
Research Reports - Research Article

Digit Biomark 2022;6:9–18

Video-Based Pose Estimation for Gait Analysis in 
Stroke Survivors during Clinical Assessments:  
A Proof-of-Concept Study

Luca Lonini 

a, b    Yaejin Moon 

a    Kyle Embry 

a, b    R. James Cotton 

a, b    

Kelly McKenzie 

a    Sophia Jenz 

a    Arun Jayaraman 

a, b

aShirley Ryan Ability Lab, Chicago, IL, USA; bDept. of Physical Medicine and Rehabilitation, Feinberg School of 
Medicine, Chicago, IL, USA

Received: July 22, 2021
Accepted: November 2, 2021
Published online: January 13, 2022

 

Correspondence to: 
Arun Jayaraman, ajayaraman @ sralab.org

© 2022 The Author(s).
Published by S. Karger AG, Basel

karger@karger.com
www.karger.com/dib

DOI: 10.1159/000520732

Keywords
Pose estimation · Video analysis · Deep learning · Stroke · 
Gait analysis

Abstract
Recent advancements in deep learning have produced sig-
nificant progress in markerless human pose estimation, 
making it possible to estimate human kinematics from single 
camera videos without the need for reflective markers and 
specialized labs equipped with motion capture systems. 
Such algorithms have the potential to enable the quantifica-
tion of clinical metrics from videos recorded with a handheld 
camera. Here we used DeepLabCut, an open-source frame-
work for markerless pose estimation, to fine-tune a deep net-
work to track 5 body keypoints (hip, knee, ankle, heel, and 
toe) in 82 below-waist videos of 8 patients with stroke per-
forming overground walking during clinical assessments. 
We trained the pose estimation model by labeling the key-
points in 2 frames per video and then trained a convolution-
al neural network to estimate 5 clinically relevant gait param-
eters (cadence, double support time, swing time, stance 
time, and walking speed) from the trajectory of these key-
points. These results were then compared to those obtained 
from a clinical system for gait analysis (GAITRite®, CIR Sys-

tems). Absolute accuracy (mean error) and precision (stan-
dard deviation of error) for swing, stance, and double sup-
port time were within 0.04 ± 0.11 s; Pearson’s correlation 
with the reference system was moderate for swing times (r = 
0.4–0.66), but stronger for stance and double support time 
(r = 0.93–0.95). Cadence mean error was −0.25 steps/min ± 
3.9 steps/min (r = 0.97), while walking speed mean error was 
−0.02 ± 0.11 m/s (r = 0.92). These preliminary results suggest 
that single camera videos and pose estimation models based 
on deep networks could be used to quantify clinically rele-
vant gait metrics in individuals poststroke, even while using 
assistive devices in uncontrolled environments. Such devel-
opment opens the door to applications for gait analysis both 
inside and outside of clinical settings, without the need of 
sophisticated equipment. © 2022The Author(s).

Published by S. Karger AG, Basel

Introduction

Gait analysis is a key aspect of clinical assessments for 
quantifying functional outcomes following a neurologi-
cal or musculoskeletal disease. A variety of health condi-
tions, such as stroke, Parkinson’s disease, cerebral palsy, 
and spinal cord injury, often cause impairments of gait, 
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whose common clinical outcome measures such as 6-min 
or 10-meter walk tests are unable to quantify in detail. In 
contrast, kinematic gait analysis provides rich, high-res-
olution data on movement patterns and is useful for mon-
itoring progress during rehabilitation training and opti-
mizing interventions. However, gait analysis requires the 
availability of a dedicated gait lab, with specialized and 
expensive equipment, such as high-speed cameras, in-
strumented walkways, or dedicated wearable sensors like 
inertial measurement units [1]. Additionally, extensive 
amounts of training and experience are required to accu-
rately collect, process, and interpret the data from such a 
setup.

