion, fast camera motion

and organ deformation. Stereo videos with surgical in-

struments moving in front of the liver were made publicly

available with ground-truth information of the pose and

position of those instruments (24). The Johns Hopkins

University Intuitive Surgical Inc. Gesture and Skill Assess-

ment Working Set (JIGSAWS) (25) contained stereo-

videos of three elementary surgical tasks on a bench-top

model: suturing, knot-tying and needle-passing. The goal

of the JIGSAWS dataset was to study and analyse surgical

gestures. The Open-CAS (26,27) collected multiple

datasets for validating and benchmarking CAS, including

liver simulation, liver registration and liver 3D reconstruc-

tion. There are also multiple retinal datasets that are pub-

licly available, including structured analysis of the retina

(STARE), digital retinal images for vessel extraction

(DRIVE) and retinal vessel image set for estimation of

widths (REVIEW). A summary of these datasets is shown

in Table 1.

Feature detection and feature tracking

Image feature detection and feature tracking are funda-

mental steps in many applications, such as structure and

pose estimation, deformation recovery and augmented re-

ality. Many well-known feature detectors and feature de-

scriptors have been presented. In this section, different

feature detection and feature-tracking methods are intro-

duced, and how they are adapted for MIS images is

discussed.

Feature detection

Depending on what information is used, feature detection

methods can be broadly classified into three categories:

intensity-based detectors, first-derivative-based detectors

and second-derivative-based detectors. In the first cate-

gory, feature detectors are mostly based on pixel intensity

Figure 2. Typical abdominal MIS set-up

Table 1. Summary of publicly available MIS datasets

Datasets Sensor Video/image Scene Scene motion Resolution

Hamlyn (20) Mono and stereo Video Abdomen Rigid and deforming Varied
Bartoli (21) Mono Video Uterus Deforming 1280×720
Lin et al. (12,22) Mono and stereo Image Abdomen Rigid Varied
HMA (23) Mono Image Abdomen Rigid and deforming 704×480
Allan et al. (24,28) Stereo Video Abdomen Rigid 1920×1080
JIGSAWS (25) Stereo Video Lab Deforming 640×480
Open-CAS (26,27) Stereo Image Liver Rigid 720×576
STARE (29) Mono Image Retina Rigid 700×605
DRIVE (30) Mono Image Retina Rigid 565×584
REVIEW (31) Mono Image Retina Rigid Varied
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comparisons. In the features from accelerated segment

test (FAST) (32), Rosten et al. replaced the disk with a cir-

cle and detected corner points by identifying the pattern

of a continuously bright or dark segment along the circle.

Different from FAST, Mair et al. introduced a new circle

pattern and used a binary decision tree for the corner clas-

sification (33).

In the second category, the first derivatives along the x

and y coordinates in the raw image, namely Ix, Iy, reflect

the intensity change and can be used to detect object

structures, such as edges and boundaries. Most methods

in this category are based on the eigenvalues of the

auto-correlation matrix (34). Harris and Stephens (34)

proposed a measure based on those eigenvalues to detect

image patches that are likely to be corners. Shi and

Tomasi (35) argued that λ1 itself was a good indicator

for corners. Mikolajczyk and Schmid (36) extended the

Harris corner detector in scale space and proposed the

Harris-affine detector, which had better invariance prop-

erty under affine transformation. The anisotropic feature

detector (AFD) exploited the anisotropism and gradient

information to detect interest points (37,38).

In the third category, feature detectors exploit the sec-

ond derivatives of raw images to detect interest points de-

fined by blobs and ridges. Most methods in this category

are based on analysis of the Hessian matrix (22). In the

Hessian affine detector (39), the determinants of the Hes-

sian matrices were calculated for all pixels, and the local

maxima were selected as feature points. Lowe approxi-

mated the Laplacian of Gaussian with the difference of

Gaussian (DoG) (40) and built a pyramid image space to

detect interest points. The speeded-up robust features

(SURF) feature detector replaced the Gaussian filters with

box filters to obtain a faster speed (41). It has been re-

ported that general feature point detectors do not perform

well in MIS images (22,37). Lin et al. (22) observed that

there were abundant blood vessels in MIS images and pro-

posed to explicitly detect vessel features. Two vessel fea-

tures were proposed, namely branching points and

branching segments, and thorough experiments verified

that the vessel features are more robust and distinctive

than general features in MIS images (22). Example of

branching points, branching segments and half-branching

segments are shown in Figure 3.

It is well known that the performance of feature detec-

tors is determined by multiple parameters, such as the

standard deviation of Gaussian smoothing, the discrete

quantization of orientation, and the number of bins in

the histogram of orientation. Most of the above-

mentioned feature detection methods require manual pa-

rameter tuning based on personal experience. Stavens

and Thrun (42) proposed an unsupervised method that

learned those parameters from video sequences. In (42),

Harris corners (34,35) were detected and tracked by

Lucas–Kanade (LK) optical flow (43), and the patches

were stored as training data. The idea of treating feature

matching as a classification problem was first introduced

by Lepetit et al. (44). The synthesized images were used

to generate local feature point patches as training data

for classification. In early work (45,46), randomized trees

were used as the classifier. Later, it was shown that the

good performance of feature matching was mainly from

the randomized binary tests, rather than the randomized

tree classifier and, hence, simple semi-naive Bayesian clas-

sifier was adopted (47,48).

Feature tracking

To track feature points, the target feature points are usu-

ally represented by their local image patches. Based on lo-

cal patch representations, tracking methods can be

broadly classified into two categories: intensity-based

tracking and descriptor-based tracking. In the first cate-

gory, each feature point is directly represented by the in-

tensity values of the pixels in its local square patch. By

assuming that each pixel has a constant intensity, the

well-known LK tracking method (43) compares and

matches image patches in successive frames, using the

sum of squared difference (SSD). To incorporate temporal

information, many methods exploit the motion con-

straints and estimate the probabilities of matches, such

as in extended Kalman filter (EKF) (15). In the MIS envi-

ronment, the tissues might have deformation and the

Figure 3. Branching points (cyan), branching segments (green)

and half-branching segments (blue) (22): (top) original image;

(bottom) image with detected branching segments

Video-based 3D reconstruction, localization and deformation recovery for abdominal MIS
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surgical instruments might cause occlusion problems.

Mountney and Yang (49) proposed an on-line learning

mechanism and treated the tracking as a classification

problem. The thin plate spline (TPS) model was success-

fully applied (50) to track a region of a deforming surface.

