

Video Browsing by Direct Manipulation

Pierre Dragicevic
2,1

, Gonzalo Ramos
1
, Jacobo Bibliowicz

1
,

Derek Nowrouzezahrai
1
, Ravin Balakrishnan

1
, Karan Singh

1

1
Department of Computer Science

University of Toronto
{bonzo, jacky, derek, ravin, karan}@dgp.toronto.edu

2 INRIA
France

dragice@lri.fr

ABSTRACT

We present a method for browsing videos by directly drag-
ging their content. This method brings the benefits of direct
manipulation to an activity typically mediated by widgets.
We support this new type of interactivity by: 1) automati-
cally extracting motion data from videos; and 2) a new
technique called relative flow dragging that lets users con-
trol video playback by moving objects of interest along
their visual trajectory. We show that this method can out-
perform the traditional seeker bar in video browsing tasks
that focus on visual content rather than time.

ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.

INTRODUCTION

Despite its many advantages [6, 15, 30], direct manipula-
tion has not been adopted consistently across all computer
applications, and there remain tasks that could benefit from
a better application of its principles. For example, video
players provide a seeker bar for linearly browsing through
the video’s timeline. While effective, like many GUI wid-
gets, it is only an intermediary between the user and the
object of interest to be manipulated [6]. Often this object is
in the video image itself, and it might be beneficial for
users to directly manipulate it. For example, a video analyst
studying a pool shoot might want to directly drag a ball to
find the precise moment when it hits another ball (Figure
1). Although it does not change the video content, this
interaction technique belongs to the category of direct ma-
nipulation techniques because it maintains a close match
between user input and the system's output.

In addition to providing users with a fulfilling sense of
control [15], direct manipulation can also be very efficient.
Whereas a seeker bar is excellent for time-centric browsing
tasks, direct manipulation might more efficiently support
accurate space-centric browsing. As such, both techniques
should be viewed not as rivals but more as complementary

tools. This paper makes several contributions by identifying
new classes of direct manipulation techniques, illustrating
their use and implementation in a media player, and pre-
senting a study showing that they can yield remarkable
gains in performance for space-centric browsing tasks.

Figure 1: The Direct Manipulation Video Player used to

scrutinize a pool ball’s motion by directly dragging the ball to

the point where it hits another ball.

Directly interacting with video content raises several re-
search challenges. From a technical perspective, one needs
be able to extract relevant motion data from videos. From
an HCI perspective, dragging video content is fundamental-
ly different from dragging traditional GUI entities. Firstly,
the content to be manipulated is not clearly segmented
spatially and involves arbitrary deformations. Secondly,
this content is constrained to predefined motions. Thirdly,
dragging an object also animates the rest of the visual
scene, which can produce illusory or “induced” motions
affecting motor tasks. We explore solutions to all these
challenges. We also outline the differences of our approach
from a recent paper [18] exploring similar ideas that were
brought to our attention during the review process.

RELATIVE FLOW DRAGGING

Our video navigation interface uses a new technique we
call relative flow dragging – a general solution to the con-
trol of moving imagery through direct manipulation. It
decomposes arbitrary 2D motions into individual pixel
trajectories, and allows scrubbing over these trajectories in
a way that accounts for the phenomenon of induced motion,
such as those produced by dynamic backgrounds. We now
describe the technique in detail, including how it follows
direct manipulation principles, and illustrate its benefits.

Directness

Hutchins et al. [15] argue that the directness of a user inter-
face depends on factors such as how responsive and unob-

trusive the system is, and how closely the input language of
the user interface matches its output language. For exam-
ple, dragging an object on the GUI is highly direct because
the output it generates (the object’s motion) is very similar
to the input (the user’s hand movement).

Beaudouin-Lafon [6] categorized common sources of indi-

rectness in interfaces. These include spatial and/or temporal
separation between the user’s action and the system

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2008, April 5–10, 2008, Florence, Italy.

Copyright 2008 ACM 978-1-60558-011-1/08/04…$5.00.

response (high degree of indirection) and dissimilarities
between action and response (low degree of compatibility).
For example, panning with scrollbars suffers from these
two types of indirectness, as opposed to directly dragging a
document. A third type of indirectness is present in tasks
requiring more degrees of freedom than the available user’s
input (low degree of integration).

Matching Gestures with Motions

Designing an interaction technique often involves deciding
how the user’s input will be interpreted into changes in the
system. Following direct manipulation principles, this
should be decided according to the characteristics of the
system’s outputs, rather than the system’s internals. For
example, consider an internal variable whose variations
cause a motion on screen, such as current time moving a
clock’s hands. Regardless of this variable’s nature, the most
direct way for users to control it visually is by specifying
the expected motion, i.e., dragging the clock’s hand [11].

We argue that designing for direct manipulation involves
matching user’s gestures with the observed visual motion.
This is straightforward when the possible gestures allow us
to express all possible visual movements – i.e., when the
gesture space matches the motion space, e.g., using a 2D
device to pan a map. However, incompatibilities between
motion and gesture spaces are common. Adjusting the input
device to the task [9] is an effective but often impractical
solution. As a result, a number of techniques have been
designed to map a limited 2D gesture language to a wide
range of visual motions while preserving an illusion of
direct manipulation. Examples are scaling objects, rotating
objects [7, 11] and 3D manipulations [32] using a mouse.

The control of high-dimensional motion spaces is a well-
recognized problem, especially in the field of 3D GUIs. In
comparison, little attention has been paid to the control of
low-dimensional spaces. Here we address the issues related
to the direct control of motions having only one degree of
freedom. Our solution, relative flow dragging, is related to
three simpler families of direct manipulation techniques:
curvilinear dragging, flow dragging and relative dragging.

Curvilinear Dragging

Curvilinear dragging consists of moving a point con-
strained to a 2D curve using a 2D pointing device (Figure
2a). Examples of curvilinear dragging abound in current
GUIs but they mostly involve straight lines. For example,
scrollbars, sliders and menus project 2D mouse movements
onto a 1D axis [6]. Cascading and flow menus are not di-
rect manipulation techniques per se, but involve steering,
an action similar to that of following a curve [1, 13].