On the other hand, recent advances in computer vision 
and deep learning, and the availability of annotated data-
sets of people and body landmarks have enabled the au-
tomated detection of body landmarks (keypoints) from 
single videos. As such, several open-source algorithms, 
for 2D and 3D [2] pose estimation and body shape esti-
mation [3], are available, which opens the door to appli-
cations in clinical and movement sciences. Such automat-
ed video analysis has the potential to become an inexpen-
sive and easy-to-use tool to quantify movement, which 
could reduce the barrier to obtaining quantitative data on 
gait outcomes and even enable remote clinical assess-
ments.

Despite the growing number of algorithms for recon-
structing body poses, translational research of these mod-
els to movement science and gait analysis is still in its in-
fancy. Most studies so far used pretrained models, such as 
OpenPose [4], to investigate whether gait parameters and 
clinical outcome measures can be estimated from single 
videos. Stenum et al. [5] validated the accuracy of spatio-
temporal gait parameters estimated from OpenPose, 
against 3-dimensional motion capture, and found errors 
within 0.02 s and 0.05 m for temporal and spatial param-
eters, respectively. However, they limited their analysis to 
healthy human gait. Ng et al. [6] computed spatiotempo-
ral parameters from videos of older adults with dementia, 
showing significant associations with balance and fall-
risk measures. Sato et al. [7] showed that estimated ca-
dence in individuals’ with Parkinson’s was correlated 
with disease status, while Kidziński et al. [8] trained mod-
els at predicting multiple gait metrics relevant for treat-
ment planning in children with cerebral palsy, showing 
moderate to good agreement with the values obtained 
from motion capture data.

While these studies show the potential of existing pose 
estimation algorithms at quantifying gait measures, sev-
eral challenges remain before these systems can be de-

ployed for clinical gait analysis. First, individuals with 
sensorimotor impairments display idiosyncratic gait pat-
terns [9], which differ widely from those of healthy indi-
viduals, thereby rendering the estimation of gait param-
eters from the sequence of detected keypoints challeng-
ing. Second, these individuals may use assistive devices, 
such as leg braces, walkers, or even robotic exoskeletons 
during therapy or community mobility, that occlude 
body parts and may impact the quality of the pose estima-
tion. Third, during clinical gait tests, it is common to have 
medical personnel assisting the patient. For example, a 
physical therapist may walk along with the patient to pro-
vide assistance or guard them, while they perform a walk-
ing test, which requires the pose estimation algorithm to 
accurately identify and track the patient throughout the 
video. Finally, if the model uses videos captured with a 
handheld camera, the gait inference should be robust to 
different viewing angles and hand motions. Such chal-
lenges still need to be addressed and require further ad-
aptation and validation of existing pose estimation mod-
els and training data [10].

Here we estimate temporal gait parameters from 82 
below-waist videos of stroke survivors undergoing mul-
tiple sessions of gait training with a therapist and wearing 
different types of leg braces. Temporal parameters are 
among the outcomes characterizing the hemiparetic gait 
dysfunction of stroke survivors, including reduced walk-
ing speeds, decreased cadence, prolonged swing time, 
and reduced stance time on the paretic side, compared 
with those parameters of healthy subjects or with the 
nonparetic side [11]. Additionally, traditional and 
emerging gait training methods often have aimed to im-
prove the temporal gait parameters and recorded them 
as treatment response biomarkers [12, 13], or biomark-
ers related to fall risk [14]. To circumvent the problem of 
reliably tracking the patient, we used an approach based 
on transfer learning: we manually annotated the posi-
tions of 5 landmarks (keypoints) on the leg and foot in 2 
frames for each video, and fine-tuned a pretrained deep 
learning model on these data using DeepLabCut [15], an 
open source framework for animal and human pose es-
timation, at detecting these keypoints in the videos. We 
then trained a convolutional neural network at predict-
ing 5 parameters (cadence, swing and stance time, double 
support time, and walking speed) from the 2D trajecto-
ries of the keypoints and compare the accuracy and pre-
cision of our model to a gold standard system for gait 
analysis. While our work is still a proof of concept and 
needs further development on a larger dataset, its main 
contributions are the  following:
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• Temporal gait parameters in stroke survivors can be 
estimated from single videos framing the lower half of 
the body using deep learning models.

