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ABSTRACT Video-based abnormal driving behavior detection is becoming more and more popular for

the time being, as it is highly important in ensuring safeties of drivers and passengers in the vehicle, and

it is an essential step in realizing automatic driving at the current stage. Thanks to recent developments

in deep learning techniques, this challenging detection task can be largely facilitated via the prominent

generalization capability of sophisticated deep learning models as well as large volumes of video clips

which are indispensable for thoroughly training these data-driven deep learning models. In this paper, deep

learning fusion techniques are emphasized, and three novel deep learning-based fusion models inspired by

the recently proposed and popular densely connected convolutional network (DenseNet) are introduced,

to fulfill the video-based abnormal driving behavior detection task for the first time. These three new

deep learning-based fusion models are named as the wide group densely (WGD) network, the wide group

residual densely (WGRD) network, and the alternative wide group residual densely (AWGRD) network,

respectively. Technically, WGD takes important issues of deep learning models, i.e., the depth, the width and

the cardinality, into consideration when designing its model structure based on DenseNet. For the WGRD

and AWGRD, they are more sophisticated as the important idea of residual networks with superpositions of

previous layers is incorporated. The extensive experiments are conducted to verify the effectiveness of three

new models. Their superiority has been suggested based on rigorous comparisons towards several popular

deep learning models in this video-based abnormal driving behavior detection study.

INDEX TERMS Artificial intelligence, digital images, vehicle driving, abnormal driving detection, densely

connected convolutional networks, deep learning.

I. INTRODUCTION

It is widely acknowledged that, high-resolution videos are

more and more commonly seen within a great number of

visual applications at the current stage. For instance, in video

surveillance, multiple high-resolution cameras are necessary

to be placed at different locations. They work together to

identify [1], [2], re-identity [3], [4], and track the moving

target [5], [6], making the later high-level analyses based on

the moving target (e.g., behavior or even potential intention)

more feasible. In emotional computation, high-resolution

cameras need to be utilized to capture both obvious and fine
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changes of emotions of the target person in real-time [7], [8],

which has significant impacts in security issues nowadays.

It is easy to perceive from the above descriptions that, acquir-

ing and storing a large volume of high-resolution videos

are often not difficult to be realized for the time being.

However, the main challenge resides in how to efficiently

and effectively make correct high-level decisions based on

those low-level video clips of large volumes. In this study,

high-resolution videos of drivers recorded within vehicles

are emphasized. The high-level decision here is to correctly

detect abnormal driving behavior (i.e., patterns) of drivers.

Automatic abnormal driving behavior detection is gener-

ally accepted as the first issue in realizing the popular fully

autonomous driving task. It is certain that, for the autonomous
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driving task, safety issues are undoubtedly first priorities.

It is widely known that, behavior of drivers need to be well

restricted in order to avoid any potential accident. Therefore,

multiple high-resolution cameras equippedwithin the driver’s

vehicle can be utilized to monitor the driver’s status in real

time. Generally speaking, videos captured by high-resolution

cameras also need to be processed immediately, in order to

determine whether the current status of the driver is normal

or not. It can be acknowledged from the above descriptions

that, both the effectiveness (i.e., the detection accuracy) and

the efficiency (i.e., the detection speed) of abnormal driving

behavior detection are highly demanded. Also, high-speed

wireless transmissions are necessary to realize the swift and

reliable transmission of high-quality videos, which further

facilitates the above automatic abnormal driving behavior

detection task [9]– [23].

In order to detect abnormal behavior of drivers, an official

and precise definition of abnormal driving is often necessary.

According to the International Organization for Standardiza-

tion (ISO), abnormal driving is defined as the phenomenon

that a driver’s ability to drive is impaired due to her / his

own focus on other activities unrelated to normal driving.

Generally speaking, abnormal driving behavior can bemainly

divided into three categories. The first one belongs to distract-

ing driving behavior that meets the driver’s physical comfort

requirements, including smoking, drinking, eating, configur-

ing the aircon, etc. The second one is to meet the driver’s need

for distracting driving behavior, including makeup, shaving,

chatting, using mobile phones or other unnecessary devices,

etc. The third one contains distracted driving behavior caused

by the surrounding environment, including caring for chil-

dren, long-term attentions to unexpected events outside the

vehicle, etc. Among the above-mentioned abnormal driving

behavior, it is necessary to highlight that, the use of mobile

phones has already become a major factor in contemporary

abnormal driving. In a recent simulation, researchers have

found that making a call while driving can cause the driver

to distract 20% of her / his attention. More seriously, if the

content of the call is important, it will lead to a distraction up

to 37%, which will make the driver 23 times more likely to

have an accident than normal drivers [24]. Therefore, the use

of mobile phones is also considered as one important abnor-

mal driving behavior for automatic detection in this study.

In this study, a single visible-light camera is utilized to

record high-resolution videos of the driver, and three novel

deep learning-based fusion models are proposed to fulfill

the video-based abnormal driving behavior detection task.