Richa et al. (51) extended the work in (50) to track the

heart surface with stereo cameras. Many other tracking

methods were introduced and compared in (38).

The recovery of heart motion is a fundamental task in

cardiac surgery, and feature tracking using stereo images

from stereoscopic laparoscopes has shown promising

results. Note that there are two kinds of feature matching

with stereoscopic laparoscopes: temporal matching, for

successive frames, and spatial matching between left

and right images. Typically, feature points are detected

in both left and right images, and feature points in the

first frame are matched temporally with successive frames

to enable tracking. Stoyanov et al. (52) used a Shi–Tomasi

detector (35) and an MSER descriptor (53) to perform

spatial matching. The LK tracking (43) framework was

used to track the initial features, and the intensity infor-

mation of both stereo images was used during the estima-

tion of the warp (52). It was reported in (54) that the use

of the LK tracking framework was not very stable, due to

the large tissue motion and the fact that some feature

points were not well tracked. In (55), feature-based

methods (52) and scale-invariant feature transform

(SIFT) (40) are combined with intensity-based methods

(51) to generate a hybrid tracker for the purpose of

robustness.

Since pixel intensities used in the first category are sen-

sitive to lighting conditions, most of these methods make it

difficult to track features across large viewpoint changes.

On the other hand, in the second category, feature-

tracking methods are reliant on feature descriptors to rep-

resent feature points. Many feature descriptors have been

presented, such as SURF (41), SIFT (40) and binary robust

independent elementary features (BRIEF) (56). Feature

descriptors are usually normalized and processed to over-

come problems such as illumination and appearance

changes. As a result, they are usually more robust than

the intensity comparison in LK-based tracking. Due to the

special environment of MIS, descriptor-based feature

matching is not robust towards large viewpoint changes.

To overcome this problem, different methods have been in-

troduced to exploit the geometrical properties of the tissue

surface. Puerto Souza et al. (23,57,58) clustered feature

points into different groups, and the local area of each

cluster was assumed to be planar. Lin et al. (59) first ob-

tained a 3D tissue shape using the TPSmodel on stereo im-

ages and then used the estimated 3D shape to improve

feature point matching over large viewpoint changes. A

comprehensive study on the evaluation of different feature

descriptors on MIS images was reported in (60).

One major challenge of descriptor-based tracking is the

time-consuming calculation and matching of descriptors.

Currently, without special hardware such as graphics

processor units (GPUs), the SIFT feature extraction is still

difficult for achieving real-time speed. Recently, from the

speed point of view, Yip et al. (61,62) proposed a signifi-

cant tracking-by-detection method that achieved a speed

of 15–20Hz on a MIS scene with tissue deformation and

instrument interaction. The major novelty of the method

presented in (61,62) is that a feature list is dynamically

maintained and updated, which makes it robust to large

deformation and occlusion. In (61), for speed consider-

ation, the Star detector (63) implementation of the centre

surround extremas (CensurE) (64) feature detector and

BRIEF descriptor were used. To further speed up the

tracking process, prior information of the surgical scene,

such as small camera motion and small-scale change,

was exploited to reduce the unnecessary feature compari-

sons (61). An extensive comparison of tracking accuracy

and speed among Star+BRIEF, SIFT and SURF was pro-

vided in (62).

To evaluate feature detection and feature tracking, one

key task is to generate ground-truth point correspon-

dences across multiple views: to obtain these, typically,

experienced human subjects are trained to select the same

scene point in multiple images. However, the ground-

truth information sometimes might not be sufficiently

accurate, due to the manual selection process. To mini-

mize ground-truth error, Maier-Hein et al. (65) extended

a crowd sourcing-based method to generate reference cor-

respondences for endoscopic images. The correspondence

error was reduced from 2pixels to 1 pixel after applying

crowd sourcing (66).

After the ground-truth point correspondences are gen-

erated for each frame, the evaluation of feature point

tracking can be successfully carried out (38). To evaluate

the feature point detection, traditional methods such as

(39) usually rely on planar scenes, so that global

homography mappings are available. In (22),

homography mappings were obtained for flat tissue sur-

faces, such as the abdominal wall, to evaluate the repeat-

ability of bifurcations (branching points). However, the

scenes were not strictly planar, and the homography

mappings were not accurate enough to evaluate general

feature points that were smaller than branching points

(22). Klippenstein and Zhang (67) estimated the funda-

mental matrices between the first frame and other frames

and defined the distances of feature points to the epipolar

lines as the error for feature tracking. Different feature de-

tectors and feature-matching methods have been com-

pared in (67); however, the mappings used in (67) are

not bijective and, therefore, the definition of error is not

accurate. Selka et al. (68) reported a forward–backward

tracking method for evaluation of both feature detectors

B. Lin et al.
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and feature tracking. In (68), the MIS video sequence was

reorganized into the order: (I0, I2,…, In - 2,n, In� 1,.., I3, I1,

I0). Those points that were detected in both the first and

last frames were called robust points, and the percentage

of robust points was used to represent the performance of

feature detector and feature tracking.

Discussion

Feature detection and feature tracking are well-studied

topics in computer vision. However, distinctive feature

detection, matching and tracking for endoscopic images

are still challenging, due to the special features of the

endoscopic environment, such as poor texture, bleeding,

smoke and moving light sources. One future research

direction is to exploit the special structures shown in lap-

aroscopic images, such as blood vessels and blood dots

caused by surgical instruments. An image feature detector

tuned specifically for blood vessels (22) has shown prom-

ising results. Since light sources are mounted at the tip of

a laparoscope, the light illumination is non-uniform and

increases the difficulty in finding the image-point corre-

spondences. As pointed out in (22), laparoscopic images

usually have stronger lighting in the centre than at the

borders. It is interesting to look into how to remove or

reduce the influence from this non-homogeneous illumi-

nation from the endoscopic lighting. Another promising

research direction is to integrate supervised learning tech-

niques into feature detection and tracking, such as the

work in (49).

3D reconstruction without camera
motion

In this section, 3D surface reconstruction methods with-

out the consideration of camera motion are introduced.

These methods are separated into different categories,

based on the vision cues applied.

Stereo cue

Stereo laparoscopes have become widely used in robotic

surgery platforms, such as the da Vinci system, to provide

3D views for surgeons. Since no extra hardware is

required, reconstruction using stereo laparoscopes has

been considered to be one of the most practical ap-

proaches for MIS (18). Lau et al. (69) used the zero mean

sum of squared difference (ZSSD) for stereo matching

and, later, the heart surface was estimated using the B

spline-based method (69). Kowalczuk et al. (70) evalu-

ated the stereo-reconstruction results of the operating

field with porcine experiments.