• A pose estimation model trained on 2 labeled frames 
per video using DeepLabCut can track the patient foot 
and leg keypoints.

• A deep network trained on the keypoint sequences can 
estimate gait parameters from a nonstationary camera 
and across individuals with different levels of impair-
ments.

Materials and Methods

Participants
This proof-of-concept study consisted of a convenience sample 

of 8 individuals with stroke (Table 1) who represented a subsample 
of participants in ongoing gait rehabilitation investigations. Inclu-
sion criteria for all participants were (1) 18 years of age or older, 
(2) at least 6 months poststroke, (3) hemiparesis/hemiplegia after 
a single stroke, (4) Functional Ambulation Category [16] of 2 or 
greater, (5) no presence of severe lower-limb spasticity, (6) no 
presence of painful musculoskeletal dysfunction, (7) no history of 
seizures, and (8) no metal implants in the spine or back. Each par-
ticipant provided informed consent. These procedures were ap-
proved by the Northwestern University Institutional Review 
Board.

Experimental Setup
We used secondary data of a clinical trial where each partici-

pant received gait training for 3 days per week for 8 weeks (24 ses-
sions in total). Walking assessments at pre-, mid (i.e., after 12 ses-
sions)-, post-, and 3-month follow-up were video recorded. Par-
ticipants walked at their self-selected pace along an 8-m 
instrumented walkway (GAITRite® Gold, CIR Systems, West 

Conshohocken, PA, USA) with or without a leg brace. In total, we 
analyzed 82 walking trials from the above clinical study.

The GAITRite® walkway recorded each footfall’s initial and 
final contact time of steps with a reported spatial accuracy of ±1.25 
cm and a temporal accuracy of ±8.3 ms at the sampling rate (120 
Hz) that was selected. The associated software was then used to 
compute several spatiotemporal gait measurements. We limited 
this analysis to the following temporal parameters:
• walking speed (m/s)
• cadence (steps/min)
• swing time (time between final contact of the current cycle and 

initial contact of the next cycle on the same foot)
• stance time (time between initial contact and final contact of 

the same cycle on the same foot)
• double support time (sum of the time elapsed when both feet 

are in contact with the ground during a gait cycle)
Swing and stance time were estimated for each leg and report-

ed separately for the paretic (P) and nonparetic (NP) leg for each 
participant. Average values of the parameters across all the strides 
occurring on the walkway were yielded by the GAITRite software 
and used as the ground truth values for training the subsequent 
model (see “Gait Estimation model”).

A digital RGB video camera recorded the left- or right-side sagit-
tal plane views of the walking sequence at 30 frames per sec (fps) and 
at a resolution of 1,280 × 720 pixels. The camera was mounted on a 
tripod placed on a tripod dolly, and the height of the camera place-
ment was set to about 75 cm. The video dataset does not contain 
identifiable participant information as the videos were taken from 
the waist down (example video frames with keypoints superimposed 
shown in Fig. 1). As a participant walked, a researcher tracked the 
participant by pushing the tripod dolly along the participant’s trace. 
In most sequences, a therapist walked next to the subject to guard the 
participant and ensure their safety. Both the right and left views of 
each participant were captured, as subjects performed 3 trials chang-
ing the direction between each trial. Recording both views allowed 
researchers to observe each leg motion without any obstruction, 
when analyzing the videos of each subject–.