The basic architecture of deep learning models introduced

in this study is mainly motivated by densely connected

convolutional networks (DenseNet), which were proposed

in 2017 and won the best paper of CVPR the same year [25].

Generally speaking, DenseNet can be regarded as a relatively

new convolutional neural network (CNN)-based deep learn-

ing architecture, and it has significant merits of reaching the

state-of-the-art performance in several well-known classifi-

cation challenges (e.g., CIFAR, SVHN, ImageNet databases)

using less parameters. Also, it is not difficult to be trained

even within a tremendously deep model’s structure because

of its intensive utilization of the residual network [26]. Addi-

tionally, deep learning fusion techniques are utilized in this

study based on the original DenseNet, in order to obtain three

novel fusion models for realizing the video-based abnormal

driving behavior detection task for the first time. The three

new fusion models proposed in this study are named as the

wide group densely (WGD) network, the wide group residual

densely (WGRD) network, and the alternative wide group

residual densely (AWGRD) network, respectively. Techni-

cally, WGD takes important issues of deep learning models,

i.e., the depth, the width and the cardinality, into considera-

tion when designing its model structure based on DenseNet.

For WGRD and AWGRD, they are more sophisticated as the

important idea of residual networks with superpositions of

previous layers is incorporated.

The organization of this paper is as follows. In Section II,

related works in abnormal driving detection as well as

recently popular deep learning studies are briefly reviewed.

In Section III, technical details of three novel deep

learning-based fusion models are elaborated. In Section IV,

extensive experiments based on a large abnormal driving

database are conducted and comprehensive analyses are

applied. The superiority of newly proposed models are sub-

stantiated via rigorous comparisons towards several popular

deep learning models implemented in the same task, from the

statistical point of view. In Section V, the conclusion of this

study is drawn.

Main contributions of this study can be summarized as

follows. First, it is the first attempt to incorporate the

recently proposed DenseNet into the challenging video-based

abnormal driving behavior detection task. Second, techni-

cal novelties within newly introduced models of this study,

including the important enhancement of width and cardi-

nality in WGD, the sophisticated integration of ResNet and

DenseNet in WGRD and AWGRD, are significant. Third,

extensive experiments and comprehensive analyses further

substantiate the superiority of newly introduced models in

tackling the abnormal driving behavior detection problem of

this study.

II. RELATED WORKS

In the following, abnormal driving detection and deep learn-

ing techniques, which are closely related to this study, are

emphasized. Recent developments in the two aspects are

briefly reviewed, with pros and cons been discussed.

A. ABNORMAL DRIVING DETECTION

It can be summarized based on literatures of automatic abnor-

mal driving behavior detection that, there are often three

commonly used detection schemes. The first one is based on

the detection of human physiological signals (i.e., electro-

oculogram, electro-encephalogram, respiratory, blood flow

changes, etc.) using diverse kinds of sensors [27], [28].

The second one is based on facial details [29] (i.e., changes
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in eye movement, mouth movement, head movement, hand

features, etc.). The third one is based on motion charac-

teristics of the steering wheel, which is capable to detect

the driver’s hand pressure [30], the steering time, the brake

behavior [31], etc. It is also necessary to point out that,

detecting human physiological signals has good real-time

performance and high precision, but its main advantage of

affecting drivers’ normal drivings cannot be neglected, either.

Furthermore, physiological signals of human beings vary

greatly due to the physiological difference in each individual

person and her / his environmental conditions. Therefore, it is

challenging to provide quantitative and objective standards

for detecting human beings’ physiological signals as well.

For detections based on facial details, eye regions are often

emphasized as the gaze direction of eyes are closely related

to normal / abnormal driving patterns. Among eyes-based

detection methods, the percentage of eyelid closure over the

pupil over time (PERCLOS) [32] is popular. Technically,

the percentage of closed eye time per unit time is utilized and

it can be explicitly represented in Equation (1).

PERCLOS =
Eye closing time

Detection period
× 100% (1)

When the percentage of time that the eyes’ closure reaches

70% or even higher, the driver is normally considered to be

in an abnormal driving state [32]. Although the PERCLOS

detection method has merits of being effective and efficient,

there are unfortunately several serious problems with it. First,

eyes of drivers with different physiques and habits vary

largely. An extreme case is that some people even do not

close their eyes when sleeping, making the false positive of

PERCLOS inevitably high. Second, some tough challenges,

including unexpected movements of the head, will lead to

detection failures of eyes. The above situations are certainly

not beneficial for fulfilling abnormal driving behavior detec-

tion based on eyes [33]. For detections based on steering

wheel, they are similar towards detections based on human

physiological signals. In this study, a single visible-based

camera is utilized to record high-resolution videos of the

driver, and the automatic abnormal driving behavior detection

is realized based on those captured video clips via sophisti-

cated deep learning techniques. In this way, shortcomings of

undesired high-variance regarding sensors (i.e., in detections

based on either physiological signals or the steering wheel)

can be totally avoided.