Recently, Stoyanov et al. (18) proposed a novel stereo

matching algorithm for MIS images, which was robust

to specular reflections and surgical instrument occlusion.

They proposed to first establish a sparse set of

correspondences of salient features and then propagate

the disparity information of those salient features to

nearby pixels. The propagation in (18) was based on the

assumption that the disparity values of the nearby pixels

in MIS images were usually very similar, since many

tissue organ surfaces are locally smooth. Stereo-

reconstruction of the liver surface is known to be difficult

because of the homogeneous texture. Totz et al. (71) pro-

posed a semi-dense stereo-reconstruction method for

liver surface reconstruction, which adopted a coarse-to-

fine pyramidal approach and relied on GPU to exploit

the parallelism. In (72), semi-dense stereo-reconstruction

results (18) from different viewpoints were merged to

obtain large-area 3D reconstruction results of the surgical

scene, based on camera localization results from (16). In

(73), the local surface orientation was estimated based

on the constraints from the endoscope camera and light

sources, and then fused with the semi-dense reconstruc-

tion from (18) to generate a gaze-contingent dense re-

construction. Stoyanov (17) reported a 3D scene flow

method to estimate the structure and deformation of

the surgical scene by imposing spatial and temporal

constraints.

Distinctive feature points can be matched in stereo

images to obtain a set of sparse 3D points. To achieve

dense reconstruction results of tissue surfaces, different

methods have been proposed to incorporate geometrical

constraints of tissue surfaces. Richa et al. (55) tracked

feature points over stereo images and obtained the 3D

positions of those feature points based on triangulation.

Later, the sparse 3D points were chosen as the control

points in a TPS model, and a dense 3D shape was esti-

mated (55). Bernhardt et al. (74) analysed the surgical

scenes and presented three criteria for stereo matching

to remove outliers. After the outliers were discarded,

the holes were filled with the median of their

neighbouring pixel values (74). Chang et al. (75) first

obtained a coarse reconstruction using the zero-mean

normalized cross-correlation (ZNCC) and then refined

the disparity function using a Huber� L1 variational

functional.

Active methods

Most of the above methods are dependent on the texture

of tissue surfaces to establish feature-point correspon-

dences for reconstruction. These methods become unsta-

ble if tissue surfaces are poorly textured. To overcome

this problem, many methods aim to actively project spe-

cial patterns, using laser stripes or structured light, onto

tissue surfaces and build correspondences based on those

patterns. When stereo cameras are available, the light

source does not need to be calibrated and, therefore, the

system becomes relatively easy to use (11). Otherwise,

the Euclidean transformation between the monocular

Video-based 3D reconstruction, localization and deformation recovery for abdominal MIS
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camera and the light source needs to be accurately cali-

brated, and after calibration the system has to be fixed

during the whole reconstruction procedure.

Different methods have been proposed to project laser

stripes on organ surfaces for reconstruction. In (76), a

laser stripe was projected in the laparoscopic environment

to measure intracorporeal targets. To measure the 3D

shape of the surgical site in real time, a laser-scan endo-

scope system with two ports was designed (77). For the

calibration of this system, infrared markers were placed

at the ends of both the camera device and the laser device

and tracked using the OPTOTRAK system (77). The root

mean square error of measurements among those markers

was reported to be 0.1mm (77).

Instead of using laser stripes, other methods project an

encoded light pattern on tissue surfaces. Different light

patterns have been designed to establish the correspon-

dences between the camera and the projector (78,79).

To recover the dynamic internal structure of the abdo-

men in real time, Albitar et al. (80) developed a new

monochromatic pattern composed of three primitives:

disc, circle and strip. The images were processed to

detect and discriminate the primitives, whose spatial

neighbourhood information was used to establish corre-

spondences between the captured image and the known

pattern (80). The developed system was able to project

29×27 primitives on an area of size 10×10 cm2 (80).

Later, Maurice et al. designed a new spatial

neighbourhood-based framework to generate coded pat-

terns with 200×200 features, using the mean Hamming

distance (81).

One major challenge of using either laser or structured

light is that the whole 3D scanning system is usually too

large to fit into the current MIS set-up (82). To overcome

this size problem, Schmalz et al. (82) designed a very tiny

endoscopic 3D scanning system composed of a catadiop-

tric camera and a sliding projector (82). The sensor head

in the scanning system had a diameter of 3.6mm and a

length of 14mm (82). The system was specifically de-

signed for a tubular environment and was able to obtain

the 3D depth at 30 fps, with a working cylindrical volume

of about 30mm in length by 30mm in diameter (82).

Clancy et al. (83) designed another tiny structured light-

ing probe with a 1.7mm diameter; in their system, a set

of points were projected and each point was assigned a

unique wavelength.

Recently, the time-of-flight (TOF) camera sensor has

become popular for 3D reconstruction. Penne et al. (84)

designed an endoscope system with a TOF camera sensor.

Haase et al. (85) proposed a method to fuse structures

recovered from different frames of a TOF sensor to obtain

large-area reconstruction results. More details regarding

the TOF-camera-based reconstruction methods can be

found in (86).

Shading and shadow cue

As one of the well-studied 3D reconstruction methods in

computer vision, shape-from-shading (SFS) is very ap-

pealing to researchers because it does not require extra

hardware in MIS. Many researchers have attempted to ap-

ply SFS to recover the shape from a monocular camera

(87). Wu et al. first extended the SFS problem to a per-

spective camera and near-point light sources and then ap-

plied it to reconstruct the shape of bones from near-

lighting endoscopic video (88). The application of SFS in

MIS is difficult and has multiple restrictions. To begin

with, endoscopic images do not satisfy the common as-

sumptions required by SFS, Lambertian reflectance and

uniform albedo (17). Additionally, with SFS it is generally

not possible to recover a complete 3D surface with one

lighting condition because each pixel has only one inten-

sity measurement, which is not enough to recover the sur-

face orientation that has two degrees of freedom (89).

Therefore, multiple lighting conditions with a constant

viewing direction are required to theoretically achieve a

complete surface recovery, which is commonly known as

‘photometric stereo’ (PS) (89); please refer to (89,90)

for more details about PS.

