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Video-based detection infrastructure is crucial for promoting connected and autonomous shipping (CAS) development, which 
provides critical on-site traffic data for maritime participants. Ship behavior analysis, one of the fundamental tasks for fulfilling 
smart video-based detection infrastructure, has become an active topic in the CAS community. Previous studies focused on ship 
behavior analysis by exploring spatial-temporal information from automatic identification system (AIS) data, and less attention was 
paid to maritime surveillance videos. To bridge the gap, we proposed an ensemble you only look once (YOLO) framework for ship 
behavior analysis. First, we employed the convolutional neural network in the YOLO model to extract multi-scaled ship features 
from the input ship images. Second, the proposed framework generated many bounding boxes (i.e., potential ship positions) based 
on the object confidence level. �ird, we suppressed the background bounding box interferences, and determined ship detection 
results with intersection over union (IOU) criterion, and thus obtained ship positions in each ship image. Fourth, we analyzed 
spatial-temporal ship behavior in consecutive maritime images based on kinematic ship information. �e experimental results 
have shown that ships are accurately detected (i.e., both of the average recall and precision rate were higher than 90%) and the 
historical ship behaviors are successfully recognized. �e proposed framework can be adaptively deployed in the connected and 
autonomous vehicle detection system in the automated terminal for the purpose of exploring the coupled interactions between 
traffic flow variation and heterogeneous detection infrastructures, and thus enhance terminal traffic network capacity and safety.

1. Introduction

SHIP behavior recognition and prediction is very important 
for the early warning of risky behavior, identifying potential 
ship collision, improving maritime traffic efficiency, etc., and 
thus is a very active topic in the intelligent maritime navigation 
community. Currently, we primarily rely on the AIS data to 
explore traffic flow knowledge under varied maritime traffic 
situations. �e large-scale available AIS data support research 
of probing maritime spatial-temporal traffic patterns, and rec-
ognizing ship behaviors by inferring from ship locations, ship 
heading directions, ship speeds (i.e., speed over ground and 
speed over water), etc. Wang et al. obtained the spatial-tem-
poral traffic tensors by mining the high-resolution AIS data, 
and then employed a sparse multi-linear decomposition 

method to predict ship behaviors [1]. Li et al. developed a 
multi-dimension scaling model to explore spatial similarity 
among extensive ship trajectories, and then an improved den-
sity spatial clustering algorithm is proposed to acquire the 
optimal AIS clusters and recognize potential abnormal ship 
behaviors at a fixed time interval [2]. Zhao et al. combined the 
Douglas-Peucker-based compression model and density clus-
tering method to discover maritime traffic patterns [3]. 
Arguedas et al. proposed a two-layer artificial neural network 
to represent structured maritime traffic patterns, which pro-
vide maritime regulators a high-efficiency tool for perceiving 
real-time maritime situation, and fulfill the automatic mari-
time traffic monitoring task [4].

�e AIS data can efficiently model ship trajectories at sea, 
and help maritime relevant participants (maritime officials, 
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ship crew, etc.) take early actions to avoid potential accidents. 
Zhang et al. proposed different frameworks to recognize pos-
sible near miss ship-ship collisions from AIS data [5, 6]. Bye 
et al. analyzed maritime accidents by mining the inshore ship 
AIS data considering varied maritime static and kinematic 
information, such as sailed nautical miles, accumulated engine 
working hours, port call number, ship type, flag state, gross 
tonnage, etc. [7]. Integrating the AIS data with other maritime 
sources (synthetic aperture radar (SAR), radar, etc.) to fulfill 
accurate ship behavior recognition task have shown numerous 
successes. Mazzarella et al. fused the space-borne SAR images 
and AIS information to explore maritime traffic knowledge 
by deeply exploiting historical ship trajectories, cross-validate 
ship positions detected in satellite imagery and recognize those 
ships that deliberately hide their sailing information [8]. 
Habtemariam et al. developed a measurement-level fusion 
algorithm by merging radar data and AIS messages with a 
novel joint probabilistic data association framework [9]. �e 
data fusing relevant methods obtain comprehensive informa-
tion for both, on and off-site maritime traffic, and support 
robust ship behavior exploration.