Curvilinear dragging on arbitrary curves has also been used
in specific applications. The 3D modeling tool Maya allows
points to be moved along 3D curves [2]. The Cabri-
Géomètre learning environment [14] allows studying geo-
metric figures by dragging construction points on curves.
Baudel et al. [4] proposed a curvilinear drawing technique
based on a French curve metaphor. Ngo et al.’s [23] sys-
tem lets its users animate parameterized graphics by drag-
ging objects along their trajectories.

Figure 2: Three classes of constrained direct manipulation

techniques: (a) curvilinear dragging; (b) flow dragging; (c, d)

relative flow dragging compensates for moving backgrounds.

Flow Dragging

Flow dragging is a generalization of curvilinear dragging.
It involves direct manipulation of arbitrary motions having
only one degree of freedom. By "arbitrary" we mean that
besides translations, the motions can include any visual
transformation, such as the deformations of a bouncing
ball. By "one degree of freedom" we mean that the whole
motion can be mapped to a scalar variable, such as time.

Supporting flow dragging simply requires supporting curvi-

linear dragging on a family of curves: since the motion has
only one degree of freedom, each point of the image has a
well-defined trajectory which can be invoked upon a button
press (Figure 2b).

Relative Dragging

We see the design of direct manipulation techniques as a
problem of matching gestures with observed visual mo-
tions. The observed motion of an object is influenced by
the motion of its surroundings, a phenomenon known as
induced motion or the Duncker illusion [26, 41]. Research
suggests that induced motion also affects motor tasks [28].

This phenomenon tells us that people perceive relative

rather than absolute motion, thus we call direct manipula-
tion techniques focusing on the control of relative motions
relative dragging techniques. For example, one can com-
bine pointer and background motion so that their relative
movement matches a user’s hand movement. This can be
achieved by moving background objects in the opposite
direction of the hand’s motion. Such an approach is very
common in scrolling-based 2D arcade games.

Since complex moving imagery is likely to produce in-
duced motions, flow dragging is best combined with a
relative dragging approach. For example, suppose that the
deformation of a rubber ball occurs with a background
motion (Figure 2c). Dragging on actual trajectories might
be difficult because they are different from the motions the
user sees. Manipulation can be facilitated by subtracting
background motion from these trajectories (Figure 2d). We
call this method relative flow dragging.

Challenges

There are two key challenges in the design and implemen-
tation of relative flow dragging. First is the extraction of
trajectories and computation of relative motions. Second is
the design of curvilinear dragging: although anecdotal
examples of curvilinear dragging exist, they do not behave
well on arbitrary curves. In the following sections, we
present a system that supports relative flow dragging, and
then discuss in detail how we addressed these two issues.

THE DIRECT MANIPULATION VIDEO PLAYER

We implemented and tested relative flow dragging in an
interactive video player prototype that we call DimP (for
Direct manipulation Player). In addition to providing all
the standard controls of a traditional movie player (Figure
1), DimP allows users to go back and forth through the
video’s timeline by directly manipulating the video content,
in a way similar to Kimber et al.’s system [18]. DimP can
be downloaded at www.aviz.fr/dimp

When DimP loads a video, it first checks if the video is
already accompanied with motion data. If it is not, this
information is automatically extracted then saved as a sepa-
rate file. We believe that it is reasonable to expect motion
information to be created and potentially authored off-line.
The loaded video is then fully uncompressed into memory
to allow immediate access to any video frame.

Figures 1, 3 and 4 illustrate DimP in action. Via three sce-
narios, we show how DimP can provide a radically differ-
ent way to navigate video streams as well as transcend
some inherent limitations of the traditional seeker bar.

Scenario 1: A surveillance video shows a car that has been
parked in a particular spot all night (Figure 3). We might
want to access the point in the video where the car is in the
process of parking. On a traditional video player we have to
carefully drag the seeker bar’s handle until we visually
detect the frame of interest. With DimP, we can detach the
parked car (Figure 3a) directly out of the parking spot. This
action immediately takes us to a point in the video just
moments away from when the car has finished parking
(Figure 3b). From that point onwards (or backwards) we
can use the traditional seeker bar as a complementary tool
to find out, for example, who is leaving the car (Figure 3c).

Scenario 2: A video of a scene on a busy street, where
many cars and people are buzzing about, is being watched
(Figure 4). Cars in the scene regularly accelerate, slow
down or stop. Let us suppose that we wish to advance
frames so that a particular car arrives at a particular loca-
tion. This is difficult to achieve using the seeker bar, since
not only is the mapping between the bar’s handle and the
car’s movement unknown to the user, but it is also not

linear in time and space. A smooth controlled dragging on
the seeker bar can result in an erratic non-uniform move-
ment of the car. This disparity stems from the indirectness
of the seeker bar and is addressed by letting users simply
drag the car over the video scene at the rate they see fit.

Scenario 3: DimP can be useful in scenarios where a user is
interested in analyzing a particular video scene. For exam-
ple a sports coach is interested in studying a spring board
diver’s performance or a physics student wants to follow
the intricacies of a complex pool shoot. Using direct mani-
pulation, the coach has access to the many complicated
movements involved in throwing a ball or twisting one’s
body in mid-air. Likewise we can also imagine the student
switching his/her attention between different key points of

Figure 3: DimP can help find a particular event in a video. a)

The user clicks on a parked car, its trajectory is shown. b) The

user detaches the car from its parking location, which takes

the player to the point where the car was parking. c) The user

drags the seeker bar to temporally browse around this point

in space to find the person exiting the car.