During the MIS procedure, shadows cast by surgical in-

struments are good sources of visual cues for reconstruc-

tion. Researchers are also interested in generating

optimal shadows for MIS surgeries in terms of contrast

and location of shadow-casting illumination (91). In

(92), an ‘invisible shadow’ was generated by a secondary

light source and was detected and enhanced to provide

a depth cue. Rather than estimating the position of the

light source as in the classic methods in (93), Lin et al.

(11) proposed to use stereo cameras and mount a single-

point light source on the ceiling of the abdominal wall

to generate shadows. The borders of the generated

shadows were later detected in both stereo images and a

dense disparity map was interpolated (11). The shadow-

casting process in (11) is illustrated in Figure 4; typical

examples of reconstruction results using the Lin et al.

method are shown in Figure 5. The benefit of using stereo

cameras is that the light source is no longer required to be

stationary. However, to generate shadows cast by surgical

instruments, an extra overhead light source is needed.

Discussion

In stereo reconstruction, because of the similarity of left

and right images from stereo cameras, feature point

matching between the two channels is relatively easy

and a sufficient number of feature point correspondences

can be established if rich texture is available. Currently,

one of the main challenges in stereo-reconstruction for

MIS is how to obtain dense reconstruction results. Inter-

esting future research directions include building suitable

models for tissue surfaces and integrating laparoscope

B. Lin et al.
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motions, such as the work in (94). Active methods are

able to obtain accurate 3D information without depend-

ing on tissue texture and, therefore, are attractive to

researchers. The main drawback of the active methods is

the requirement of extra hardware in current surgical

platforms. In the future, it will be necessary to design very

small-scale hardware that is compatible with the MIS

surgical platform. Meanwhile, how to generate optimal

structure patterns for MIS is also an important research

topic (81). Methods based on defocus have also shown

the ability to recover the 3D structure of tissue surfaces

(95) and need further investigation. To better apply SFS

in MIS, a more advanced reflectance model for the laparo-

scopic environment is needed (86).

Rigid MIS–VSLAM

In the previous section, no camera motion was considered

during the 3D reconstruction process, and hence the mo-

tion could not be recovered or used. In practice, the endo-

scopic cameras are usually moving during the MIS

procedure and the motion can be used to recover the 3D

structure. Additionally, knowledge of the camera pose is

crucial to help surgeons better understand the surgical

environment. For example, accurate camera tracking is

necessary for safe navigation and instrument control dur-

ing endoscopic endonasal skull base surgery (ESBS) (96).

Many external endoscope tracking methods that rely on

passive optical markers have been presented, and have

been used to track the location of an endoscope relative

to CT. Shahidi et al. (97) reported millimetre tracking ac-

curacies of a marker-based external tracking system.

Lapeer et al. (98) showed that sub-millimetre accuracy

was still difficult to achieve. Mirota et al. (96) presented

an endoscope-tracking method that relies on the video

content only and achieved accuracy at 1mm. Compared

with external marker-based tracking systems, video-based

endoscope localization has the advantage that no marker

or external system is needed. In addition, passive markers

might be blocked from the tracking system during surgery

and cause tracking failures. Therefore, the combination of

external tracking and video-based tracking can potentially

offer more robust tracking results. An extensive discussion

on external tracking is beyond the scope of this paper;

Figure 4. 3D reconstruction method by casting shadows, using surgical instruments from (11)

Figure 5. One example of 3D reconstruction results of ex vivo

porcine liver, with and without texture mapping using shadows

and stereo cameras (11)
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more detail regarding external tracking is available in

(98). From here forward, we focus on video-based camera

tracking. In this section, the surgical scene is assumed to

be rigid (static) and methods that simultaneously

estimate the 3D structure and the camera motion are in-

troduced. The illustration of MIS–VSLAM methods in

rigid scenes is shown in Figure 6.

In computer vision, many methods in structure from

motion (SFM) have been proposed to estimate the sparse

3D structure of a rigid scene from a set of images taken at

different locations (99,100). The technique has been

scaled up successfully to a large dataset with millions of

images taken from the internet (100). SFM has also been

applied in MIS to expand the field of view for surgeons

and recover a wide area of 3D structures (101,102). It is

known that SFM greatly depends on robust wide-baseline

feature matching, such as SIFT on images of man-made

buildings. However, wide-baseline feature matching is dif-

ficult on low-texture MIS images. Hu et al. (54) presented

a method to alleviate this problem for totally endoscopic

coronary artery bypass (TECAB) surgery (54). A

genetic/evolutionary algorithm was proposed (54,103)

to overcome the missing data problem during LK tracking.

Another drawback of SFM is that it processes all images

together to optimize the 3D structures and the cameras’

poses. One benefit of this global batch optimization is that

the recovered structure and camera poses can achieve

high accuracy. However, the number of parameters is

large and the optimization requires expensive computa-

tion, which makes the system impractical for real-time

purposes. To reduce these difficulties, the laparoscope

was tracked externally to provide camera poses in the

optimization of SFM (104).

Different from SFM, in robotics one main task is to

achieve real-time camera localization. Robotics re-

searchers treat the camera as a sensor observing and mov-

ing in an explored or unexplored environment, and the

problem is normally termed ‘visual SLAM’. SLAM is a

well-studied topic in robotics and has been applied to

the automatic navigation of mobile robots in an unex-

plored environment. Comprehensive surveys of SLAM

can be found in (13,14). Originally, SLAM was designed

for range sensors, such as laser range finder and sonar

systems, which obtain 3D information with uncertainty

directly from the sensor reading. Different from that, a

monocular camera is a bearing-only sensor that needs at

least two measurements from different locations to calcu-

late the 3D information. However, the availability of

cameras and rich information in each image has made

the camera a popular sensor for SLAM.

Monocular camera

Burschka et al. (105,106) proposed an early framework to

simultaneously estimate 3D structures and camera poses,

based on the endoscopic video. However, the estimation

of camera poses in (105,106) was performed frame-by-

frame, using the correspondences detected in successive

frames, which might lead to a significant accumulated er-

ror. To overcome the aforementioned difficulty of feature

matching in MIS images, Wang et al. (107) first applied

Singular Value Decomposition (SVD) matching (108) on

SIFT points to obtain more but less accurate

Figure 6. MIS–VSLAM methods in rigid and static scenes; solid green curve represents a rigid and static scene
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correspondences, which were further refined by a novel

method called ‘adaptive scale kernel consensus’ (ASKC)

(107). With the feature correspondences from successive

frames, the method in (107) maintained a 3D feature

point list and tracked the camera at each frame. Mori

et al. (109) designed a visual SLAM system specifically

for a bronchoscope (109), in which the motion of the

bronchoscope was initially estimated based on the optical

flow and was later refined by intensity-based image

registration.