�ough the AIS dataset contains rich information for 
ensuring maritime safety, security and efficiency, the following 
critical weaknesses reduce AIS based techniques performance 
when analyzing ship behaviour: (1) Some ships (e.g., fishing 
boats) may not be equipped with AIS relevant facility, and 
some ships sailing at sea may attempt to deactivate (or even 
shut down) their AIS transmitters (smuggling ships, warships, 
etc.) [10]. (2) AIS equipment broadcasts the host ship static 
and kinematic information at a fixed frequency (usually varied 
from 2 to 10 seconds) when the ship is sailing at coastal chan-
nels, and the data broadcasting interval can extend to 3 min-
utes when the ship is in anchoring state, which leads to 
significant challenge of formatting AIS database (creating, 
retrieving, updating and deleting operations). (3) We can 
hardly obtain the visual spot traffic information straightfor-
wardly from AIS system. More specifically, we need to man-
ually recover the original maritime traffic situations by 
inferring from ship trajectories with the support of historical 
AIS data, which is very time consuming and labor-intensive. 
�e Long Range Identification and Tracking (LRIT) technique 
is another useful method for obtaining ship positions. But, the 
LRIT data is private and confidential, and thus it is not easy 
for the public to access the data.

�e extensive deployment of maritime sensors and rapid 
development of computer vision techniques help us easily 
collect, store and analyze the on-site maritime transportation 
data. Currently, public accessible maritime image sources 
include SAR image, infrared data, and closed-circuit television 
(CCTV) videos. �e SAR images sharply scale down the orig-
inal ship-to-ship distances as it shoots maritime images at a 
very high attitude (approximately 5000 km above the earth). 
�e image quality may be severely degraded by strong clouds, 
and thus may fail to provide us high-resolution imageries for 
conducting accurate maritime traffic situations analyses [11]. 
�e infrared image resolution is not high due to the intrinsic 
infrared imaging technique bottlenecks, which impose great 
challenge of extracting high-fidelity traffic information for 
analyzing the small ship (i.e., ship size in images are small) 

behaviours [12]. Besides, the performance of infrared based 
techniques is easily interfered by the wave and ship engine 
temperature variations [13].

�e CCTV data sources provide us rich and real time 
on-spot traffic information (traffic volume, ship speed, head-
ing angle, etc.), and thus support high-fidelity ship behavior 
analysis researches. Valsamis et al. employed traditional 
machine learning algorithms to extract ship trajectories from 
CCTV videos [14]. Ship tracking and detection are the two 
popular topics for implementing ship behaviors recognition 
task via CCTV data sources. Zhang et al. presented a ship 
detection framework to remove vibration interference gener-
ated by non-stationary surface platform (buoys, sailing ships, 
etc.), and yielded trustable visual maritime surveillance results 
[15]. Yao et al. proposed a local visual saliency map to detect 
ships from GF-4 satellite sequential images, and the local peak 
signal-to-noise ratio indicator was introduced to quantitatively 
evaluate the model performance [16]. Kang et al. proposed a 
self-selective correlation filtering method to solve the ship 
scale variation challenge for the purpose of ship tracking [17]. 
�e deep learning methods have shown great potential in 
object detection and tracking field, which were pre-trained by 
the public-access benchmarks, and the models were then fine-
tuned with customized data to obtain satisfactory ship behav-
ior recognition performance. Woo et al. developed a long 
short-term memory based recurrent neural network structure 
to detect and predict kinematic behaviors of unmanned sur-
face vehicles [18]. Gao et al. developed an online real-time 
ship behaviour prediction model by constructing a bidirec-
tional long short-term memory recurrent deep learning neural 
network [19]. Similar researches can be found in [20–22].

A�er carefully reviewing the previous ship behavior 
related studies, we found the following disadvantages signifi-
cantly challenge the ship behavior recognition performance 
(from maritime video data): (1) ships sailing far from moni-
toring camera can be severely interfered by background imag-
ing pixels, especially for the ships have similar intensity with 
background. More specifically, the ship visual features may be 
contaminated by background, which may not be easily 
extracted by the feature detectors; (2) ships in the maritime 
images are quite easily sheltered by obstacles (such as sea clut-
ters, neighboring ships), leading to a big challenge of accurate 
extracting high-fidelity ship imaging positions. To address the 
issue, we proposed a novel framework to achieve accurate ship 
behavior recognition with four consecutive steps. More spe-
cifically, the ensemble YOLO framework was developed to 
accurately determine ship positions in consecutive maritime 
images, and then ship trajectories was modeled and recog-
nized based on geometry knowledge.