Figure 4: Background stabilization on a scene where the camera pans upwards. (a) The actual motion of a car is hard to perceive

by users. (b) Background stabilization presents users with a motion path close to the car’s perceived motion. (c) When the car is

dragged, background stabilization shifts the video frames and leaves a trail of previously displayed frames.

http://www.lri.fr/%7Edragice/dimp/

the scene, such as the point where a ball is hit by the cue, or
when it impacts another one. All these operations can be
performed by direct manipulation in the video viewport,
without having to resort to the seeker bar (Figure 1). Hint
paths are useful in these scenarios because motion trails are
known to help animation and motion analysis [37].

Trajectory Visualization

One of the biggest challenges we faced in the design of the
visual feedback in DimP is the trade-off between providing
the illusion of direct manipulation and guiding users when
they stray from a particular motion path. It is important to
provide a trajectory visualization that is unobtrusive and at
the same time helpful when necessary.

Preview

We change the appearance of the pointer’s cursor from an
arrow to the shape of a hand whenever the pointer is hover-
ing above a region of the video frame where the motion is
significant. Users can then engage in direct manipulation
by simply clicking and dragging over the video’s frame. As
a user clicks over the video frame, the system displays a
hint path corresponding to the estimated trajectory of the
point located under the mouse cursor (Figures 3 to 5). The
hint path has been made very subtle in order to reinforce
the metaphor of direct manipulation.

Emphasizing

Since objects in a video scene follow prescribed trajecto-
ries, users cannot drag them to arbitrary locations. DimP
however maps mouse movements to object motions in a
very conservative way, so that users do not have to careful-

ly follow their path. For feedback purposes, we emphasize
the hint path as the user’s dragging path diverges from an
object’s motion (Figure 5). If a user drags the pointer far
away from the hint path for more than 2 seconds, we play a
“snapping” sound and terminate the interaction.

Position Feedback

We display a red cursor over the hint path that indicates the
position over the trajectory curve corresponding to the
pointer’s location. If the pointer perfectly follows the path,
the cursor is located under the pointer. As the pointer’s path
diverges from the object’s motion path, the cursor provides
extra feedback as to the effects of the dragging operation
(Figure 5b). This feedback also allows for video navigation
with sub-frame accuracy.

Background Stabilization

Pilot user testing sessions suggested that camera pans could
make video manipulation very difficult, an issue that can be
addressed with relative dragging. DimP supports relative
dragging by compensating for background motion.

Figure 4 illustrates how background stabilization helps to
match the user’s gesture with object’s perceived motion. In
this example, an upward camera pan makes a car’s motion
a downwards one, even though the car is seen moving up
the street (Figure 4a). It is difficult for users to perceive or
reproduce this absolute motion. Figure 4b shows the result
of subtracting the global motion from the real motion: an
upwards path closer to the car’s perceived motion.

Figure 5: As the pointer drifts from horse’s trajectory, the

curve’s style changes from (a) subtle to (b) emphasized.

Our background stabilization technique shifts video frames
within the player’s window as a user drags a particular
object. Video frames leave a trail of blurred grayscale im-
ages which aid in putting the currently displayed video
frame in context with the video scene (Figure 4c). This is
similar to stitched panoramas or video mosaic techniques
[12, 16]. Once the direct manipulation ends, the current
frame springs back to fill the player’s window frame.

TRAJECTORY EXTRACTION FROM VIDEOS

Supporting relative flow dragging in a video player requires
knowledge of the motions occurring in the video – i.e.,
having a function that maps any point in any video frame to
a curve representing its trajectory over time. We considered
three approaches for obtaining this information:

Manual Annotation. We initially collected user reactions to
relative flow dragging with a Java prototype that requires
specifying the motion of points of interest across video
frames. Manual annotation is a reasonable approach in the
context of multimedia authoring [25] and can be comple-
mented with automatic techniques. Still, fully automatic
solutions are needed for video consumers to be able to
experience direct manipulation on arbitrary video files.

Metadata Extraction. Most video formats already contain
motion information used for decoding purposes [35, 39]. At
this point we have no control as to the quality of this meta-
data, but this strategy is worth exploring in the future.

Automatic Estimation. Motions can be estimated with ac-
ceptable accuracy using video processing and computer
vision techniques. This is the approach we used in DimP.

Computer Vision Approaches

Automatically estimating motions from an image sequence
is a classical computer vision problem that is still actively
investigated [5, 17, 31, 33, 35, 39, 40]. Thus, instead of
proposing a new method, we aim to use well-established
vision techniques to demonstrate the feasibility of built-in
support for the direct manipulation of video. We group
motion estimation approaches into two categories:

Object Tracking: tracking involves following the motion of
one or several objects of interest over a video sequence.
Applications include motion capture and surveillance [40].

Optical Flow: optical flow computation estimates pixel
velocities between adjacent video frames, without enforc-

ing time consistency. Applications include video compres-
sion, 3D reconstruction and robot servo control [5].

Both approaches have pros and cons. Tracking algorithms
are efficient at following objects over long periods of time
[17]. Using a tracking approach, Kimber et al. [18] extract
moving objects and try to maintain their identity in the
presence of discontinuities due to merging, splitting or
occlusion. However, such techniques are very sophisticated
and never 100% reliable. In contrast, optical flow ap-
proaches do not extract objects and hence do not handle
merging or occlusion. But they can track a wide range of
motions, such as the movements of a fluid.

In light of these tradeoffs, we believe that a sparse estima-
tion of optical flows is an adequate first step for a general-
purpose video player.

Extraction of Feature Flows

Our implementation uses a feature-based optical flow esti-
mation scheme [20], where one interpolates the motion of
salient feature points between frames. We reused Nowo-
zin’s C# implementation of SIFT (Scale-Invariant Feature
Transforms) [24, 20], a robust feature extraction method
that can match photos with different viewing angles or
lighting conditions. SIFT has been used successfully in
applications ranging from panorama creation [24], 3D
reconstruction [34] and video tracking [33].

Feature flows are computed by detecting and matching
SIFT feature points on two consecutive frames. Each match
gives a motion vector. Unmatched features are discarded. A
complete absence of matches is a good estimator for scene
cuts. Once all of the video’s feature flows are found, trajec-
tory curves can be generated on-the-fly.