The seminal work of Davison (15) was the first signifi-

cant real-time system that successfully applied the ex-

tended Kalman filter–SLAM (EKF–SLAM) framework for

a hand-held monocular camera. In (15), feature points

were detected by the Shi–Tomasi operator (35) and repre-

sented as 2D square patches. The measurement model for

the monocular camera first initialized a 3D line when a

new feature point was observed, and then calculated the

3D position of the feature point when it was observed

the next time (15). Since Davison’s system updates the

pose and the map at each frame, it can only maintain a

small number (typically<100) of landmarks.

Multiple methods have been introduced to improve

Davison’s monocular camera EKF–SLAM framework. To

overcome the problem of delayed initialization of feature

points in (15,110), Civera et al. (111,112) presented an

inverse-depth parameterization method to unify the ini-

tialization and tracking of both close and distant points.

Civera et al. (113,114) further integrated the random sam-

ple consensus (RANSAC) method into the EKF–SLAM

framework (15,110) to estimate inliers of feature point

matches, and presented the one-point RANSAC method.

With the prior information of camera poses, only one sam-

ple was needed to initialize model estimation in the

RANSAC process, and therefore the RANSAC computation

could be greatly reduced (113,114). Based on inverse-

depth parameterization (111,112), Grasa et al. (115,116)

successfully combined the one-point RANSAC method

(113) and randomized list relocalization (117) together,

so that the system was robust to the challenges from

the MIS environment, such as sudden camera motion

and surgical instrument occlusion. In a more extensive

evaluation of the system from (116), >15 human ventral

hernia repair surgeries were reported in (118), in which

the scale information was obtained from the clinch of

the surgical instrument. The measurements of the main

hernia axes were chosen to represent the accuracy of

the reconstruction and the ground truth was measured

by tape (118).

In SFM, the time-consuming bundle adjustment has

been shown to be very effective in simultaneously opti-

mizing 3D structure and camera poses. To apply bundle

adjustment in a real-time system, different methods have

been reported and discussed to reduce the computational

burden of the bundle adjustment in robotics. Local bundle

adjustment was used in (119) to achieve accurate recon-

struction results and simultaneously reduce the computa-

tion. Later, Klein and Murray (120) introduced the

breakthrough work, parallel tracking and mapping

(PTAM), which was able to robustly localize the camera

in real time and recover the 3D positions of thousands

of points in a desktop-like environment. Due to the fact

that a camera-pose update with a fixed map is much more

efficient than a map update with known camera poses,

Klein and Murray proposed to separate the tracking and

mapping into two parallel threads. To achieve real-time

speed, the tracking thread was given higher priority than

the mapping thread (120). In the mapping thread,

the time-consuming bundle adjustment optimization

(121,122) was run to refine the stored 3D points and cam-

era poses (120). The benefits of separating tracking and

mapping include more robust camera tracking and more

accurate 3D point positions.

Based on the results of camera tracking from PTAM, many

research efforts (123–125) have been proposed to generate a

consistent dense 3D model in real time. In (123), the 3D

points from PTAM were triangulated to build a base mesh

using Multi-Scale Compactly Supported Radial Basis Func-

tion (MSCSRBF) (126). This base mesh was then used to

generate a synthesized image, which was compared with

the real images captured by the camera at the same position

to iteratively polish the dense model (123). In (123), the

Total Variation regularization with L1 norm (TV-L1) optical

flow (127) was applied to establish the correspondences

between synthesized and real images. The densemodel from

(123) was later used to improve the camera tracking in

(128). Instead of using variational optical flow, as in (123),

Graber et al. (124) adopted the multiview plane-sweep to

perform 3D reconstruction with high-quality depth map

fusion (124). Based on PTAM and the work of Graber et al.

(124), Wendel et al. (125) developed a live dense volumetric

reconstruction for micro-aerial vehicles.

After the recovery of the 3D structure from monocular

endoscopic videos, researchers have attempted to register

the recovered 3D structures with the pre-operative data.

Burschka et al. (105,106) proposed to register the recov-

ered 3D points with a pre-operative CT model to achieve

accurate navigation in sinus surgeries. To obtain accurate

navigation for ESBS surgeries, Mirota et al. (129) intro-

duced a new registration method, which was later applied

(96,130) to register the 3D point cloud from (108) with

the CT data.

Stereo cameras

Stereo cameras have gained popularity recently in robot-

assisted surgery, such as using the da Vinci system

(16,17). Compared with the bearing-only sensor of the

monocular camera, stereo cameras can get the 3D

Video-based 3D reconstruction, localization and deformation recovery for abdominal MIS
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locations of landmarks directly from a single measure-

ment. In robotics, the early work of SLAM with stereo

cameras on a mobile robot can be found in (131–133)

and the more recent work is focused on how to apply ste-

reo cameras in a large environment (134–138). Mountney

et al. (139) extended the stereo SLAM technique in the

MIS environment to track the stereoscope and reconstruct

a sparse set of 3D points. A Shi–Tomasi feature point

detector was used to find interest points, which were rep-

resented by 25pixel x 25 pixel patches and tracked using

ZSSD correlation (139). A ‘constant velocity and constant

angular velocity’model was adopted to describe the endo-

scope motion (139).

The stereo EKF–SLAM framework in (139) has been

adopted in many different systems. Noonan et al. (140)

applied the framework to track the newly-designed ste-

reoscopic fibrescope imaging system. To get a larger field

of view for surgeons, Mountney and Yang (139) inte-

grated the output of the sparse 3D points and camera

tracking results from (139) into the dynamic view expan-

sion system (141) and textured the 3D mesh with past and

current images (142). Warren et al. (143) pointed out that

disorientation was a major challenge in natural orifice

transluminal surgery (NOTES). They used an inertial

measurement unit (IMU) attached at the tip of the endo-

scope to stabilize the image horizontally (143). The stabi-

lized images were further integrated into the dynamic

view expansion system (142) to provide more realistic

navigation results (143). Totz et al. (72) reported that

the sparse 3D mesh generated from the Mountney

et al. stereo SLAM was not rich enough to represent

the real 3D shape of the scene, which caused visual ar-

tifacts in the final textured-mapped 3D model. To over-

come this problem, Totz et al. (72) used the sparse 3D

points to register a couple of semi-dense 3D surfaces

from stereo reconstruction (18) together to generate a

larger and more accurate 3D model, which resulted in

more consistent rendering results with dynamic view

expansion.