�e findings in the research provide us on-site ship kine-
matic information which significantly benefits automated 
terminal data stream interaction for enhancing terminal logis-
tics efficiency. More specifically, the ship, port, and vehicles in 
terminal districts (e.g., container truck, automated guided 
vehicle) are closely connected for the purpose of safe and effi-
cient cargo container trafficking. A�er obtaining ship kine-
matic information (displacement, moving speed, sailing angle, 
etc.) via maritime surveillance video, maritime participants 
can take early initiative activities to identify (and avoid) 



3Journal of Advanced Transportation

potential traffic collision through the manner of maneuvering 
ships, sending out risky information, etc. Meanwhile, the 
automated terminal management center can generate produc-
tion planning and scheduling solution in advance, and then 
the autonomous vehicles are dispatched to the ship anchoring 
area to prepare for unloading the on-board containers and 
transmitting cargos to destinations (terminal yard, cargo 
receiver, etc.).

Our primary contributions were summarized as follows: 
(1) we have analyzed the pros and cons of automated ship 
recognition and ship behavior analysis via varied maritime 
data sources (AIS, LRIT, maritime surveillance videos, etc.). 
It is found that the video based methods provide us with more 
high-fidelity immediate and understandable on-site traffic 
situation awareness information in realistic applications com-
pared to the other popular maritime data; (2) we employed a 
YOLO based ensemble framework to collect ship spatial-tem-
poral dataset from maritime videos. More specifically, we 
extract high-fidelity ship kinematic information (i.e., moving 
displacements, speeds, course angle, accelerations) from mar-
itime videos, which provides instantaneous traffic information 
to the maritime involved participants for taking early-warning 
measurements to avoid potential ship collisions; (3) we have 
collected ship video clips on two typical traffic scenarios (i.e., 
irregular ship turning motion, moving straight), from which 
we can extract both of microscopic and macroscopic maritime 
data supporting further maritime traffic flow knowledge dis-
covery. Considering, a few ship video benchmarks are open 
for public, we are willing to share the collected ship videos 
with potential interested readers (by sending request email to 
jinjuntang@csu.edu.cn).

2. Data Description

�e lack of public accessible ship videos (due to the data con-
fidential and sensitivity) imposes additional challenge of eval-
uating performance of ship behavior recognition framework. 
To this end, we have shot several maritime surveillance videos 
from coastal areas near Shanghai terminal in China. �e col-
lected ship images are denoted as case-1 and case-2 scenarios, 
which are classified with ship sailing directions. More specif-
ically, the first scenario focuses on ship moving-straight sit-
uation, and the second case involves with consistently irregular 
ship turning situation. It is noted that ships moves far away 
from camera may be very difficult to be recognized by human 
beings, and thus the small size ships (cannot be recognized by 
human beings) in maritime images are suppressed for further 
analysis. Readers are recommended to refer to [23] for the 
small size ship definition.

To enhance the framework generalization performance, 
we employed data augmentation techniques to generate more 
ship images by applying common augmentation operations. 
More specifically, we can obtain 20 variant ship images for 
each input training image with the help of data augmentation 
technique (with operations of translation, rotation, color shi¦-
ing, etc.). �e ship variant samples are manually selected from 
the generated 20 images where the visual ship features (edges, 
contours, color, etc.) obviously differ from the original input 

image (see Figure 1). We have collected 970 maritime frames 
in the case-1 and 2030 images in case-2. Overall, the ship data-
sets (for the two video clips) have 3000 maritime surveillance 
pictures, with 70% of them being used for training sets, and 
the rest as a validation set. More specifically, we select 679 
frames in case-1 and 1421 images in case-2 for model training 
purpose, while the remaining 291 and 609 frames in case-1 
and case-2 are used for the test purpose. Following the rules 
in the previous studies [24], we manually rectified training 
image resolutions into 720 × 480, and the ship image resolu-
tions in the validation dataset were formatted into 416 × 416. 
�e frame rate of each video is 30 frames per second (fps). �e 
ground truth ship positions in each frame are manually labeled 
by our group member (i.e., undergraduate and graduate 
students).