B. RECENT DEVELOPMENTS IN DEEP LEARNING AND ITS

POPULAR UTILIZATIONS

It is interesting to notice that, deep learning techniques

receive vast popularity when powerful computational hard-

ware and large-scale data become more and more avail-

able nowadays. Generally speaking, most contemporary

deep learning models can be categorized into two types,

i.e., deep generative learning models and deep discriminant

learning models. To be specific, deep generative learning

models mainly aim to replicate ‘‘fake-but-realistic’’ data

based on real data, and popular deep generative learn-

ing models include but not limited to VAE (i.e., varia-

tional auto-encoder) [34], GAN (i.e., generative adversarial

network) [35], GLOW (i.e., generative flow) [36], etc. Deep

discriminative learning models, on the other hand, are

mainly utilized for discrimination / classification purposes.

Well-known deep discriminative learning models are often

winners of noticeable worldwide vision-based competitions

(e.g., ILSVRC, COCO, etc.). Typical deep discriminative

learning models include but not limit to AlexNet [37],

VGG [38], GoogleNet [39], ResNet, etc.

Recently, contemporary deep learning models demonstrate

the following trends. First, more andmore deep learningmod-

els become tremendously deep for guaranteeing outstanding

generalization capabilities. Second, their model structures

become more and more sophisticated. For instance, the width

of many contemporary deep learning models increases sig-

nificantly. In [40], it is reported that a wide 40-layer ResNet

model can gain the similar generalization capability as a

conventional ‘‘narrow’’ single-channel 1001-layer ResNet

model, but the wide model only costs 1/8 training time of

the narrow one. Also, the cardinality of deep learning models

increases greatly as well. Cardinality is often regarded as the

number of isolated paths in a deep learning model, and those

paths often share the same topological structure [41], making

many contemporary deep learning models become multi-

channel-based in their architectures. Therefore, important

issues, including the depth, the wideness and the cardinality,

are often carefully taken into consideration in designing struc-

tures of contemporary deep learning models. Furthermore,

it is also necessary to point out that, other new deep learn-

ing model structures proposed in recent years, such as the

capsule architecture in CapsNet [42], etc., also receive much

popularity. In this study, three important issues mentioned

above are incorporated in designing structures of the three

newly introduced deep learning fusion models, for realizing

the video-based abnormal driving behavior detection task.

Moreover, many up-to-date deep learning techniques have

been vastly utilized in several vision-based utilizations in

recent years. In the popular vision-based detection and track-

ing field, new and sophisticated architectures in deep learn-

ing have been proposed and utilized. In [43], a novel visual

attention network was proposed to represent both global

latent saliency and local latent saliency in the visual attention

prediction task. In [44], a new hyper-parameter optimization

method based on an action-prediction network leveraged

by continuous deep Q-learning was introduced for object

tracking. In [45], a novel triplet loss was proposed to extract

expressive deep latent features from Siamese networks for

fulfilling the same object tracking task. In [46], the deep met-

ric learning technique based on a new multi-channel ResNet

model was investigated for the tracking purpose. It is also

interesting to point out that, concepts such as saliency, atten-

tions, etc., are quite popular in recent video- / image-based

detection utilizations [47], [48]. In this study, since the

video-based abnormal driving behavior detection problem is
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normally considered as a multi-class classification problem

and solved mainly based on the global image plane, the idea

of attention-aware deep learning is not incorporated. How-

ever, this idea of attention-aware deep learning is important

and it can bring about ‘‘global + local’’ latent features-based

abnormal driving behavior detection studies in the future.

For other vision-based domains, new and sophisticated deep

learning models are also thoroughly investigated. In [49],

a new unbalanced deep discriminant learning model was pro-

posed to fulfill the important medical images synthesis task

in clinical diagnosis. In [50] and [51], the notion of disease

similarity among multiple patients was emphasized and its

learning can also be incorporated into deep learning models

and realized through the classic back-propagated end-to-end

learning procedure. It can be concluded based on the above

descriptions that, deep learning models are widely and fre-

quently utilized in various vision-based studies. Novel archi-

tectures of deep learning models as well as their associated

new learning techniques are worthy of thorough investigated.

In this study, novel architectures inspired by DenseNet as

well as ResNet with superpositions of previous layers will

be incorporated within newly proposed models for fulfilling

the video-based abnormal driving behavior detection task.

III. METHODOLOGY

In this section, technical details of the three new deep learning

fusion models for automatically detecting abnormal driv-

ing behavior are elaborated. Since the three new fusion

models are inspired by DenseNet, the very model as well

as other conventional deep learning models will be intro-

duced in Section III-A first. It is worthy to mention that,

all these conventional and popular deep learning models

will be implemented and compared with three new deep

learning-based fusion models in this study. After introducing

conventional deep learning models in Section III-A, the three

new deep learning-based fusion models will be elaborated

in Section III-B. The energy function to be optimized in

deep learning-based fusion models will be introduced in

Section III-C.