Table 1. Participants’ demographics, clinical data, and number of videos per patient

Subject ID Gender Age, 
years

Height, 
cm

Time since 
stroke, years

Stroke 
type

Paretic 
side

Gait speed, 
m/s

Sessions 
(videos), n

SS02 Female 46 174 9 Isc R 0.57 6
SS04 Male 67 173 5 Hemo L 0.37 12
SS06 Female 56 163 2 Isc L 0.81 11
SS07 Male 59 177 2 Isc R 0.75 10
SS13 Male 61 163 9 Hemo R 0.84 10
SS18 Male 64 180 6 Isc L 0.51 12
SS20 Female 47 163 8 Isc L 0.56 12
SS22 Male 63 165 6 Hemo L 0.99 9

AVG – 57.9 169.8 5.9 – – 0.68

SD – 7.8 7.0 2.8 – – 0.21

Isc, ischemic; Hemo, hemorrhagic; L, left; R, right; AVG, average; SD, standard deviation.
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Pose Estimation
We used DeepLabCut to train a model at detecting 5 patient 

landmarks (keypoints) on each leg in any given video; the tracked 
keypoints were then used to estimate the gait parameters. Deep-
LabCut is an open source algorithm for pose estimation, which 
allows the user to label the key points in their own data and fine-
tune a pretrained ResNet or MobileNet architecture [17] at detect-
ing the annotated keypoints in the video. This approach aided the 
tracking of the patient leg keypoints, regardless of the presence of 
assistive devices and other people in the scene. We manually an-
notated 2 frames in each of the 82 videos, for a total of 164 anno-
tated frames: this constituted the training data for the pose estima-
tion model. Five keypoints for each leg (hip, knee, ankle, heel, and 
toe) were manually labeled in each of the training frames. We did 
not use the hip key points for the gait parameter estimation, as the 
hip joint was not always visible in the videos and resulted in noisy 
detections. Frames to label were selected by a k-means clustering 
algorithm implemented in DeepLabCut, which chose frames based 
on dissimilarity. The model was trained for 100,000 epochs using 
the default Adam optimizer and a variable learning rate schedule 
(1e-5, 0–15,000 epochs; 5e-5, 15,000–24,000 epochs; and 1e-5, 
100,000), and the batch size was set to 4. Data augmentation was 
used by applying random rotations (±30°), image scaling (zoom 
between ×0.5 and ×1.5), and scaling the image contrast as provid-
ed in the “Imgaug” Python package.

Gait Parameter Estimation
The position of 4 keypoints (knee, ankle, heel, and toe) from 

both legs throughout the video was used to estimate the aforemen-
tioned gait parameters, averaged across all the strides recorded in 
the video. For healthy individuals, the detection of gait events (e.g., 
foot contacts, swing, and stance phase) from kinematic data could 
be achieved with peak-detection algorithms as healthy gait pat-
terns are remarkably similar; in contrast, detecting these events in 
people with gait impairments and using assistive devices can be 
significantly more challenging, due to the idiosyncrasies of their 
gait, and thus benefits from the use of data-driven approaches.

We used a convolutional neural network to predict the average 
gait parameters for a video from the leg and foot keypoint time 
series (Fig. 2). The architecture consists of 2 blocks of convolu-
tional and pooling layers. Each block contains two 1D convolu-
tional layers (32 filters, kernel size = 8), followed by a max-pooling 
layer (stride = 2). The kernel size of 8 corresponds to a window of 
0.24 s. Batch normalization was applied after each block of 2 con-
volutional layers and before the pooling layer. The last 2 dense lay-
ers contain, respectively, 10 neurons with a ReLu activation func-
tion and 1 output neuron with linear activation function. A single 
dropout layer (rate = 0.1) was added before the 2 dense layers. This 
network architecture has been used successfully in previous work 
to estimate gait parameters from sensor [18] and video [8] data. 
An input data point had a size of 120 × 8 (time steps × keypoints); 
the input depth was 8 as it comprised 4 keypoints from each leg, 
and the output was a single gait parameter (e.g., cadence). We 
trained 1 network per gait parameter (i.e., single output network), 
as this resulted in more accurate results than when training the 
same network at predicting all parameters simultaneously (i.e., 
multiple outputs network). Mean squared error was chosen as the 
network loss function and RMSProp as the optimization algorithm 
(learning rate = 0.001). A batch size of 32 was chosen and the net-
work was trained using early stopping for a total of 200 epochs.