3. Methodology

�e overall framework developed for recognizing ship behav-
iors includes four steps: ship feature extraction, bounding box 
generation, ship position identification, and ship behavior 
analysis. �e first step employs the YOLO network to extract 
ship features from the input training data at different scales. 
In the second step, our framework predicts a bunch of bound-
ing boxes which are considered as potential ship positions in 
each image. �e third step aims to remove the interference 
from irrelevant bounding boxes, the K-means method is intro-
duced to obtain anchor boxes (i.e. potential ships), and the 
binary cross-entropy cost function is then solved to determine 
the final ship detection results. �e third step employs geom-
etry theory to recognize consecutive ship positions in each 
image (i.e., positions from same ship), and determine ship 
behaviors by analyzing the ship sailing angle variation. �e 
flowchart of the proposed framework is shown in Figure 2.

3.1. Ship Feature Extraction. �e YOLO model is introduced 
to learn the distinct ship features from input images by using 
a convolution neural network [24, 25]. More specifically, the 
YOLO model is introduced to explore ship features at different 
scales by varied scaled filters and obtain ship feature pyramids, 
which are composed by the high-resolution features (fine-
grained level features). �e convolutional neural network 
in the proposed ensemble YOLO framework is nested with 
convolutional layers, and the deeper layers in the nested 
network can exploit more discriminative ship features than 
those in the previous layers, which greatly benefits ship 
detection accuracy for the ensemble YOLO model. �e 
obtained ship feature is shown as a matrix as follows:

where ��−1�  is the �th input ship features from the (� − 1)th 
convolutional layer, ���v is the weight matrix between the vth 
and the �th ship feature layer. �e parameter ��

v
 is the bias of 

the vth output ship features at the �th convolutional network 
layer, and � represents the activation model used for activating 

(1)���
v
= �(∑

�
��−1� ∗ ���v +��v),
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where ���  and ���  are the ensemble framework detection result, 
��
w

 and ��ℎ  are the width and height of the detected box, respec-
tively. �e v� and v� are the horizontal and vertical distances 
between the grid cell center point to the input image top le¦ 
corner, respectively. �e ��

w
 and ��ℎ are the weight matrices on 

the width and height, respectively. �e �(���) and �(���) are the 
sigmoid function outputs based on the predicted bounding 
box information of the grid cell. �e parameter �g�ℎ is the 
square of ground truth box for the target ship in a maritime 
image, and the ����� is the counterpart of the detected bound-
ing box. �e symbol ∩ depicts the overlapping operation, while 
the ∪ is the union operator.

3.3. Ship Detection and Recognition. �e outputs of the 
previous step generate a lot of bounding boxes with many of 
them being false alarms, and thus we employ the �-means 

(2)

��� = �(���) + v�,
��� = �(���) + v�,
��
w
= ��

w
��
�
w ,

��ℎ = �
�
ℎ��
�
ℎ ,

(3)��� =
�g�ℎ ∩ �����
�g�ℎ ∪ �����

,

neurons at the �th layer. �e ���
v
 is the vth output features at 

same layer.

3.2. Bounding Box Generation. �e ensemble YOLO framework 
predicts the coordinates of bounding boxes directly using fully 
connected layers on top of the convolutional feature extractor. 
More specifically, with the features extracted from the previous 
step, the original input image is split into � ×� grids. �e 
center of grid cell is used to predict the object location and 
class when the object image center falls in the grid center. �e 
grid cell outputs a confidence score for depicting the object 
category, which is defined as �� × IOUg�ℎ

���. �e confidence 
score is obtained as the IOU value between the ground truth 
box and the ensemble YOLO model predicted area (see Figure 
3), and the IOU calculation formula is shown in Equation (3). 
Note that each grid cell outputs the object category confidence. 
�e parameter �� is set to 1 when the object center locates 
in the grid cell center, otherwise the parameter �� is set to 
zero. �us, the grid cell detection results are positively related 
with IOU value. A larger IOU shows the bounding box (i.e., 
detected ship position) is closer to the ground truth, and vice 
versa. �e proposed framework predicts each grid cell which 
is represented by x-coordinate ���, y-coordinate ���, width ��

w
, 

and height ��ℎ of a bounding box, and ship confidence level ���
. �e ensemble YOLO framework detected bounding boxes’ 
information are presented as follows [25]:

Random center crop Mirror version Original image

Salt & pepper noise added Resize image

Gaussian noise added Rotate image

Color shi�ing

Color shi�ing

Gray scale

Red channel

Green channel

Blue channel

Random center crop Mirror version

Random center crop Mirror version

Random center crop Mirror version

Color shi�ing

Color shi�ing

Figure 1: �e original collected and data-augmentation generated ship images (the output images are labeled by red rectangle).
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respectively. �en, the �-means algorithm clusters the (�
w
, �ℎ) 

into � classes, and the each cluster center is considered as the 
anchor box. Readers are suggested to refer to [27] for more 
details about �-means algorithm. In the training procedure, 
the anchor box with maximum IOU is considered as detected 
ship positions. We employ the binary cross-entropy cost 
function to determine the class of the box (see Eq. (7)).

where �(����, ������) is the distance between the bounding 
box and the center box, and IOU(����, ������) is the inter-
section over union between the two boxes. �e w���� and w��g 
are the widths of the bounding box and image, respectively. 
�e ℎ���� and ℎ��g are the height of the bounding box and 
image, respectively. �e � is the bounding box number, �� is 

(4)�(����, ������) = 1 − IOU(����, ������),

(5)�w =
w����
w��g
,

(6)�ℎ =
ℎ����
ℎ��g
,

(7)

�� = −
1
�
�
∑
�=1
�� ∗ log (�(��)) + (1 − ��) ∗ log (1 − �(��)),

clustering method to obtain anchor boxes by suppressing 
the interference boxes [26]. More specifically, the K-means 
algorithm randomly selects � bounding boxes as the initial 
clustering center, and the distance between each bounding 
box to the cluster center is calculated. �e conventional 
K-means algorithm employs the Euclidean distance as the 
evaluation measurement, and larger boxes (ships with larger 
imaging size) contain higher detection false alarms than the 
smaller ones. To mitigate the negative influence, we employ the 
distance in Eq. (4) for the box clustering rule in the �-means 
algorithm. �e �-means algorithm obtains the width (height) 
ratio �

w
(�ℎ) by dividing the bounding box width (height) with 

the image width, which are shown as Equations (5) and (6), 

Ship feature extraction 

# Frame 121 

# Frame 160 

# Frame 203 

Scaled filters Ship feature pyramid 

Ship Buoy

Bounding box generation 

Anchor box determination and ship detection Ship behavior analysis 

Find instantaneous positions in 
consecutive ship images

y

x

Ship is turning le�

Ship is turning right

Ship is sailing straight

x(tʹʹ), y(tʹʹ)

x(tʹ), y(tʹ)

x(t), y(t)

Figure 2: Ship behavior analysis for the proposed framework workflow.

Intersection area

Ground truth ship position

Bounding box (predicted ship position)

Union area

Figure 3: Sketch map of calculating IOU.
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where �(�) and �(�) determine the ship moving distance in 
the x and y direction, respectively. �e parameters � and � are 
thresholds of determining the maximum pixel distance in the 
x and y axis. �e parameter �(�) is ship displacement between 
neighboring frames, and the threshold � determines maximal 
neighboring ship moving displacement. �e parameter d(�) 
indicates ship sailing direction variation tendency, and the 
parameter � is the corresponding threshold.

3.5. Detection Goodness Measurements. To evaluate the 
proposed framework detection performance, we compare 
ship detection results with manually labeled ship positions 
(i.e., ground truth data) in each maritime image. Following 
the rules in the previous studies [28], two statistical indicators 
are employed to demonstrate the framework performance, 
which are recall rate (��) and precision rate (��). �e indicator 
�� demonstrates the miss-detection performance of the 
proposed framework. More specifically, the lower value of 
the indicator �� implies that fewer objects in the maritime 
images (such as ships, buoys, etc.) are miss-detected by the 
framework. �e parameter �� shows the precision detection 
rate for the proposed framework. More specifically, the larger 
�� demonstrates less detection error, and thus indicting better 
detection performance for our proposed framework. �e 
definitions of �� and �� indicators are shown as follows:

where �� is the number of ships positively detected by the 
proposed framework. �e parameter �� is the miss-detected 
ship number and the �� is false-detected ship number.