Construction of Trajectory Curves

Optical flows are inferred from feature flows by nearest-
neighbor interpolation. The trajectory curve going through
a given pixel of a particular video frame is then built by
adding up flows forward and backwards in time. Since
SIFT feature points have sub-pixel accuracy, cumulative
errors are negligible. The process stops as soon as an un-
known flow (scene cut) is encountered.

Finally, each of the vertices of a trajectory curve is tagged
with the frame number it corresponds to. The floating-point
video frame number of an arbitrary point on the curve is
obtained by linear interpolation.

Estimation of Background Motion

We implemented a greedy screen-space binary partitioning
scheme to find the most dense motion region in the space
of feature motions. This algorithm yields the dominant or
“most representative” feature displacement on a given pair
of frames, which is identified with background translation
and subtracted from the feature flow.

Our binary partitioning scheme is computationally cheap
and has produced results that received positive response
from early users of our system. More advanced tools such
as K-means or Mean-Shift clustering algorithms can be
used to detect multiple coherent motions and refine the
computation of relative motion [10].

Current Limitations

Pilot user testing sessions revealed that the trajectories
generated by our system match users’ expectations fairly
well, especially for videos involving large continuous mo-
tions. However, some limitations remain:

Speed: feature extraction & matching can be costly. While
our implementation takes about 5s per frame on a typical
desktop computer, research suggests that feature detection
and matching can be faster, if not real-time [20, 33].

Sensitivity: in order to keep computation times acceptable,
we sub-sample video frames to 128×128 grayscale pixels
before processing. As a result, small objects are not
tracked. Faster feature extraction algorithms could work on
higher resolution images, thus improving sensitivity.

Discontinuous Motions: our implementation does not re-
member features which have been briefly occluded or
moved outside the camera view. This issue is intrinsic to
the optical flow paradigm and can be partly addressed by
the integration of tracking techniques [40, 18].

Induced Motion: while straightforward, our background
extraction method makes several simplifying assumptions
about induced motion, e.g., it does not detect multiple co-
herent motions, nor does it account for non-translational
induced motions [26].

Scalability: At this time, DimP works best for relatively
short video clips. In addition to processing time, current
scalability issues concern memory (videos are wholly un-
compressed to support fast browsing) and lags produced by
the construction of very long trajectory curves.

The trajectory curves we produce hold all the information
we need for the direct manipulation of video. With this
information, we can reflect a point’s motion over a trajecto-
ry curve back into changes on the video frame number. In
the next section, we elaborate on how users control these
curvilinear motions using 2D mouse movements.

CURVILINEAR DRAGGING DESIGN

Flow dragging requires supporting curvilinear dragging on
multiple curves. We assume a simple model where no dy-
namic transition between curves occurs, thus we only con-
sider the case where curves remain fixed once they have
been invoked by a mouse press. We also assume back-
ground motion has been subtracted from trajectory curves,
and focus on the curvilinear dragging problem.

Requirements

There are different ways of mapping dragging gestures to
curvilinear motions, i.e., moving a point along a 2D curve
using a 2D input device. While the “correct” behavior for a
curvilinear dragging method is subjective to users’ expecta-
tions, we can postulate five basic requirements:

Multi-Scale: users should be able to perform both slow/fine
dragging as well as fast/coarse dragging. If a curve has
small high-frequency and large low-frequency components,
the user should be able to explore it locally, but also rapidly
transition to other regions of the curve (Figure 6a).

Arc-Length Continuity: it is desirable to favor continuity in
terms of arc-length variation, e.g., if the user follows a loop
and goes through its intersection, the algorithm should not
jump to a different part of the curve (Figure 6b).

Directional Continuity: variations that preserve the arc-
length direction of motion are favorable, e.g., users follow-
ing a cusp should not go back to where they came from
(Figure 6c). This allows for navigating through the whole
curve with a single gesture, even if the curve has U-turns.

Proximity: a curvilinear dragging method should minimize
spatial indirection [6], e.g., when the pointer is still, the
offset between its current position and the corresponding
point on the curve should be minimized.

Responsiveness: the method should also minimize temporal
indirection [6], i.e., pointer motions should rapidly reflect
on the curve, without noticeable delays in the interaction.

Figure 6: Three requirements for a curvilinear dragging

technique: (a) multi-scale navigation, (b) arc-length

continuity, and (c) directional continuity.

Existing Solutions

Current applications use simple solutions to the problem of
curvilinear dragging. While straightforward, these solutions
do not fully satisfy our proposed set of requirements. Pro-
jecting the pointer's location onto a line, for example, is
effective but only applies to linear trajectories, e.g., sliders.

Another approach involves constraining the pointer’s mo-
tion to a tunnel around the curve, i.e., a steering [1] solu-
tion. This steering method supports fine dragging and, to
some extent, arc-length continuity and responsiveness.
However, because users cannot deviate from the tunnel,
support for proximity and coarse exploration is limited.

Using a “closest point” algorithm for curvilinear dragging
is another simple solution [3]. This method meets the prox-

imity and responsiveness criteria; however it does not meet
the arc-length continuity and directional continuity criteria.
At the same time, while this method supports coarse drag-
ging, it does not allow for fine dragging on curves with
small high-frequency components.

A better approach is to restrict the search for the closest
point to a small neighborhood of the previous closest point
[4]. This method supports arc-length continuity and fine
dragging. However, support for coarse dragging is limited
by the fact that the dragged point can remain stuck into
local minima such as the left loop in Figure 6a.

We suggest a different extension of the closest point tech-
nique and show how it meets our proposed requirements.

The 3D Distance Method

We build on the closest point algorithm in order to benefit
from its high responsiveness, its ability to enforce proximi-

ty and support for coarse exploration. We enforce continui-
ty by taking arc-length distance into account when search-
ing for the closest point. This is similar to Kimber et al’s
method [18], which however uses key frame distance and is
hence sensitive to the way the curve is sampled.