The network was trained on 4 s long (120 samples) time series 
of the left and right heel, toe, ankle, and knee x-coordinates (the 
horizontal axis of each video), as output by the network trained 
with DeepLabCut. Since all videos were >4 s (mean duration = 13.3 
s, standard deviation = 5.9 s), we split the time series into consecu-
tive 4-s sequences (with 75% overlap) to increase the amount of 
data available to train the network. This yielded a total of 656 data 
points (keypoint time series sequences). The prediction for a video 
was obtained by averaging predictions from all the individual 4-s 
sequences extracted from the video. We chose a duration of 4 s, as 
this value was about half the duration of the shorter videos, and 
long enough to capture the whole gait cycle for all the individuals. 
We did not use the y-coordinates of the key points, as it did not 
provide any significant advantage on model accuracy.

With brace

PT front PT back PT front PT back

Without brace

Right-side
view

Left-side
view

Fig. 1. Example video frames with overlapped keypoint detection from the pose estimation. Participants could 
wear a variety of clothing and could use different types of leg braces to stabilize their walking. Right- and left-side 
views were captured. A therapist can be seen walking next to the participant in each frame. PT, physical therapist.
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The keypoint time series were affected by low-frequency noise 
due to camera movements while following the participant, as well 
as high-frequency noise and missed detections due to inaccuracies 
in the pose estimation model. As such, keypoint time series from 
each video were linearly interpolated, filtered with a high-pass 8-th 
order Butterworth filter (cutoff frequency 0.25 Hz) to detrend the 
signal, and passed through a median filter (window size = 5 frames). 
We finally rescaled the signal by subtracting the mean and dividing 
by the standard deviation of the time series and applied a Gaussian 
filter (sigma = 1 frame) to remove remaining high-frequency noise. 
We inverted the sign of the time series signal for the videos where 
participants were walking toward the left so that these signals 
matched those from videos that were recorded from the right.

Statistical Analysis
A leave-1-subject-out cross-validation was used to train and 

evaluate the network performance: we split data such that training 
and test folds contained videos from different subjects. Average 
ground truth values for the gait parameters were obtained from the 
GAITRite system as mentioned above. For each gait parameter, we 
computed the Pearson’s correlation coefficients as a measure of 
agreement between the GAITRite measurements (truth value) and 
the convolutional network output (estimated value). As additional 
evaluation metrics, we calculated the mean and standard deviation 
of the error for each parameter, which correspond to the accuracy 
± precision of the model. Specifically, we computed 2 types of er-

rors, absolute (Abs) and relative (Rel) errors, on the videos in the 
test set, where the error on video i is as follows:

Abserrori = estimatedi – truthi,  (1)

(2)
i

i i
error

i

estimated truth
Rel 100 .

truth
-

= ´

  

For each type of error, we calculated its mean and standard de-
viation (i.e., accuracy and precision), where accuracy quantifies 
how far the predicted parameter deviates from the reference GAI-
TRite measure, and precision quantifies how consistent are the 
predictions with each other.