4. Experiments

4.1. Experimental Settings. �e proposed framework is applied 
to the two collected maritime video clips, which have been 

(11)�� =
��
�� + ��
,

(12)�� =
��
�� + ��
,

the zth detected bounding box in the image, and �(��) shows 
the predicted probability for the bounding box belonging to 
the class.

3.4. Ship Behavior Analysis. A¦er obtaining ship locations 
in each maritime image via the previous steps, connecting 
positions from neighboring images of the same ship is very 
crucial for the ship behavior analysis. Considering that ships 
are rigid objects, and bounding box on the same ship should 
share the same motion, we determine the ship location with 
the spatial-temporal constraints based method. Note that each 
bounding box is presented by its center point. Assume the ship 
location in the image i is presented as ���, ���, ��, where the ���
and ��� denote the x and y-coordinate of the bounding box 
center point in the ith maritime image, and the �� is the ship 
sailing direction in the same image. We consider the positions 
in the neighboring ith and the (� + 1)th images belong to the 
same ship when the group constraints in Eq. (8) are met. 
In addition, the ship behavior analysis is implemented by 
analyzing variation tendency of �� in the consecutive images. 
More specifically, the variation between neighboring �� with 
a decreasing trend shows that the ship is turning le¦, and an 
increasing tendency implying the ship is turning right. �e 
ship is considered as sailing straight when the �� variation 
keeps in slight fluctuations (see Eqs. (9) and (10)).

(8)

�(�) = �������� − ��(�+1)����� < �,
�(�) = �������� − ��(�+1)����� < �,

�(�) = √(�������� − ��(�+1)�����)
2 + (�������� − ��(�+1)�����)

2 < �,

(9)�� =
(��� − ��(�+1))
(��� − ��(�+1))

,

(10)�(�) = ������� − �(�+1)
����� < �,

Frame # 31 Frame # 124 Frame # 297

(a)

Frame # 31 Frame # 124

Target shipTarget ship Target ship

Frame # 297

(b)

Figure 4: Ship detection results on typical frames of case-1. (a) Initial ship images, (b) Ship detection results.
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Figure 5: Ship kinematic data variation tendency at time interval 0.03 s; (a) ship position variation tendency at x-axis; (b) ship position 
variation tendency at y-axis; (c) ship moving displacement variation; (d) ship sailing direction variation.

detailed described in the above sections. Our framework was 
developed on the Win10 OS with 32G RAM and 3.2 GHz CPU. 
�e GPU version is NVIDIA GeForce GTX 1080 Ti, which 
contains 11 GB RAM. Besides, the simulation platform is 
Tensorflow implemented on the Python (3.7 version). �ough 
different versions of YOLO detector are public accessible, we 
developed our framework based on YOLO v3 for the purpose 
of accurate ship detection and behavior analysis. We set the 
anchor box number to 3 considering the tradeoff between time 
consumption and detection performance. �e cluster number 
was set to 3 considering that ship, aiding facility (buoy, light 
beacon, etc.), and the obstacles (rock, bridges, etc.) are the 
three common types of objects in maritime images. �e more 
detailed YOLO model setups are suggested to refer to [24].

4.2. Experimental Results for Case-1. �e outputs of the 
proposed framework are presented in detail to reveal the model 
results. �e ships in each maritime image were detected by the 
ensemble YOLO model, and detection samples were shown in 
Figure 4. It is observed that the majority of ships in each image 
was successfully detected, and partial small-size ships were 
miss-detected by the proposed framework (i.e., ships sailing 

close to the water-sky-line maybe miss-detected). �e main 
reason is that we did not mark out all the small-size ships in 
the training images, and thus the proposed model was not 
trained by such ship samples. More specifically, considering 
the small size ships cannot be 100% correctly recognized by 
our naked eyes, we only marked out the ships with discernible 
visual features (contours, edges, etc.) in the training dataset 
when we fine-tuned the YOLO model settings in the proposed 
framework.