A. CONVENTIONAL DEEP LEARNING MODELS

In the following, five conventional and popular deep learning

models, including convolutional neural network (CNN), wide

convolutional neural network (Wide CNN), group convo-

lutional neural network (Group CNN), deep residual net-

work (ResNet), and densely connected convolutional network

(DenseNet), are introduced one by one. Details of their model

structures utilized in this study are emphasized.

1) CONVOLUTIONAL NEURAL NETWORK (CNN)

One of the most earliest CNN models, i.e., the LeNet-5,

was originally proposed for fulfilling the recognition and

classification of handwritten characters, and its accuracy is

satisfactory [52]. Generally speaking, the main architecture

of CNN consists of the convolutional layer, the pooling layer,

and the full connected layer. To be specific, the convolutional

layer and the pooling layer work together to form multiple

convolution groups, in order to extract latent features through

a layer-by-layer model architecture. Then, the classification

task can be completed based on latent features via fully

connected layers. In this study, the model structure of CNN

is depicted in Figure 1.

FIGURE 1. An illustration of model architectures in CNN (left) and Wide
CNN (right) in this study.

2) WIDE CONVOLUTIONAL NEURAL NETWORK (WIDE CNN)

The idea ofWide CNN actually comes from the wide residual

network (WRN) [40], which is on the basis of the deep resid-

ual network but further increases the number of layer-based

convolution kernels. Figure 1 demonstrates the difference

between the conventional CNN model and the Wide CNN

model utilized in this study. It can be observed that, one sig-

nificant difference between CNN andWide CNN is that, wide

convolution layers instead of the traditional ‘‘narrow’’ convo-

lution layers are incorporated in Wide CNN. The motivation

can be explained as follows. It is widely acknowledged that,

it is challenging for gradients to be back-propagated when a

deep learning model becomes tremendously deep, and such a

tremendously deepmodel is often hard to be comprehensively

trained. In order to tackle the above dilemma, WRN with a

shallow but significantly wider architecture is proposed [40].

It is encouraging because, the generalization capability of

this shallow but wide architecture outperforms that of the

conventional deep and narrow architecture. Also, the former

is easier to be thoroughly trained. In this study, Wide CNN is

also implemented for experimental evaluations.

3) GROUP CONVOLUTIONAL NEURAL NETWORK

(GROUP CNN)

Group CNN mainly counts on group convolutions, which are

quite different from traditional convolutions adopted in the

vast majority of CNN-based deep learning models. To be

specific, each individual convolution filter in CNN operates

on all channels, while each individual convolution filter in
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Group CNN is active only on partial channels. An illustration

of the difference between traditional convolution filters in

CNN and group convolution filters in Group CNN is depicted

in Figure 2. It can be noticed that, Figure 2 describes the

case of 2-channel. For traditional convolution filters in CNN

(i.e., left in Figure 2), C traditional convolution filters are

executed on N feature maps, in order to obtain C feature

maps. For group convolution filters in Group CNN (i.e., right

in Figure 2), N feature maps are divided into two parts (i.e.,

each part contains N
2
feature maps for balanced considera-

tions). Each individual part is then fed into C
2
convolution

filters, in order to generate C
2

feature maps. In this way,

different convolution filters are actually executed on different

channels. The idea of Group CNN is important, as different

feature maps can be generated using different GPUs and the

final result can be fused based on them, making the model

more efficient to be trained with multiple GPUs. Addition-

ally, the recently popular ResNeXt model also adopts the

above group convolution idea in its residual network-based

architecture [41].

FIGURE 2. An illustration of the difference between traditional
convolution filters in CNN (left) and group convolution filters in Group
CNN (right).

4) DEEP RESIDUAL NETWORK (ResNet)

ResNet is widely acknowledged as one of the most influen-

tial deep discriminant learning-based models at the current

stage. ResNet is quite successful, as it is efficient to tackle

the notorious problem of vanishing gradients that becomes

commonly seen in many tremendously deep models. The

core residual architecture in ResNet is shown in Figure 3,

and its main idea is to add a parallel identity mapping to

the original network, which is helpful to constitute a residual

learning structure. Technically, provided the potential nonlin-

ear mapping which needs to be learned as H (x), a nonlinear

stacked network can be constructed to represent the residual

mappingF(x) = H (x)−x. In this way, the potential nonlinear

mapping to be learned can be written as F(x) + x. It is

also necessary to point out that, it is often easier to opti-

mize the residual mapping F(x) than to directly optimize the

potential nonlinear mappingH (x), whichmakes ResNet quite

valuable.

FIGURE 3. An illustration of the core residual architecture in ResNet.

5) DENSELY CONNECTED CONVOLUTIONAL NETWORK

(DENSEnET)

DenseNet is the basic deep learning model inspiring new

three deep learning-based fusion models in this study.