Accuracyabs = μ (Abserror); Accuracyrel = μ (Relerror),  (3)

Precisionabs = σ (Abserror); Precisionrel = σ (Relerror). (4)

Results

Gait Parameter Estimation
Participants’ walking abilities varied widely: gait pa-

rameter values, as measured by the GAITRite system, 
spanned a broad range across participants and conditions 
(e.g., use of a leg brace vs. no-brace or pre- vs. post gait 

Patient videos
(n = 82) 

Labeled frames
(n = 164) 

Fine-tuning
(Deeplabcut) 

Pre-trained
resnet50 

Predicted keypoint
(joints) positions 

Convolutional
neural network

Filtering
and

z-scoring  

GaitRite temporal
parameters groundtruth

(g

Training/testing
(leave one-subject-
out cross validation)

Predicted gait
parameters

Cadence, walking
speed, swing/
stance time,

double support
time

Inference

(Batch size,
timesteps,
n_joints)

Concatenate
channels  

Fig. 2. Data pipeline: we labeled the location of 5 keypoints on each leg and foot in 164 frames drawn from a set 
of 82 videos and use the labeled frames to fine tune a pretrained ResNet50 deep network architecture through 
DeepLabCut. At inference time, we used the fine-tuned model to track the keypoints in the video. The keypoint 
sequences of each joint (different colors indicate different joints) were filtered, normalized by z-scoring, and con-
catenated along the third dimension to train a second convolutional neural network at predicting 5 gait temporal 
parameters. Ground truth values for gait parameters were derived from data collected using a reference clinical 
system (GAITRite). A leave-1-subject-out cross-validation was used to evaluate the model performance.
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training). Table 2 shows the summary statistics for all the 
measured parameters. For example, the mean cadence of 
participants ranged from 43 to 113 steps/min (mean = 83 
steps/min, SD = 16), while mean walking speed was 0.68 
m/s and ranged from 0.24 to 1.12 m/s.

To compare the accuracy of our pose estimation-based 
model, we first looked at Pearson’s correlations between the 
estimated parameters and those from the reference GAI-
TRite system (Fig. 3). Most parameters showed high agree-
ment with the reference system: correlations for cadence (r 
= 0.97), double support time (DST, r = 0.95), stance times 
(paretic side r = 0.93; nonparetic side r = 0.95), and walking 
speed (r = 0.92) were higher than those for swing (paretic 
side r = 0.66). Correlation of swing times for the nonpa-
retic side was the lowest overall (nonparetic side r = 0.4).

We measured the network absolute and relative error in 
terms of accuracy ± precision (Table 3) with respect to the 
GAITRite system for each gait parameter (Fig. 4). Cadence 
had an absolute accuracy of −0.25 steps/min (±3.9) and a 
relative accuracy of 0.3% (±5.9%). Absolute accuracy for 
swing and stance parameters was of the order of 1 frame 
time (i.e., 0.03 s), while absolute precision for swing times 
(paretic: ±0.06 s; nonparetic: ±0.05 s) was higher than that 
of stance times (paretic: ±0.11 s; nonparetic: ±0.12 s). Rela-
tive precision for swing and stance times was within ±10.5%, 
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Table 2. Distribution of gait parameter values measured by the 
reference system (GAITRite©) across participants

Parameter Mean SD Min Max

Cadence, steps/min 82.5 16 43.1 112.9
DST, s 0.61 0.30 0.29 1.68
Walking speed, m/s 0.68 0.24 0.24 1.12
Swing paretic side, s 0.58 0.09 0.43 0.77
Stance paretic side, s 0.95 0.31 0.58 2.07
Swing non paretic side, s 0.34 0.05 0.22 0.43
Stance non paretic side, s 1.18 0.36 0.79 2.40

DST, double support time.

Fig. 3. Gait parameter estimation: scatter plots showing the correlations between the gait parameters estimated 
by the neural network (y-axis, predicted) and those yielded by the GAITRite system (x-axis, ground truth). Each 
dot represents the datum for a single video in the test set. Most of the estimated parameters showed high agree-
ment with the GAITRite; lower correlations were obtained for swing times for the paretic (P, r = 0.66) and non-
paretic legs (NP, r = 0.4) legs. The lower right panel shows a box plot of relative errors for each parameter. DST, 
double support time; P, paretic side; NP, nonparetic side.
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except for the nonparetic side swing time, which had the 
lowest relative precision (±20.6%); as swing times were 
shorter for the nonparetic side, the relative error was high-
er. Absolute accuracy for double support time was in a sim-
ilar range to that of stance times (−0.02 ± 0.11 s; relative 0.6 
± 13.5%). Walking speed absolute accuracy was −0.02 ± 
0.11 m/s (relative: 0.7 ± 18%).