Algorithm

The 3D distance method consists of expressing the curve in
(x, y, z) coordinates instead of (x, y). We do this by map-
ping a point’s z-coordinate to its arc-length distance from
the curve’s origin. This mapping takes the form of a linear

function)(parclenkpz ⋅= , where k ≥ 0 is a scale factor.

The curve's x and y coordinates are left unchanged.

The pointer’s coordinates are also expressed in 3D space
with x, y unchanged and z mapped to the z-coordinate of the
currently active (dragged) point on the curve.

If Ca is the location of the currently active point on the
curve, the 3D distance between the pointer p and any point
C on the curve is obtained by the following equation:

222)()()(CCkCpCpD ayyxx ⋅+−+−= (1)

where px and py are the coordinates of the pointer p on the
screen, Cx and Cy are the coordinates of the point C on the

2D curve, and CC a
 is the arc-length distance between Ca

and C on the 2D curve. Notice that this algorithm reduces
to the standard 2D closest point when k = 0.

The initial active point Ca is obtained using a standard 2D
closest-point search. Then, on each drag event, the new Ca
is the point C which minimizes equation (1).

Jumps

Although our 3D distance algorithm preserves continuity at
intersection neighborhoods, a jump will occur if users "in-
sist" on dragging away from the current region. The jump-
ing threshold depends on the value of the z-scaling constant

k. k ≈ 1 yields good results for video navigation and allows
for both local dragging gestures that follow a curve loosely
and ballistic motions between distant points of a curve.

Since the 3D distance method tries to preserve continuity,
jumps occur less frequently than when using a closest point
approach. However, jumps that occur are naturally larger.
This is a result of the combined support for arc-length con-
tinuity and coarse exploration. The fact that jumps are both
larger and more difficult to produce yields a natural interac-
tion style by which local dragging can be bypassed using
"pull gestures". Large jumps can be smoothed visually
using animations, provided that these animations are fast
enough to meet the responsiveness criterion.

Adding Support for Directional Continuity

As stated, the 3D distance method addresses the problem of
arc-length continuity but not directional continuity. We add
this support by adding a term kD > 0 to the right member of

equation (1) whenever CC a
and

aa
CC t)1(− have opposite

signs. This will move the already visited region further
away when searching for the closest point and thus pre-
serve directional continuity on cusps. As a result, it will be
slightly more difficult to reverse the arc-length direction of
motion on the curve, kD being the travel distance required

to go back (kD ≈ 5 yields good results for video navigation).
Kimber et al [18] use a similar scheme except that kD and k
decrease with time when no drag event occurs.

Maintaining Interactive Rates

The 3D distance method requires computing the distance
between P and each of the curve segments. When curves
have a large number of vertices, an optimization technique
is desirable to ensure interactive system response.

Although we could have used a data structure to optimize
our search [21], our distance metric allows a simpler ap-
proach. Since the absolute value of the z-component of our

distance metric CCkd az ⋅= increases monotonically as the

candidate point C moves away from Ca, it can be used as a
lower bound on the total distance between C and Ca.

This leads to the following algorithm: we search forward
and backward along the curve beginning from the initial
active point Ca. Each branch of the search halts when the
distance dz is greater than the candidate minimum distance
or when the end of the curve is reached.

Curve Filtering

Curves can contain very small high-frequency components
that are above the display capabilities and/or the pointing
accuracy of the input device. In the case of video trajectory
curves, noise can result from motion estimation artifacts,
such as feature mismatches. Removing these components
will likely improve curvilinear manipulations.

We use Taubin’s smoothing algorithm [36] which behaves
like a low-pass filter and does not significantly modify
curves. This efficiently removes variations too small to be
followed, while preserving most of the curve’s features,
thus still agreeing with the proximity criterion.

Limits of Curvilinear Dragging

The 3D distance method nicely supports curvilinear drag-
ging on moderately complex curves. However, there is a
limit to that complexity. For example, we processed a 5
minute uncut video of a couple dancing tango and obtained
cluttered curves going back-and-forth many times on the
screen. Such curves are difficult to visualize clearly and are
naturally difficult to follow. We are currently looking into
overcoming this issue by clipping very long curves to a
neighborhood of predefined arc-length.

USER STUDY

We argue that, in addition to the feel of direct manipulation
it can provide, relative flow dragging can outperform the
traditional seeker bar in media browsing tasks that involve
targeting in the image space. Targeting in the image space
means that the user wants to reach a specific visual event or
a frame having specific visual characteristics. This is in
contrast to targeting in the time space, in which one wants
to, e.g., reach a particular point in time within the video.

We test this hypothesis on DimP through a study that
presents users with video navigation tasks requiring them to
think in terms of space instead of time.

Apparatus & Participants

We used a Dell Precision system running windows XP at
3.2GHz, 2 GB of RAM, a 1280×1024 LCD display, and a
mouse. Six males and ten females, 18-44 years old, partici-
pated in the study and were recruited through e-mail post-
ing at our university. No compensation was provided.

Task and Stimuli

The study used synthetic videos made by screen-capturing
objects moving on a 2D canvas. The videos were 227 to
917 frames long and had a 640×480 resolution. We pre-
sented users with two types of task, ladybug and car:

Ladybug (Figure 7, left): This task involved video clips
showing a ladybug flying over four markers, in an unpre-
dictable order with non-uniform speed. Users were in-
structed to “find the moment in the video when the ladybug

passes over marker X”.

Car (Figure 7, right): This task involved video clips show-
ing three cars of different shape and colors moving one
after the other, at unpredictable times. Each car moved only
once and most of the video contained no movement. Users
were instructed to “find the moment in the video when car

X starts moving”.

Figure 7: Examples of the ladybug (left) and car tasks (right).

The dashed curves illustrate the objects’ trajectory on the

video and did not appear like this in the trials.