Generally speaking, several well-established models belong

to the big family of DenseNet, which includes High-

way Network [53], GoogleNet, etc. Compared with ResNet,

DenseNet is more thoroughgoing. The reason is because that,

ResNet only adds outputs of two adjacent layers as illustrated

in Figure 3, while DenseNet needs to add the current layer

to all its previous layers (i.e., as illustrated in Figure 4). For

instance, when there are L layers, ResNet prones to have

(L−1) direct connections (i.e., one direct connection appears

between two adjacent layers). However, DenseNet will obtain
(

2
L+1

)

=
L×(L+1)

2
connections, totally. The advantage of

DenseNet is that, gradient back-propagated transmission in

DenseNet actually changes from the ‘‘linear-like’’ flow (i.e.,

in most conventional deep learning models) to the new ‘‘tree-

like’’ flow, and the potential possibility of gradient vanishing

will be greatly reduced in DenseNet. Also, the training effi-

ciency of DenseNet will be boosted, therein.

B. THREE NOVEL DEEP LEARNING-BASED FUSION

MODELS: WGD, WGRD, AND AWGRD

In the following, three novel deep learning-based fusion

models inspired by DenseNet are introduced to tackle the

video-based abnormal driving behavior detection problem

for the first time. The three new models are named as the

wide group dense (WGD) network, the wide group resid-

ual dense (WGRD) network, and the alternative wide group

residual dense (AWGRD) network, respectively. Technically,

WGD takes important issues of deep learningmodels, i.e., the

depth, the width and the cardinality, into consideration when

designing its model structure based on DenseNet. ForWGRD

and AWGRD, they are more sophisticated as the important

idea of residual networks with superpositions of previous

layers is incorporated. Technical details are as follows.
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FIGURE 4. An illustration of the tree-like connection architecture in
DenseNet.

1) WIDE GROUP DENSELY NETWORK (WGD)

The model architecture of WGD is demonstrated in Figure 5.

It can be noticed that, the conventional convolution in

DenseNet is replace by the group and wide convolution in

WGD. The merit is that, the generalization capability of

WGD can be improved via group and wide convolutions

in WGD, while the number of parameters in WGD will not

increasemuch. Also, the important enhancement of width and

cardinality in WGD can be realized, therein.

FIGURE 5. The model architecture of WGD.

2) WIDE GROUP RESIDUAL DENSELY NETWORK (WGRD)

Themodel architecture ofWGRD is depicted in Figure 6. The

most significant change of WGRD with respect to WGD is

that, the idea of residual networks is incorporated in WGRD.

Details of WGRD and its affinity with other deep learning

models can be explained as follows. Provided an input image

x0 transmitted through a L-layer network, and the l-layer

can be represented via a non-linear transformation Hl(·) (i.e.,

composed of BN, ReLU, Conv, etc.). Let the output of the

l-layer be xl . Then, xl in a conventional feedforward network

FIGURE 6. The model architecture of WGRD.

can be represented in Equation 2.

xl = Hl(xl−1) (2)

For xl in a typical ResNet architecture, it can be obtained as

the addition between the input and the output of the l-layer.

Therefore, xl of ResNet can be described in Equation 3.

xl = Hl(xl−1) + xl−1 (3)

For DenseNet andWGD, the situation becomes more sophis-

ticated. Since ResNet only takes the input and the output

of the l-layer into consideration, intermediate outputs from

other previous layers (i.e., x1 from the 1st-layer, x2 from the

2nd-layer, . . . , xl−2 from the (l − 2)-layer) will be totally

neglected. In order to tackle the above problem, DenseNet

and WGD take all above-mentioned information into con-

sideration when representing xl , which can be represented

in Equation 4 (i.e., the operator [·] represents the parallel

operation).

xl = Hl[x0, x1, · · · , xl−1] (4)

xl = Hl[x0, x0 + x1, · · · ,

l−1
∑

i=0

xi] (5)

For WGRD, a more sophisticated constitution of xl is further

applied. As described in Equation 5, the superposition of

previous layers (i.e.,
∑

xi) is utilized on the i-layer. The

reason is because that, more complex features are added as the

input of the l-layer, and the learning capability of the network

can be strengthen, therein. In this way, the important idea of

residual networks with superpositions of previous layers can

be realized in WGRD.

3) ALTERNATIVE WIDE GROUP RESIDUAL DENSELY

NETWORK (AWGRD)

In this study, an alternative WGRD (i.e., AWGRD) is also

introduced to fulfill the video-based abnormal driving behav-

ior detection task. The model architecture of AWGRD is

illustrated in Figure 7, and its main idea is described in

64576 VOLUME 7, 2019



W. Huang et al.: Video-Based Abnormal Driving Behavior Detection via Deep Learning Fusions

FIGURE 7. The model architecture of AWGRD.