Discussion/Conclusion

Markerless pose estimation based on deep learning 
holds the promise of becoming an easy-to-access method 
to analyze human movements without the use of a motion 
capture lab. Here we used DeepLabCut, a framework for 
human and animal pose estimation, to fine-tune an archi-
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Cadence, steps/min −0.25 3.88 0.3 5.9
Double support time, s −0.02 0.11 0.6 13.5
Swing (P), s −0.02 0.06 −2.5 10.5
Stance (P), s 0.02 0.11 2.7 10.1
Swing (NP), s 0.04 0.05 15 20.6
Stance (NP), s −0.01 0.12 0.2 8.0
Walking speed, m/s −0.02 0.11 0.7 18.0

P, paretic side; NP, nonparetic side.

Fig. 4. Estimation errors: violin plots show-
ing the distribution of absolute errors for 
swing, stance, and double support time 
(top panel) as well as for cadence and walk-
ing speed (bottom panels). Each dot repre-
sents the estimated value for a single video 
in the test set (leave 1 subject out cross-val-
idation). DST, double support time; P, pa-
retic side; NP, nonparetic side.

Table 3. Absolute and relative errors of gait 
parameters estimated by the model with 
respect to the GAITRite reference system
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tecture based on a deep residual network (ResNet50) on 82 
videos of stroke survivors and track 4 keypoints on each leg 
and foot, as participants walked in a gait lab during clinical 
assessments. We then trained a second convolutional neu-
ral network on the keypoint trajectories to estimate a set of 
temporal gait parameters, validating the results against a 
clinical gold standard system for gait analysis.

Labeling only 2 frames per video allowed us to track 
the body landmarks with sufficient accuracy for training 
a convolutional network to infer the temporal gait param-
eters from the keypoint trajectories. Most parameters, ex-
cept for swing times, showed correlations equal or great-
er than 0.92 with the reference GAITRite system. Swing 
times for the nonparetic limb yielded the lowest correla-
tion (r = 0.40). Absolute precision for swing times ranged 
from ±0.05 s to ±0.06 s (paretic and nonparetic side); as 
such, relative precision was worse for the nonparetic side 
(±20.5%) than for the paretic side (±10.5%), as swing 
times for the nonparetic limb are of shorter durations. 
Absolute precision for stance times and double support 
time was about half that of swing time (±0.11 s to ±0.12 
s); similar values have been reported when training a 
model to segment strides in individuals with gait impair-
ments from inertial measurement unit data [18]. Cadence 
was the parameter with the lowest error overall (−0.25 ± 
3.7 steps/min, relative precision ±5.9%). Mean precision 
for walking speed was 0.11 m/s, which is less than the 
minimal clinically important difference (= 0.14 m/s) for 
changes in gait speed for individuals with stroke [19]. 
This is remarkable, also considering that the model was 
agnostic to the camera geometry.

Our methodology resembles that of Kidziński et al. [8], 
as a convolutional neural network was used to predict gait 
parameters and markers of gait pathology from the se-
quence of 2D keypoints in videos of children with cere-
bral palsy; however, they used OpenPose to extract the 
keypoints from the videos, and only chose videos where 
the entire person was in the frame, subject clothing was 
similar, and no other people were present. They reported 
correlations, relative to a motion capture system, of 0.73 
and 0.79 for walking speed and cadence. Moro et al. [20] 
used DeepLabCut to estimate 4 spatiotemporal gait pa-
rameters in stroke survivors from lateral videos. They 
compared their estimation to a marker-based motion 
capture system, reporting spatial errors in the order of 
centimeters, and found that differences from the refer-
ence system were not statistically significant. Their setup 
though used a fixed RGB camera that only captured 1 
stride for each of the 10 subjects, thereby limiting the gen-
eralization of their results.