At the beginning of each trial, the video player (DimP)
loaded a new video clip into memory then paused on the
first frame. The player included a standard seeker bar of
554×16 pixels and also supported the direct manipulation
technique described in the previous sections. All videos
have been pre-processed for the latter technique. VCR
buttons were also available but they were not needed for
the tasks and none of the participants used them.

Procedure and Design

We used a 2 technique (seeker bar, relative flow dragging)
× 2 task (ladybug, car) within-participant design. We pre-
sented three instances of each task that involved a different
variant of the same video and a different target frame, i.e.,
frame to reach in the video stream. Target frames were
chosen before, during and after the halfway-point of the
video’s length. They were given to users in a non-explicit
way, i.e., through the description of visual events defined
by either a marker number (ladybug) or a car color (car).

The dependent variables were trial time and error. We
computed trial time as the time between the first Mouse-

Down and the last Mouse-Up events of a trial. We com-
puted error as the absolute difference between the number
of the target frame and the number of the frame reached by
the user divided by the total number of frames. The condi-
tions’ order of presentation was counter-balanced across
participants. In summary, the experiment consisted of:

16 users × 2 techniques × 2 tasks × 3 instances = 192 trials.

Prior to the study, the experimenter explained the task to
the users. Before each technique, users practiced with it
using a warm-up video different from those used in the
trials. Users were told to do the trials as quickly and accu-
rately as possible. Users advanced to the next trial after
declaring a task was completed.

Quantitative Results

The study averaged half an hour per user. We conducted a
2 (technique) × 2 (task) repeated measures analysis of va-
riance (RM-ANOVA) on the logarithmically transformed
trial time and on the error. The logarithm transform corrects
for the skewing present in human time response data, and
removes the influence of outliers.

We found a main effect for technique on time: relative flow
dragging was at least 250% faster than using the seeker bar
(F1,12=69.762, p<0.0001) (Figure 8).

Figure 8: Mean time per task

Users were accurate with both techniques (<1% error).
Although they seemed to be more precise with relative flow
dragging than the seeker bar, this difference was not statis-
tically significant (F1,12=2.848, p=0.117). There was a main
effect for task on error (F1,12=13.982, p<0.005) (Figure 9).
This result suggests that while conceptually similar, the two
tasks demanded different resources from users.

Figure 9: Mean error per task.

Qualitative Results

We asked users to rank their preferences using a Likert
scale ranging from 1 (strongly disagree/very dissatisfied) to
7 (strongly agree/very satisfied). Users’ preference for

relative flow dragging over the seeker bar is consistent with
our quantitative results (Table 1).

Users voiced their preference for relative flow dragging: it
was “clean, easy to use”, produced “immediate results with
a high level of precision”, “allowed me to interact with the
video elements I was interested in, not just video as a
whole”. A user of 3D systems thought that “for visual con-
straints this technique is incredibly helpful”. One user ex-
pressed some disorientation: “it was easier” but “confusing
when the object did not move along the same path as the
cursor”. This expectation was probably reinforced by the
synthetic look of the videos.

Technique Question Score Standard Error

Relative
Flow Dragging

Tasks were easy 6.38 0.24

Tasks were fast 6.56 0.16

Satisfaction 6.13 0.26

Seeker Bar

Tasks were easy 5.06 0.36

Tasks were fast 4.31 0.42

Satisfaction 4.69 0.33

Table 1: Summary of qualitative results.

PREVIOUS WORK ON VIDEO BROWSING

Despite advances in computing hardware, watching a video
using regular software remains similar to the way we expe-
rience videos on analog video cassette recorders (VCR)
[18]. Software video players mostly use traditional VCR
controls, enabling playback at different rates. The only
significant advance is the seeker bar, allowing partial ran-
dom access and continuous navigation in the video time-
line. Other innovations in browsing include non-linear
navigation, visual summaries, content-based video retriev-
al, and advanced widgets.

Non-Linear Video Browsing

Videos often contain meaningful events, some of which can
be extracted automatically, e.g., scene cuts, to support
intelligent skip mechanisms [18]. Videos also have seg-
ments of different importance, and static scenes that can be
detected and used to speed-up video playback [18, 38].
Different levels of importance can be inferred by estimating
motion activity. Such information can be used to support
adaptive fast-forward, i.e., changing the playback rate so as
to maintain a constant “visual pace” [27, 38].

Adaptive fast-forward approaches are related to our tech-
nique because they use actual motions in the image space to
facilitate video browsing. However, they show their limits
in the presence of concurrent motions. For example, if a
video has objects moving at very different speeds (e.g., cars
and pedestrians), it is not clear which of them should be
taken into account. Relative flow dragging addresses this
by allowing the user to specify the motion of interest: click-
ing on a slow pedestrian will provide coarse grain access to
a big time segment, whereas clicking on a fast car will
provide finer access to a smaller time segment.

Visual Summaries

Combining video content analysis with visualization has
been a popular method for supporting searching tasks in
long videos. A representative approach for this method

6.56

7.07

6.81

2.45

2.40

2.42

0 1 2 3 4 5 6 7 8 9

La
d
y
b
u
g

C
a
r

O
v
e
ra
ll

Mean Trial Time +/‐ SE (seconds)

Relative Flow Dragging Seeker Bar

0.22

1.01

0.62

0.17

0.51

0.34

0 0.2 0.4 0.6 0.8 1 1.2 1.4

La
d
y
b
u
g

C
a
r

O
v
e
ra
ll

Mean Error +/‐ SE (%)

Relative Flow Dragging Seeker Bar

consists of extracting relevant key-frames and organizing
them into mosaics or interactive storyboards [38]. Key-
frames can be also laid out on the seeker bar to provide an
overview of the video [29].

A recent system from Goldman et al. [12] generates sche-
matic storyboards to facilitate video editing tasks. Schemat-
ic arrows are generated from the motion of objects of inter-
est specified by the user. These arrows act like sliders,
allowing navigation through the video timeline. While this
system shares similar ideas with ours, it does not support
true direct manipulation, i.e., the video is manipulated
through a static storyboard displayed in a separate window.