Equation 6.

xl = Hl[

l−1
∑

i=0

xi] (6)

It is easy to notice that, xl in Equation 6 only takes the

superposition of previous l − 1 layers (i.e.,
∑l−1

i=0 xi) into

consideration, while xl of WGRD in Equation 5 takes super-

position of all previous layers (i.e., x0, x0 + x1, · · · ,

∑l−1
i=0 xi)

into consideration. Therefore, AWGRD can be regarded as a

simplified version of WGRD, but its training efficiency will

undoubtedly becomes higher. The generalization capability

of AWGRD in automatically detecting abnormal driving

behavior will be quantitatively demonstrated in Section IV,

from the statistical perspective.

C. THE ENERGY FUNCTION TO BE OPTIMIZED IN DEEP

LEARNING-BASED FUSION MODELS

The video-based abnormal driving behavior detection task

in this study can be regarded as a general multi-class clas-

sification problem, in which the classic cross entropy is

utilized to constitute the energy function to be optimized.

Provided the i-th image (i.e., frame) of a video clip as xi,

and its label information as yi (i.e., yi is represented via a

c-dimensional feature vector in this study, while c indicates

the number of classes). Let y′i = P(xi) denote the probability

that a deep learning-based fusion model assigns xi to one

particular class (i.e., P(·) indicates the whole mapping of the

deep learning-based fusion model), and the energy function

based on cross entropy in the three deep learning-based fusion

models can be represented in Equation 7.

L = −

m
∑

i=1

c
∑

j=1

yijlog(y
′

ij) = −

m
∑

i=1

c
∑

j=1

yijlogP(xij) (7)

where, m represents the number of images. It is easy to

perceive that, Equation 7 aims to minimize the difference

between the predicted probability distribution (i.e., y′i) and the

real probability distribution (i.e., yi). The whole optimization

can be realized via the conventional stochastic gradient

descent (SGD) algorithm in this study.

When trainings of deep learning-based fusion models are

complete, such learned models will be utilized to automat-

ically detect abnormal driving behavior in real time. The

pseudo-code including main steps to fulfill this real-time

video-based abnormal driving behavior detection in this

study is elaborated in Algorithm 1. It can be perceived that,

real-time video as well as a learned deep learning model are

both required as inputs in Algorithm 1. Then, for a video clip,

each individual frame of it will be extracted and then to be

tested via the learned deep learning model. The model aims

to classify the driving pattern within the input image, and if

the pattern belongs to ones of abnormal drivings, a warning

message will be sent to the driver, immediately.

Algorithm 1 The Pseudo-Code to Fulfill the Real-Time

Video-Based Abnormal Driving Behavior Detection in This

Study

Require: V: Real-time Video M: A Learned Deep

Learning Model

for all frame in V do

Feed each individual frame into M for determining its

driving pattern;

if pattern belongs to ones of abnormal drivings then

warn the driver;

end if

end for

IV. EXPERIMENTS

A. DATABASE AND EXPERIMENTAL SETTINGS

To verify the effectiveness of newly proposed deep

learning-based fusion models in automatically detecting

abnormal driving behavior of this study, the Kaggle state farm

distracted driver detection database was utilized [54]. To be

specific, there are totally 22,424 color frames (i.e., images) of

drivers in video clips of this database. Each individual image

has a fixed spatial resolution of 640×480, and all images can

be categorized into 10 classes, which indicates 10 different

driving patterns. These driving patterns contain safe driving,

texting (using right hand), talking on the phone (using right

hand), texting (using left hand), talking on the phone (using

left hand), operating the radio, drinking, reaching behind, hair

and makeup, talking to passenger, etc. Example images of

them are displayed in Figure 8.

All deep learning models introduced in Section III are

implemented for comparisons in this experiment. In order

to make the database fit sophisticated deep learning models

better, the data augmentation is realized. The above step is

fulfilled by a series of image pre-processing, which include

noise additions, intensity changes, color changes, image rota-

tions, image scaling, etc. After executing the above step, all

images in the database are randomly and evenly divided into

two parts, i.e., the training database and the testing database.

For implementations of deep learning models, the batch size
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FIGURE 8. Example images of 10 driving patterns in the utilized Kaggle
state farm distracted driver detection database (from left to right, up to
bottom: Safe driving, texting (right hand), talking on the phone (right
hand), texting (left hand), talking on the phone (left hand), operating the
radio, drinking, reaching behind, hair and makeup, talking to passenger).

is 32, the number of training epochs is 10, and the learn-

ing rate is 0.0001. The above parameters are pre-defined

after fulfilling trails-and-errors for optimal detection perfor-

mance. For parameters to be learned within all deep learning

models, their detailed numbers are elaborated in Table 1.

It can be observed that, three new deep learning-based fusion

models have less parameters compared with most conven-

tional deep learning models (e.g., CNN, Wide CNN, Group

CNN, ResNet, etc.), so that training efficiencies of new deep

learning-based fusion models can be favored. All trainings

are implemented using a workstation equipped with Intel

Xeon Silver 4110 CPU, 128G RAM, Nvidia Titan V GPU

card, CentOS 7 and PyTorch 1.0.0.

TABLE 1. Numbers of parameters to be learned in all deep learning
models of this study.