Table 1 presents the ship detection performance of the 
proposed framework. Both of the �� and �� indicators are 
higher than 90%, indicating that more than 90% ships in the 
case-1 were successfully detected by our proposed framework. 
More specifically, the �� value in the case-1 is 93.52%, which 
implies that less than 7% ships are failed to be detected by the 
proposed framework. It is found that the miss-detected ships 
are the small size ships which are quite far from the camera 
shooting area. �e �� value is 94.16% which indicates that more 
than 94% detected ships in case-1 are positive results (i.e., over 
94% detected ships are the true targets). A¦er carefully check-
ing the framework detection results, we found the false-de-
tected ships mainly consisted of navigation aiding facilities. 
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parameter in Equation (8) (i.e., �(�), �(�), �(�) and �(�)) pre-
sents random and even unrealistic variation tendency. �e 
main reason is that when ship moving distance is very small 
within 0.03 s (as ship speed is very slow), and thus ship kine-
matic information in images is very sensitive to the small 
measurement imaging error. According to the thumb of rule, 
we divided the sample rate of collecting ship positions into 
0.34 s, 0.50 s, 0.67 s, and 1 s, and the parameter distributions 
at each sample rate were shown in Figure 6. It is noticed that 
larger sample rate provides smoother ship position variation, 
and obtains more reasonable results. For instance, at the time 
interval 0.34 s, the maximum �(�) value reaches 10.0 pixels, 
which was nine-fold higher than that of the minimum �(�)
(see Figure 6(a)). But, the �(�) ranges from 9 to 16 pixels (at 
time interval 1 s), with fluctuation magnitude sharply decreases 
to 43.75%. We can observe similar findings from �(�) and �(�)
variations as shown in Figures 6(b) and 6(c), respectively.

Both �� and �� values have shown that our framework have 
obtained satisfied ship detection performance, and can provide 
accurate ship positions for the ship behavior analysis.

With the obtained ship positions in the previous steps, we 
then connected positions from same ship based on the crite-
rion in Equation (8). It is worth noting that parameter setup 
is crucial for identifying consecutive ship positions. We first 
estimated the parameter settings per frame (i.e., time interval 
was set to 0.03 s). As shown in each subplot in Figure 5, each 
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Figure 6: Parameter variation tendency with different time intervals. (a) �(�) variation at different time intervals. (b) �(�) variation at 
different time intervals. (c) �(�) variation at different time intervals. (d) �(�) variation at different time intervals.

Table 1: Ship detection performance for case-1 and case-2.

�� (%) �� (%)

Case-1 93.52 94.16

Case-2 92.17 93.65

Average 92.85 93.91
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time interval leads to sharp ship sailing angle variation, which 
is mainly caused by minor error of ship position measurement. 
As shown in the Figure 6(d), �(�) variation at the 0.5 s time 
interval fluctuation is less sharply as that of the 0.34 s. However, 
the �(�) variation at the 1 s presents a smooth variation, and 
indeed the unrealistic ship moving status has been successfully 

�e �(�) variation at different sample rates has confirmed 
the variation tendency of the other parameters (see Figure 
6(d)). In fact, the �(�) indicates ship sailing direction variation 
in time domain, and the neighboring ship sailing direction is 
supposed to be smoothly changed considering ship displace-
ment in neighboring frames is small. It is observed that 0.34 s 
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Figure 7: Ship spatial-temporal trajectory map at different time intervals in case-1. (a) Ship spatial-temporal trajectory map at time interval 
0.34 s, (b) Ship spatial-temporal trajectory map at time interval 0.50 s, (c) Ship spatial-temporal trajectory map at time interval 0.67 s, (d) Ship 
spatial-temporal trajectory map at time interval 1.00 s.
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Figure 8: Ship detection results on typical frames of case-2. (a) Initial ship images, (b) Ship detection results.
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Figure 9: Ship spatial-temporal trajectory map in case-2.

suppressed. �e results in Figure 6 suggest that a larger data 
sample rate leads to more reasonable results in our model, and 
thus 1 s was set to the default value (which is applied in fol-
lowing section without specific illustrations). �e thresholds 
used for recognizing ship behaviors are set as follows: � is set 
to 16.5, � is set to 2.5, � is set to 16.7, and the � is set to 12.

To sum up, we have tested varied parameter setups for the 
purpose of obtaining optimal model performance following the 
rules in previous studies [24, 25, 29]. It is observed that ship 
detection results are very robust to the YOLO parameter vari-
ations. But, the time span is crucial for accurately measuring 
ship moving displacements and analyzing ship behaviors, and 
thus the sensitivity analysis was conducted to determine the 
optimal time interval (under 0.03 s, 0.34 s, 0.50 s, 0.67 s, 1 s). We 
did not compare our framework training results with the pre-
trained weights trained by the ship samples in public datasets 
(COCO, ImageNet, etc. [30, 31]). �e main reason is that ship 
training and detection challenges in the collected maritime vid-
eos are significantly different from the previous public bench-
marks (i.e., ships in the COCO and ImageNet datasets are not 
severely contaminated by environments).