We chose to use DeepLabCut because of the nature of 
our data; in contrast to previous studies, our videos pre-
sented several simultaneous challenges, including the 
presence of a therapist walking next to the participant, 
varying clothing, and the presence of leg braces worn by 
the participants. In addition, to preserve the privacy of the 
participants, the videos only framed the lower half of the 
body, which hinders the ability of pretrained pose estima-
tion models to track body landmarks. While the use of 
pretrained algorithms does not require manually labeling 
and training the model on the labeled data, our initial at-
tempts using OpenPose and AlphaPose [21] resulted in 
unreliable tracking of the legs and foot keypoints in our 
data. This is also in line with previous reports about the 
current limits of pretrained pose estimation models [10], 
which were not trained on datasets that include individu-
als with mobility impairments or validated in clinical set-
tings.

We trained a convolutional network to estimate the 
gait variables from the tracked foot keypoints. Simpler 
methods [22] based on peak detection and pixel velocity 
[23, 24] of the foot could have been used here to segment 
the gait phases and compute the gait parameters directly; 
however, these methods rely on manually tuning thresh-
old parameters and can be less reliable in the presence of 
abnormal gait patterns, such as those seen in patients with 
stroke. Indeed, our participants displayed widely differ-
ent kinematics due to variable neurological impairments, 
as well as because of the presence/absence of a leg brace. 
In such a scenario, approaches that directly predict the 
gait parameters from the kinematic data may provide bet-
ter results [25, 26].

A primary limitation of our study is the limited sample 
size and the fact that we had to manually label frames in 
each video to train the pose estimation model. Due to the 
limited number of subjects and videos and the uncon-
trolled recording conditions, generalization to new vid-
eos is known to be a challenge when fine-tuning a deep 
network using DeepLabCut [27]. We did not quantify the 
generalization error of the pose estimation model and the 
accuracy of the system at estimating gait parameters in 
new unseen videos, which remains as future work. Sec-
ond, we trained the network to predict the average gait 
parameters from all the strides captured by the GAITRite 
in a walking trial; however, the model input was a 4-s-
window, which would only contain one or few strides. As 
stride-to-stride variability is common in populations 
with neurological impairments [28, 29], this may have 
caused inaccuracies in the training signal and the result-
ing model predictions. We limited our analysis to gait 
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temporal parameters, although spatial parameters could 
have been considered as well. Estimating spatial param-
eters would require 2 or more camera views to determine 
the 3D position of points in the scene; alternatively, a dif-
ferent class of pose estimation models that can reason 
about the 2D joint estimation to infer the 3D configura-
tion of the body from a single frame could be used: these 
latter models include “3D lifting” approaches [30, 31] that 
map from 2D to 3D joint locations, or those that use 3D 
body models [32, 33]. However, these models require a 
complete view of the person and have not been validated 
on clinical populations.

Future work should explore how many annotated data 
are necessary to provide sufficient generalization on new 
videos, which is known to be a common problem with 
transfer learning models [34]. This problem could be mit-
igated by employing label propagation methods, which 
leverage sparse labeled frames to predict the poses of a 
person in neighboring frames [35, 36]. Similarly, dealing 
with the presence of a second person in the video (e.g., 
therapist), as well as with truncated or occluded views of 
the body, requires accurate identification and tracking of 
the target patient and their body landmarks. While pose 
estimation models are starting to incorporate person 
identification and temporal tracking of each person [37], 
their accuracy for ambient monitoring in a clinical envi-
ronment [38] where clinicians may interact or assist the 
patient during the visit remains to be seen.
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