Content-Based Video Retrieval

Several research efforts have explored the use of images
and visual trajectories for indexing and searching video
[31, 35]. While some of these tools provide sketch-based
GUIs, they all use a conversational interaction paradigm:
the user makes a query, and then waits for the results. This
is significantly different from our direct manipulation ap-
proach, which allows local browsing and exploration.

Advanced Widgets

Video players could also be improved by using sliders that
support simultaneous control of position and velocity [29]
or position and accuracy [2, 22]. This would increase the
seeker bar's resolution, a common limitation of current
video players.

In-place widgets can also be used to facilitate video brows-
ing. For example, we could design pop-up seeker bars that
adapt to the instantaneous motion of objects of interest.
Such widgets would not require the user to follow trajecto-
ries but would share some advantages with relative flow
dragging, such as its small degree of spatial indirection.

Although such approaches are worth exploring as an alter-
native to the seeker bar, we believe that only direct manipu-
lation can support fast targeting in the image space, such as
bringing a moving object to a location of interest. We in-
tend to assess this claim in future user studies.

Similar Systems

The idea of annotating video clips to support direct mani-
pulation has been previously used in the Dragri multimedia
authoring system [25]. A fully automated solution by
Kimber et al. has also been recently published and brought
to our attention during the review process [18]. These two
parallel attempts at solving a similar problem undoubtedly
led to some very similar solutions, although significant
differences in the motion extraction and curvilinear drag-
ging algorithms have been outlined throughout this paper.

Kimber and al.’s work also mainly focuses on surveillance
systems and explores ideas such as tracking across multiple
calibrated cameras and manipulating floor plan projections
[18]. In contrast, we elaborate on a general technical and
conceptual framework for supporting direct manipulation
of moving imagery. We also describe the issue of induced
motion and show how it can be addressed by background
stabilization. Finally, we provide a first assessment of the
usability of the technique by the means of a user study.

CONCLUSION AND FUTURE WORK

We presented a new way of browsing videos, which brings
the benefits of direct manipulation to an activity previously
experienced through indirect means. Commercial media
players could potentially benefit from our approach by
exploiting motion metadata present in video files [35, 39].
This is especially appealing with the emergence of touch-
input handheld multimedia devices.

In addition to the potential benefits to the overall subjective
user experience, we showed how direct manipulation can
improve user performance on space-centric video naviga-
tion tasks. The videos we used in our evaluation have been
chosen for illustrative purposes and a more ecological
comparison of video browsing techniques is still needed. In
particular, it would be beneficial to assess the relative oc-
currence of space-centric video browsing tasks, as well as
the applicability of flow dragging to long video clips.

Our contributions go beyond the implementation of an
interactive system and address research challenges such as
identifying new classes of direct manipulation techniques,
designing a reusable curvilinear dragging method that
meets a number of desirable properties, and adding to our
understanding of the concept of direct manipulation.

By introducing the concept of relative flow dragging, we
also suggest a general mechanism that can bring a new type
of interactivity to a variety of graphical applications in
which interaction is traditionally mediated by widgets.
These include information visualization tools, interactive
learning environments [14], GUI revisitation [8], as well as
2D and 3D animation authoring tools [3, 23] where clicking
and dragging objects on the canvas can be sometimes more
practical than “scrubbing” a timeline.

ACKNOWLEDGEMENTS

Thanks to Patricio Simari, Digby Elliott, Tomer Mosco-
vich, Shahzad Malik, Nigel Morris, Michel Beaudouin-
Lafon and members of the dgp lab for their helpful com-
ments. Videos courtesy of www.bskunion.at, PETS2000,
Christina J. Hodge and Ambers Christians.

REFERENCES

1. Accot, J. and Zhai, S. (1997). Beyond Fitts' law: mod-
els for trajectory-based HCI tasks. CHI. p. 295-302.

2. Appert, C. and Fekete, J. (2006). OrthoZoom scroller:
1D Multi-Scale Navigation. CHI. P. 21-30.

3. Autodesk Maya. http://www.autodesk.com/

4. Baudel, T., Fitzmaurice, G., Buxton, W., Kurtenbach,
G., Tappen, C. and Liepa, P. (2002). Drawing system

using design guides. US Patent # 6,377,240.

5. Beauchemin, S.S. and Barron, J.L. (1995). The compu-
tation of optical flow. ACM Computing Surveys, 27(3).
p. 433-467.

6. Beaudouin-Lafon, M. (2000). Instrumental Interaction:
An interaction model for designing post-WIMP user in-
terfaces. CHI. p. 446-453.

7. Beaudouin-Lafon, M. (2001). Novel interaction tech-
niques for overlapping windows. UIST. p. 153-154.

8. Bezerianos, A., Dragicevic, P. and Balakrishnan, R.
(2006). Mnemonic rendering: an image-based approach
for exposing hidden changes in dynamic displays.
UIST. p. 159-168.

9. Buxton, W. (1986). There's more to interaction than
meets the eye: some issues in manual input. In User

Centered System Design: New Perspectives on Human-

Computer Interaction. Lawrence Erlbaum. p. 19-337.

10. Cheng, Y. (1995). Mean shift, mode seeking, and clus-
tering. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 17(8). p. 790-799.

11. Dragicevic, P., Huot, S. and Huot, S. (2002). SpiraC-
lock: a continuous and non-intrusive display for up-
coming events. CHI Extended Abstracts. p. 604-605.

12. Goldman, D.B., Curless, B., Salesin, D. and Seitz, S.M.
(2006). Schematic storyboarding for video visualization
and editing. SIGGRAPH. p. 862-871.

13. Guimbretière, F. (2000). FlowMenu: combining com-
mand, text, and data entry. UIST. p. 213-216.

14. Hölzl, R. (1996). How does ‘dragging’ affect the learn-
ing of geometry? International Journal of Computers

for Mathematical Learning, 1(2). p. 169-187.