Discussion

When enough texture is available on tissue surfaces, it has

been shown that visual SLAM is able to estimate camera

poses and recover a sparse set of 3D points with reason-

able qualities (118,144). However, the results of visual

SLAM depend greatly on the successful extraction of dis-

tinctive image features. Therefore, further studies are

needed to extract distinctive image features for MIS im-

ages. On the other hand, a new visual SLAM framework

was recently presented and no detection of image feature

points was required (145,146). The system exploits and

reconstructs each pixel with valid image gradients. This

framework does not rely on image feature points and

can be useful for the MIS environment.

Dynamic MIS–VSLAM

The assumption of rigid scenes in the previous section

might not be valid in a general MIS environment. This sec-

tion focuses on the general problem of MIS–VSLAM,

which is termed ‘dynamic MIS–VSLAM’, as illustrated in

Figure 7. In a typical MIS environment, the tissue surfaces

might undergo non-rigid deformation caused by heart-

beats, breathing and interaction with surgical instru-

ments. Meanwhile, surgical instruments might move

dynamically in the scene and cause occlusion problems.

As a result, there are two fundamental tasks for dynamic

MIS–VSLAM: the theoretical treatment of tissue deforma-

tion (16,17) and moving-instrument tracking.

The first task is similar to the recovery of surface defor-

mation with a moving camera, which has been an active

research topic in computer vision and belongs to the

broader topic, non-rigid structure from motion (NRSFM)

(147). NRSFM has been proposed to analyse non-rigid

scenes, such as smooth surfaces, articulated bodies and

piecewise rigid surfaces (148). The general problem of

NRSFM is considered to be that ill-posed if arbitrary defor-

mation is allowed (148). In the MIS environment, smooth

tissue surfaces cast additional constraints on the general

NRSFM and therefore the problem becomes less difficult.

This section focuses on the introduction of the two essen-

tial tasks in dynamic MIS–VSLAM; NRSFM with

deforming tissue surfaces, termed ‘deforming surface

SFM’ (DSSFM), and dynamic surgical instrument track-

ing. Many approaches have been presented to tackle the

problem of DSSFM and can be broadly classified into

two categories, based on whether a monocular camera

or stereo cameras are used. Those approaches are summa-

rized in Table 2.

DSSFM with monocular cameras

Different from rigid SFM, each point in DSSFM can de-

form due to both global rigid motion and local deforma-

tion, which are difficult to differentiate. Therefore,

different constraints of deformation from the inherent

geometry of the shape have been introduced

(147,149,150,154,158,159). It is generally considered that

the work of Bregler et al. (149) was the first approach that

successfully extended Tomasi and Kanades’ factorization

method (160) to non-rigid scenes. In (149), the idea was

introduced of representing a 3D shape as a linear combi-

nation of a set of basis shapes, which greatly reduced

the number of unknown parameters. This idea of a linear

combination of basis shapes has been widely adopted

since it was introduced. Most subsequent research has fo-

cused on convergence of the optimization by adding spa-

tial and temporal smoothness constraints (154). One

impractical assumption of the Bregler et al. method is

the scaled orthographic camera model. This camera
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model assumes that images are taken at a long distance

from the objects. This restriction was later removed to al-

low the usage of more general-perspective cameras and

obtain the closed-form solution for linear basis shape

models (150,153).

Many DSSFM methods assume that all points are under

non-rigid deformation, such as a piece of cloth under per-

turbation. In practice, a scene generally contains both

rigid and non-rigid points – a common scenario in the

MIS environment as well. In the publicly-available laparo-

scopic MIS image datasets (20), only those tissue organs

that are interacting with surgical instruments display

large deformation; other tissue surfaces mostly have small

deformations that can sometimes be treated as rigid ob-

jects. Del Bue et al. (151) introduced the idea of assuming

the existence of both rigid and non-rigid points. For a

monocular camera, Del Bue et al. (151) used the RANSAC

algorithm to segment rigid and non-rigid points, based on

the criterion that only rigid points could satisfy epipolar

geometry. The purpose of the Del Bue et al. method is to

estimate the 3D shape of human faces, where there are

many fewer rigid points than non-rigid ones. The small

percentage of rigid points requires a large number of sam-

plings in the RANSAC process, which greatly slows the

segmentation. In (151), to speed up the RANSAC process,

the degree of non-rigidity (DoN) was calculated for each

point as in the prior information and was used to guide

the sampling of RANSAC. DoN was defined based on the

observation that 3D positions of non-rigid points change

from time to time and, hence, have larger variances than

the rigid ones (151).

One major challenge of many existing monocular

DSSFM methods is the expensive time consumption of

the final non-linear optimization. Motivated by the

Figure 7. MIS–VSLAM methods in dynamic or deforming scenes; solid green and dotted blue curves are used to illustrate non-rigid

tissue deformation

Table 2. Summary of different approaches in DSSFM

Methods Sensor type Batch/sequential Rigid Camera model

Bregler et al. (149) Mono Batch No Scaled orthographic
Xiao and Kanade (150) Mono Batch No Perspective
Del Bue et al. (151) Mono Batch Yes Perspective
Wang and Wu (152) Mono Batch Yes Affine
Hartley and Vidal (153) Mono Batch No Perspective
Paladini et al. (154) Mono Sequential No Orthographic
Del Bue and Agapito (155) Stereo Batch No Affine
Bartoli (156) 3D sensor Batch No –

Llado (157) Stereo Batch Yes Perspective

Batch/sequential, optimization type; Rigid, assumption or not of rigid points.
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significant performance of PTAM (120), Paladini et al.

(154) proposed the first work to separate model-based

camera tracking and model updating. To enable sequen-

tial model updating, a sequential framework was pre-

sented that increased the degrees of freedom of basis

shape whenever the current shape model was not able

to represent a new shape (154). Based on dense 2D corre-

spondences from (161), Garg et al. (148) formulated

DSSFM as a variational energy minimization problem to

estimate the 3D structure of deformable surface from a

monocular video sequence.