B. EXPERIMENTAL RESULTS AND STATISTICAL ANALYSES

Figure 9 demonstrates the trend of accuracies increasing with

respect of training epochs in all compared deep learningmod-

els. First, it can be noticed that, accuracies of all deep learning

models keep on increasing and then become stable when their

training epochs further increase, which is a significant indica-

tor of the thorough training and convergence of all deep learn-

ingmodels. Second, three deep learning-based fusionmodels,

DenseNet, as well as ResNet outperform other conventional

CNN-based models (i.e., CNN, Wide CNN, Group CNN) as

revealed in Figure 9. For comparisons between three deep

learning-based fusion models and DenseNet, it is interesting

to notice that, the former reaches the stable stage faster (i.e.,

less epochs) than DenseNet, and significant robustness can be

obtained from new deep learning-based fusion models.

In order to quantitatively evaluate the detection accuracy

from statistical point of view, the classic precision-recall

(P-R) curve is utilized. Figure 10 demonstrates P-R curves

of all deep learning models in this study. It is necessary

to point out that, the area under a P-R curve indicates the

mean average precision (MAP) of the corresponding model.

FIGURE 9. The trend of accuracies increasing with respect of training
epochs in all deep learning models.

It can be observed from Figure 10 that, AWGRD achieves

the highest MAP among all compared models. For conven-

tional CNN-based models (i.e., CNN, Wide CNN, Group

CNN), their P-R curves are significantly lower than those

of others, which indicates that more sophisticated model

architectures (e.g., ResNet-based, DenseNet-based, etc.) are

beneficial for correctly detecting abnormal driving behavior

in this study. Another interesting observation from Figure 10

is that, DenseNet and its derivatives (i.e., three novel deep

learning-based fusion models) outperform ResNet regarding

their P-R curves, which suggests that the superposition of

previous layers in DenseNet is superior to incorporating only

one previous layer in ResNet for automatically detecting

abnormal driving behavior in this study.

FIGURE 10. Precision-recall curves of all deep learning models in this
study.

Precision and recall outcomes are then utilized to

further calculate the unbiased F-measure (i.e.,

F − measure =
2×precision×recall
precision+recall

), and the box-and-whisker

plot of F-measures calculated from precision and recall out-

comes of all deep learning models are illustrated in Figure 11.

In each individual box of Figure 11, the red horizontal line in

each box represents themedian of F-measure, while the upper

and lower quartiles of F-measure is represented by blue lines
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FIGURE 11. The box-and-whisker plot of F-measures calculated from precision and
recall outcomes of all deep learning models.

above and below the median in each box. A vertical dashed

line is drawn from the upper quartile and the lower quartile

to their most extreme data points, which are within the

1.5 inter-quartile range (IQR). Each individual data beyond

the 1.5 IQR is marked via a plus sign. Furthermore, a more

detailed quantitative analysis made up of one-way analysis

of variance (ANOVA) and multiple comparison tests are

conducted based on unbiased F-measure outcomes. In one-

way ANOVA, F-measure results obtained from all deep

learning models are compared to test a hypothesis (H0) that

‘‘F-measure means of all deep learning models are equiva-

lent’’, against the general alternative that these means cannot

be all the same. The p-value is utilized here as an indicator

to reveal whether H0 holds or not. In this study, p-values

calculated from all F-measure results are nearly 0, which

is a strong indication that all these models cannot share the

same F-measure mean. Therefore, the next step is to conduct

more detailed paired comparisons. The reason to do so is

because that, the alternative against H0 is too general. Infor-

mation about which deep learning model is superior from

the statistical perspective cannot be perceived by one-way

ANOVA alone. There are two kinds of evaluation after

applying multiple comparison tests on calculated F-measure

of all models, and quantitative evaluation results are shown

in Tables 2, 3, and 4. For the two kinds of evaluation, one is

estimated F-measure mean difference, which is a single-value

estimator of F-measure mean difference. Another is a 95 %

confidence interval (CI). In statistics, a CI is a special form

of interval estimator for a parameter (i.e. F-measure mean

difference in this experiment). Generally speaking, instead of

estimating the parameter by a single value, CI is capable to

provide an interval estimation which is likely to include the

estimated parameter within a specified interval.

It can be summarized from Tables 2, 3, and 4 that,

the majorities of F-measure entries are positive. Since

the three deep learning-based fusion models are utilized

TABLE 2. Multiple comparison tests between WGD and other
conventional models based on F-measure in this study.

TABLE 3. Multiple comparison tests between WGRD and other
conventional models based on F-measure in this study.