15. Hutchins, E.L., Hollan, J.D. and Norman, D.A. (1987).
Direct manipulation interfaces. In Human-Computer in-

teraction: A Multidisciplinary Approach. R. M. Baeck-
er, Ed. Morgan Kaufmann. p. 468-470.

16. Irani, M., Anadan, P. and Hsu, H. (1995). Mosaic based
representations of video sequences and their applica-
tions. Intl. Conference on Computer Vision. p. 605-611.

17. Kim, C. and Hwang, J. (2002). Fast and automatic
video object segmentation and tracking for content-
based applications. IEEE Trans. Circuits and Systems

for Video Technology, 12. p. 122-129.

18. Kimber D., Dunnigan, T., Girgensohn, A., Shipman, F.,
Turner, T. and Yang, T. (2007). Trailblazing: Video
playback control by direct object manipulation. ICME.
p. 1015-1018.

19. Li, F.C., Gupta, A., Sanocki, E., He, L. and Rui, Y.
(2000). Browsing digital video. CHI. p. 169-176.

20. Lowe, D.G. (2004), Distinctive image features from
scale-invariant keypoints. International Journal of

Computer Vision, 60(2). p. 91-110.

21. Maier, D., Hesser, J. and Männer, R. (2003). Fast and
accurate closest point search on triangulated surfaces
and its application to motion estimation. WSEAS Intl.
Conference on Signal, Speech and Image Processing.

22. Moscovich, T., Hughes, J.F. (2004). Navigating Docu-
ments with the Virtual Scroll Ring. UIST. P. 57-60.

23. Ngo, T., Cutrell, D., Dana, J., Donald, B., Loeb, L. and
Zhu, S. (2000). Accessible animation and customizable
graphics via simplicial configuration modeling.
SIGGRAPH. p. 403-410.

24. Nowozin, S. autopano-sift − Automatic panorama
stitching package. http://user.cs.tu-
berlin.de/~nowozin/autopano-sift/

25. NTT-AT Dragri. http://www.dragri-fran.com

26. Pack, C. and Mingolla E. (1998). Global induced mo-
tion and visual stability in an optic flow illusion. Vision

Research, 38. p. 3083-3093.

27. Peker, K.A., Divakaran, A. Sun, H. (2001). Constant
pace skimming and temporal sub-sampling of video us-
ing motion activity. IEEE International Conference on

Image Processing, Vol. 3. p. 414-417.

28. Proteau, L. and Masson, G. (1997). Visual perception
modifies goal-directed movement control: Supporting
evidence from a visual perturbation paradigm. The

Quarterly Journal of Experimental Psychology, 50,
726-741.

29. Ramos, G. and Balakrishnan, R. (2003). Fluid interac-
tion techniques for the control and annotation of digital
video. UIST. p. 105-114.

30. Schneiderman, B. (1992). Designing the user interface:
Effective strategies for effective human-computer inte-
raction. Addison-Wesley.

31. Shim, C. and Chang, J. (2004). Trajectory-based video
retrieval for multimedia information systems. Proc.

ADVIS, LNCS 3261. p. 372-382.

32. Shoemake, K. (1992). ARCBALL: a user interface for
specifying three-dimensional orientation using a
mouse. Graphics Interface. p. 151-156.

33. Sinha, S., Frahm, J.M. and Pollefeys M. (2006). GPU-
based video feature tracking and matching. Tech. Rep.

TR06-012, University of North Carolina at Chapel Hill.

34. Snavely, N., Seitz, S.M. and Szeliski, R. (2006). Photo
tourism: exploring photo collections in 3D. ACM

Transactions on Graphics, 25(3). p. 835-846.

35. Su, C., Liao, I.M. and Fan, K. (2005). A motion-flow-
based fast video retrieval system. ACM SIGMM Inter-

national Workshop on Multimedia Information Retriev-

al. p. 105-112.

36. Taubin, G. (1995). Curve and surface smoothing with-
out shrinkage. Intl. Conf. on Comp. Vision. p. 852.

37. Thorne, M., Burke, D. and van de Panne, M. (2004).
Motion doodles: an interface for sketching character
motion. SIGGRAPH. p. 424-431.

38. Truong, B.T. and Venkatesh, S. (2007). Video abstrac-
tion: A systematic review and classification. ACM

Transactions on Multimedia Computing, Communica-

tions, and Applications, 3(1). p. 1-37.

39. Wei, J. (2003). An efficient motion estimation,method
for MPEG-4 video encoder. IEEE Transactions on

Consumer Electronics, 49(2). p. 441-446.

40. Yilmaz, A., Javed, O. and Shah, M. (2006). Object
tracking: A survey. ACM Computing Surveys, 38(4). p.
1-45.

41. Zivotofsky, A.Z. (2004). The Duncker illusion: inter-
subject variability, brief exposure, and the role of eye
movements in its generation. Investigative Ophthal-

mology and Visual Science, 45. p. 2867–2872.

	ABSTRACT
	INTRODUCTION
	RELATIVE FLOW DRAGGING
	Directness
	Matching Gestures with Motions
	Curvilinear Dragging
	Flow Dragging
	Relative Dragging
	Challenges

	THE DIRECT MANIPULATION VIDEO PLAYER
	Trajectory Visualization
	Background Stabilization

	TRAJECTORY EXTRACTION FROM VIDEOS
	Computer Vision Approaches
	Extraction of Feature Flows
	Construction of Trajectory Curves
	Estimation of Background Motion
	Current Limitations

	CURVILINEAR DRAGGING DESIGN
	Requirements
	Existing Solutions
	The 3D Distance Method
	Curve Filtering
	Limits of Curvilinear Dragging

	USER STUDY
	Apparatus & Participants
	Task and Stimuli
	Procedure and Design
	Quantitative Results
	Qualitative Results

	PREVIOUS WORK ON VIDEO BROWSING
	Non-Linear Video Browsing
	Visual Summaries
	Content-Based Video Retrieval
	Advanced Widgets
	Similar Systems

	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