DSSFM with stereo cameras

Since the relative pose between the stereo cameras was

fixed, the factorization method (149) was extended to ste-

reo cameras by stacking the constraints from each camera

together (155,162). A novel method of decomposing the

measurement matrix to get stereo camera pose and 3D

shape was presented in (155,162). When corresponding

points between stereo cameras are available, the 3D posi-

tions of those points for each frame can be obtained

through triangulation. Therefore, the input to the DSSFM

becomes 3D point tracks, rather than 2D point tracks as in

the monocular case. With 3D point tracks as input, Llado

et al. (157) extended the rigid and non-rigid point seg-

mentations from a monocular camera to stereo cameras

based on the fact that only rigid points satisfied a global

Euclidean transformation. After RANSAC estimation, the

classification of rigid points and non-rigid points was fur-

ther refined, based on accumulated 3D registration errors,

which were large for non-rigid points and small for rigid

ones (157).

Another significant stereo DSSFM method was pre-

sented by Bartoli (156), who first learned the basis shapes

by maximum likelihood, and then the learned basis

shapes were used to estimate the stereo rig’s poses as well

as the configuration weights. There is a major difference

between the Llado et al. method (157) and Bartoli

methods (156). In (157), Llado et al. estimated the poses,

basis shapes and configuration weights all together

by non-linear optimization, which minimized the

reprojection error. Bartoli (156) proposed to learn the basis

shapes first from a sequence of 3D shapes, and then mini-

mized the 3D registration error to estimate basis shapes

and configuration weights. Besides stereo cameras, a

multi-camera set-up (163) has also been considered to solve

the DSSFM problem. Even though many methods have

been presented, DSSFM is still considered a very difficult

problem and remains an open challenge to researchers.

DSSFM in MIS environment

Currently, most DSSFM methods assume that all 3D

points are correctly detected and tracked in each pair of

stereo images. This assumption is generally not practical,

because the feature matching might contain mismatches

due to noise. In the MIS environment, low-contrast im-

ages, non-rigid deformation of organs and the dynamic

moving of surgical instruments further complicate this is-

sue. Despite these difficulties, different methods have

been proposed to simplify the problem by adding practical

constraints from the MIS environment, as summarized in

Table 3. Some significant methods were chosen as repre-

sentative; their properties are displayed in Table 4. In this

section, we first introduce the methods proposed to over-

come tissue deformation and then discuss methods de-

signed to track moving objects.

Table 3. Dynamic visual SLAM methods for MIS

Scene Monocular camera Stereo cameras

Rigid (96,105–107,109,115,130) (72,139,140,142,143,164)
Deforming (116,165,166) (144,167,168)

Table 4. Summary of the state-of-the-art methods in MIS-VSLAM

Methods
Rigid/
deform

Batch/
sequ Framework Mono/stereo Feature detection

Feature
matching Organs Reg

Burschka et al. (106) Rigid Sequ ASKC Mono Segmentation SSD Sinus Yes
Wang et al. (107) Rigid Sequ ASKC Mono SIFT+ SVD SIFT Sinus No
Mirota et al. (130) Rigid Sequ ASKC Mono SIFT+ SVD SIFT Sinus Yes
Hu et al. (103) Rigid Batch Factor Mono/stereo – LK Heart Yes
Mountney et al. (139) Rigid Sequ EKF–SLAM Stereo Shi–Tomasi NSSD Abdomen No
Totz et al. (72) Rigid Sequ EKF–SLAM Stereo Shi–Tomasi NSSD Abdomen No
Hu et al. (166) Deform Batch NRSFM Mono – LK Heart No
Grasa et al. (116) Deform Sequ EKF–SLAM Mono FAST NSSD Abdomen No
Collins et al. (165) Deform Batch – Mono – Optical

flow (169)
Liver No

Mountney and Yang (167) Deform Sequ EKF–SLAM Stereo Shi–Tomasi (49) Abdomen No
Lin et al. (144) Deform Sequ PTAM (120) Stereo FAST ZSSD Abdomen No

Rigid/deform, rigid or deforming scene; Batch/sequ, batch or sequential optimization; Framework, type of optimization framework;Mono/stereo,
monocular camera or stereo cameras; Feature detection, types of feature detection; Feature matching, types of feature matching; Reg, registra-
tion; Sequ., sequential; ASKC, optimization method proposed in (107); Factor, matrix factorization method of rigid SFM; NSSD, normalized SSD.
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Many researchers have attempted to reduce tissue de-

formation by rearranging or segmenting the videos. Hu

et al. (166) applied the probabilistic principal component

analysis (PPCA)-based NRSFM (147) to reconstruct a

beating heart surface and estimate the camera poses. To

reduce complexity from deformation, the video sequence

was rearranged, and the images of the same heart cycles

were chosen to reduce tissue deformation (166); in this

method some feature points may be lost during the track-

ing, and it is unclear how this problem is compensated for.

Collins et al. (165) argued that tissue motion was small

within a couple of frames and, hence, could be treated

as rigid. With this assumption, Collins et al. (165) pre-

sented a method to divide the video sequence into small

segments, and the motion within each segment was ap-

proximated as rigid.

Researchers also observed that the deformation of par-

ticular organs, such as the liver, might follow certain peri-

odic patterns, such as respiration and heartbeats. These

periodic patterns can be learned and used as constraints

to overcome the challenges from tissue deformation.

Mountney et al. (167) presented a SLAM framework for

the MIS environment with periodic tissue deformation.

In (167), liver motion was described by a periodic respira-

tion model and learned by temporally tracking the 3D

points on the liver surface, using stereo cameras. The

learned respiration model was later integrated into the

EKF framework for more accurate prediction of camera

poses. However, the assumption of periodic motion is

not valid for all tissues; for example, the tissue motion

caused by the interaction of surgical instruments is mostly

not periodic.

PTAM has been shown to be robust in a desktop envi-

ronment, and its application in the MIS environment is

not as stable, because of difficulties from the less distinc-

tive features in MIS images and non-rigid tissue deforma-

tion. Lin et al. (144) extended monocular PTAM (120) to a

stereoscope and proposed to use RANSAC to detect the

deforming points, based on the fact that only rigid points

satisfy a global Euclidean transformation. The removal of

the deforming points resulted in more accurate and stable

camera pose estimation results. When the stereoscope is

available, there is no need for manual initialization, as

in (120), and the scale of the recovered structure can be

determined. The stereoscope PTAM was applied in a lapa-

roscopic video, and a bladder model was highlighted in

the video to remind the surgeons (144). Figure 8 shows

typical frames extracted from a MIS video with an over-

laid bladder model.

With the development and availability of miniaturized

microelectromechanical systems, researchers have been

trying to use inertial sensors to further improve visual

SLAM performance. Giannarou et al. (170) presented a

novel method, adaptive unscented Kalman filter (UKF),

to exploit the data from an IMU (170). The IMU data were

combined with visual information to achieve better cam-

era pose estimation for deformable scenes in MIS (170).