TABLE 4. Multiple comparison tests between AWGRD and other
conventional models based on F-measure in this study.

as Method 1 in above-mentioned three tables (i.e., WGD

in Table 2, WGRD in Table 3, and AWGRD in Table 4),

those positive entries in tables substantiate the superiority of

Method 1 to other compared conventional deep learningmod-

els. It is also necessary to point out that, for the comparison

between WGD and DenseNet-29 in Table 2, the single-value

estimation is negative and its corresponding 95% confidence

interval is also negative. It suggests that DenseNet-29 out-

performs WGD based on F-measure in this study, which

complies well with the fact that the P-R curve of DenseNet

is above that of WGD in Figure 10.
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Another detailed comparison is carried out regarding the

three new deep learning-based fusion models, and statisti-

cal outcomes are demonstrated in Table 5. It can be con-

cluded that, AWGRD outperforms WGD and WGRD based

on F-measure in this study. Since AWGRD also incorporates

the important idea of residual networks with superpositions of

previous layers but with less parameters (i.e., 1.42M param-

eters compared with 1.54M parameters of WGD and 1.58M

parameters of WGRD as indicated in Table 1), it finds a good

balance between the effectiveness and efficiency among all

three newly proposed models in this study.

TABLE 5. Multiple comparison tests among AWGRD, WGD and WGRD
based on F-measure in this study.

C. DISCUSSIONS

Experimental analyses in Section IV-B demonstrate the

superiority of newly introduced deep learning-based fusion

models in automatically detecting abnormal driving behavior

from the statistical point of view. In this section, more details

about situations in which new models can outperform con-

ventional deep learning models will be discussed.

According to Section IV-B, WGD can outperform ResNet,

and example cases in whichWGD correctly classifies driving

patterns but ResNet cannot do are displayed in Figure 12.

It can be observed that, when the lighting condition within

the vehicle is not ample, ResNet becomes more prone to

misclassify visually similar driving patterns. However, WGD

is more capable to discern the correct driving pattern in this

challenging situation. For Figures 13 and 14, example cases

which reveal that WGRD outperforms ResNet and DenseNet

are displayed, respectively. For Figures 15 and 16, additional

example cases suggesting that AWGRD outperforms ResNet

and DenseNet are displayed, respectively. It can be concluded

based on these example cases that, WGRD and AWGRD are

capable to correctly discern visually similar cases, especially

within challenging conditions (e.g., poor lighting, partial

occlusions of cell phones, etc.).

Another interesting discussion is as follows. Three newly

introduced deep learning-based fusion models are executed

on a Nvidia Titan V GPU card, in order to evaluate their

efficiency when detecting different driving patterns (i.e.,

at the testing stage). Table 6 elaborates their operation times

of correctly detecting different driving patterns. It is quite

FIGURE 12. Example cases in which WGD correctly classifies driving
patterns but ResNet cannot do.

FIGURE 13. Example cases in which WGRD correctly classifies driving
patterns but ResNet cannot do.

FIGURE 14. Example cases in which WGD correctly classifies driving
patterns but DenseNet cannot do.

FIGURE 15. Example cases in which AWGD correctly classifies driving
patterns but ResNet cannot do.

FIGURE 16. Example cases in which AWGD correctly classifies driving
patterns but DenseNet cannot do.

TABLE 6. Operation times (mean ± standard deviation) of correctly
detecting different driving patterns via WGD, WGRD, and AWGRD in this
study (units: ms).

encouraging that, the average operation times of all three new

models are around 30 ms. It is promising to realize real-time

operations of automatic driving patterns detection using the

three newly introduced deep learning-based fusion models

based on one single visible-based camera and a Nvidia Titan

V GPU card (i.e., 30ms can guarantee no less than 33 fps that

meets the requirement of real-time operations).
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V. CONCLUSION

The video-based abnormal driving behavior detection study

is highly important nowadays, as it is a reliable and automatic

manner to ensure safeties of drivers. Also, it receives vast

popularity as it is an essential step to realize fully auto-

matic driving (i.e., particularly in Level-3 and Level-4 stages

according to the ‘‘autonomous driving’’ definition provided

by the US Department of Transportation’s National Highway

Traffic Safety Administration). In this study, three novel deep

learning-based fusionmodels are introduced for the first time,

to fulfill the video-based abnormal driving behavior detection

task. Technically, these new models are inspired by the popu-

lar DenseNet, which was proposed in recent years. ForWGD,

it emphasizes on important issues of designs of modern deep

learning models, including the depth, the width, and the

cardinality. The width and the cardinality of WGD signifi-

cantly increase, therein. For WGRD and AWGRD, they are

more sophisticated as the important idea of residual networks

with superpositions of previous layers is incorporated. This

idea is highly valuable in the video-based abnormal driv-

ing behavior detection task, as temporary and spatial latent

information can be comprehensively described with the help

of superpositions of previous layers. Extensive experiments

based on the standard Kaggle state farm distracted driver

detection dataset as well as rigorous comparisons with several

other popular deep learning models suggest the superiority

of newly proposed deep learning-based fusion models in

both effectiveness and efficiency. In the future, ‘‘global +

local’’ latent features-based abnormal driving behavior detec-

tion studies will be conducted. Also, effective and efficient

deep learning models realized via customized mobile chips

will be investigated for realizing abnormal driving behavior

detection.
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