�e target ship (i.e., the white ship shown in Figure 4) 
trajectories in spatial-temporal map at different time intervals 
are shown in Figure 7. It is observed that several ship trajectory 
points overlapped when the time interval is small, due to that 
ship moving displacement is very small at a small time inter-
val. More specifically, we can only recognize ship sailing direc-
tion with moving straight-forward tendency (see Figures 
7(a)–7(c)). �e ship behavior can be clearly recognized as 
moving straight when the sample rate becomes larger, which 
is obviously confirmed when the time interval it arrives at is 
1 s (see Figure 7(d)). A¦er checking the initial maritime video 
clip, we found the white ship is coast guard ship which was 
monitoring the traffic on-site at a high speed.

4.3. Experimental Results for Case-2. �e proposed framework 
was also applied on the case-2 where ships have different 
travelling behaviors. It is found that the ship with clear visual 
features in maritime images was successfully detected by our 
method. But, the ship detection performance under case-2 is 
not as good as that of the case-1, as the �� and �� statistical 

indicators were both lower than the counterparts in case-1 
(see Table 1). More specifically, the �� of case-2 is 92.17%, 
which is 1.46% lower than that of the case-1. A¦er carefully 
checking the ship detection results in each frame (detection 
samples are shown in Figure 8), we found that many ships 
were overlapped in the maritime sequences, and thus the 
proposed framework cannot accurately detect ship positions. 
More specifically, some ships may be labeled by a larger or 
smaller bounding box in ship overlapping area, which cannot 
be successfully detected by our naked eyes. �e target ship 
spatial-temporal map was shown in Figure 9, which have 
shown varied ship behavior patterns. More specifically, the 
ship behaviors can be divided into three stages, which are 
moving straight, turning right and finally turning le¦. We have 
checked the initial maritime video in case-2, and it is observed 
that a ship following the ship in the same channel moved very 
fast which may trigger traffic accident. According to the rule 
in the international regulation for preventing collision at sea 
[32], the target ship is supposed to take initiative activities to 
avoid the accident. �us, the target ship changed her sailing 
direction toward le¦ waterway, and provided wider navigation 
area for the following ship. A¦er that, the target ship navigated 
straight for the purpose of surpassing the neighboring ships. 
By obeying the maritime traffic separation law, the target ship 
changed her sailing direction towards starboard to move along 
the channel.

It can be observed that the maritime video data supports 
us to exploit the on-spot microscopic kinematic ship traffic 
information (ship platoon speeds, ship maneuvering direc-
tions, distance to closest point of approach, time of closest 
point of approach) which cannot be easily obtained from AIS 
data [33, 34]. �e on-duty maritime officials’ professional level 
affects the maritime monitoring performance as they are 
assumed to ensure maritime traffic safety by consistently 
watching at the real-time on-spot maritime surveillance vid-
eos. More specifically, the maritime accidents may happen 
when staff fails to send out early-warning alert on potential 
ship collision risks (due to staff fatigue, careless in work). �e 
automatic video processing based methods can largely reduce 
the possibility of such types of maritime accidents. With the 
help of proposed automatic video processing technique, we 
can automatically exploit high-resolution microscopic ship 
platoon kinematic information (moving speed, sailing direc-
tion, etc.) which benefits smart shipping development.

5. Conclusion

Ship behavior recognition is crucial for the intelligent shipping 
development, which needs to overcome many environmental 
challenges at different ship navigation situations. We proposed 
an ensemble YOLO based framework to detect ships from 
maritime images, and accurately recognize ship behaviors in 
consecutive frames. �e framework was implemented in four 
steps, which are ship feature exploration, bounding box gen-
eration, ship position determination, and ship behavior rec-
ognition. �e ship feature exploration step aimed for extracting 
multi-scale distinct ship features based on YOLO detection 
model. �e second step generates several bounding boxes 
which are considered as potential ship positions. �e third 
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