Moving instrument tracking

In visual SLAM, dynamic moving objects usually result in

inaccurate camera localization results. Therefore, it is nec-

essary to track these moving objects. In robotics, this

problem is generally referred to as ‘SLAM and moving ob-

ject tracking’ (SLAMMOT), which deals with dynamic en-

vironments containing moving objects, such as humans

and cars. Wang and Thorpe (171) reported the first work

that successfully detected and tracked moving objects

within a visual SLAM system. A mathematical framework

was introduced (172) and a general solution was provided

to the problem of SLAMMOT. Recently, Lin and Wang

(173) presented a stereo camera-based approach for

SLAMMOT, which overcame the observability issue that

was common in monocular approaches. Zou et al. (174)

presented the first work that applied visual SLAM using

multiple independent cameras in a dynamic environment,

in which it was shown that with multiple cameras, the

rigid and moving points could be distinguished based on

the reprojection distance. Also, each camera’s pose and

the 3D locations of moving points could be successfully re-

covered by considering nearby cameras’ observations of

the landmarks (174).

In MIS, different techniques have been introduced to

track the dynamically moving surgical instruments. In a

typical MIS set-up, the instruments are inserted through

Figure 8. Example of a bladder model (yellow) overlaid on a MIS video (144)
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small incisions and their motions are, therefore, greatly

restricted. Voros et al. measured the 3D position of the

insertion point of an instrument and exploited the 3D in-

strument model to constrain the search space and achieve

accurate instrument detection (175,176). Allan et al. (24)

argued that the estimated trocar positions might be inac-

curate, due to trocar and patient movement. They

proposed a probabilistic supervised classification method,

which did not require the estimation of the trocar

positions (24). Instead, they first detected surgical-

instrument pixels and then estimated the poses of those

instruments (24).

Endoscope video-based object tracking has many appli-

cations. In (177) a suturing needle was tracked, and 3D

cue information was augmented in the video to help sur-

geons better understand the poses of the needle.

Jayarathne et al. (178) introduced a method to track the

ultrasound probe using the standard monocular endo-

scopic camera, so that magnetic tracking could be obvi-

ated. They presented an EKF framework to establish the

correspondences and estimated the pose of the ultra-

sound probe (178).

Discussion

To overcome the difficulties in dynamic MIS–VSLAM, it is

essential to exploit the prior information of surgical

scenes and use them as constraints. Since tissue surfaces

are smooth and have special deforming properties, one

important research topic is to learn biomechanical models

of tissue deformation. Organs and tissues have specific

shapes and biological properties, which greatly restrict

how they would deform. Those biomechanical models

are usually similar among different people and can be

learned before the surgery.

In the abdominal environment, large areas of surgical

scenes, such as abdominal walls, typically remain rela-

tively still during the whole surgical procedure. These

rigid areas can be pre-identified and used to separate

camera-pose estimation and deformation recovery. 3D

models of surgical instruments can be exploited as prior

information to assist instrument tracking.

Video-based camera localization and 3D reconstruction

rely on robust image feature detection and matching re-

sults. However, some tissue surfaces do not have distinc-

tive textures, e.g. the texture of the liver surface is

repetitive and indistinctive. In those scenarios, extra infor-

mation from tissue organs is necessary. For instance, the

contours of a liver can be accurately detected and

matched to its 3D model from preoperative data to esti-

mate its pose and deformation. Another option is to

actively project patterns on tissue surfaces to build corre-

sponding points for 3D reconstruction. Therefore, struc-

tured lighting-based methods, such as depth sensors, are

important to solve the low-texture problem.

Results

Videos captured in situ during MIS have enabled the use

of vision-based techniques to assist surgeons to better vi-

sualize a surgical site and navigate inside a body. Video-

based surgical-scene 3D reconstruction, laparoscope lo-

calization and deformation recovery are fundamental

problems for dynamic registration and surgical navigation

in abdominal MIS. This paper has reviewed the methods

of feature detection and tracking for MIS images. Addi-

tionally, this paper has summarized 3D reconstruction

and visual SLAM methods for rigid surgical scenes in

MIS. Moreover, this paper has introduced methods for de-

formation recovery and summarized 3D reconstruction

and visual SLAM for deforming tissue organs.

Multiple results have been obtained. The publicly avail-

able datasets have been collected in Table 1. The state-of-

the-art DSSFM methods have been provided in Table 2.

The 3D reconstruction, laparoscope localization and de-

formation recovery techniques for dynamic surgical

scenes with general tissue deformation and instrument

occlusions have been summarized in Tables 3 and 4.

Even though much research work has been presented in

the field, simultaneous 3D reconstruction, laparoscope lo-

calization and deformation recovery in real time for a dy-

namic MIS environment is still difficult and remains an

open challenge. To achieve this goal, multiple important

research directions need further exploration. First, many

well-studied computer vision techniques, such as 3D re-

construction and camera localization, are based on the

successful detection of distinctive image features. It has

been known that the MIS environment is quite different

from the man-made environment, and it is desirable to an-

alyse and exploit the special characteristics of MIS images.

Some recent research (12,22,38,59) along this direction

has been made available; however, more research in this

area is needed to fundamentally solve the problem.

Multiple visual SLAM frameworks have been presented

in the literature, such as PTAM (120,144) and EKF–SLAM

(15,139). These frameworks have been validated to work

well when surgical scenes are mostly rigid and camera

motions are not too fast. To make endoscope localization

more robust, it is necessary to extend the SLAM system

to work in a deforming environment. However, if any arbi-

trary deformation is allowed, the problem becomes infea-

sible because of the ambiguity of distinguishing between

camera movement and scene deformation. Therefore,

the key to solving this problem is to carefully discover

and learn the deformation models. One research direction

is to assume that only certain parts of a scene are

deforming and the others are rigid (144). Since organ de-

formation follows biomechanical properties, another

promising research direction is to learn those biomechan-

ical models.
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Medical data are crucial for the research community.

MIS data acquisition is known to be difficult (86) and

has become one of the main challenges in this area. As

listed in Table 1, multiple MIS datasets have recently

become available to the public. However, the abdominal

environment is complex and more MIS datasets are still

needed. Meanwhile, standardized in vivo evaluation

methods/procedures are also necessary in order to com-

pare different research studies or reproduce other

research work.
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