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Utrecht University Recent studies confirm that mobile video

use on handheld devices is quite different

from watching TV in your living room.1 For

instance, assume you are standing at the bus

stop, waiting for the 10-minute bus ride that

will take you home from work. While waiting,

you want to quickly view the latest evening

news show, which you downloaded to your

mobile device just before you left your office.

Once you’re on the bus, you want to quickly

go to the one news report that seems the most

interesting to you, because you don’t have

enough time to watch the whole news show.

Shortly before you arrive, you want to take a

quick look at the weather forecast. Because

you don’t have much time left, you just want

to find a frame in the video showing the map

of your state with the temperature values.

When comparing such a situation to watching

this news show at home, we can see that in the

mobile scenario, much more interaction and

navigation occurs. First, you have to quickly

skim the video content to get an overview.

Then you have to set replay around the

beginning of the particular news clip you want

to watch. Finally, you need detailed naviga-

tion—that is, the ability to move to an exact

position or a particular frame within the video.

The need to continuously switch between

different granularity levels when navigating

through a video (skimming on a coarser level,

for example, to get a quick overview versus

detailed browsing on a fine level to do an exact

positioning) creates high demands on inter-

face design and functionality. Researchers

have conducted many studies on video brows-

ing, including, for example, looking at auto-

matic generation of trailers and storyboards;

good overviews are available elsewhere.2-6

However, most of these techniques take place

on desktop machines and can hardly be

applied to mobile devices because of limited

screen size and no mouse-like input device.

Surely, the keypads and joystick-like buttons

of modern mobile phones can be used for

video browsing as well, but they hardly can

provide the flexibility needed to cover the

whole range of interactions that must be

performed for complex browsing tasks, such

as those required in the scenario described

above. A better approach seems to use a finger

or a pen to interact with the (touch sensitive)

screen directly, allowing us to create software-

based interfaces that can be adapted to the

actual demand of a particular program. An

impressive example of this strategy is Apple’s

iPhone (and the iPod touch, which features a

similar interface). Innovative interface con-

cepts, such as multitouch and flicking (see

‘‘Static Media Browsing on the iPhone and the

iPod Touch’’ sidebar near the end of this

article) are indeed one of the main reasons

for the hype generated around the iPhone.

However, this functionality is normally ap-

plied to browsing of static media, such as lists,

text, and images, whereas the included video

player offers limited possibilities for interac-

tive navigation, at least at the time of this

writing (see Figure 1).

This article gives an overview of our group’s

recent and ongoing work on creating a

flexible, intuitive, and powerful interface to

improve video browsing on handheld devices

in a similar way to how the iPhone’s interac-

tion techniques revolutionized navigation in

mobile static media. I present several concepts

and related user-interface designs that we’ve

developed and evaluated. Due to the overview
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character of this article, I limit the discussion

to the presentation of the designs and refer to

the related publications for detailed descrip-

tions of evaluations and user studies.

We implemented the interfaces presented

here on a Dell Axim X51v PDA running

Windows Mobile. The PDA features an Intel

624-MHz XScale PXA 270 processor, 64 Mbytes

of SDRAM, and a 3.7-inch, 16-bit, 640 3 480

display. We implemented the designs on top

of The Core Pocket Media Player (TCPMP), an

open-source media player available for differ-

ent platforms, including Windows Mobile and

Palm OS. Implementation was done in C++
and based on the Win32 API using the

Graphics Device Interface for rendering. The

Dell Axim PDA provides a touch-sensitive

display that is optimized for pen-based input.

Hence, all interfaces have been designed for

and tested with pen-based interaction. Some

of the designs can be generalized to finger-

based input whereas others are most likely

unsuited for this kind of interaction due to a

finger’s larger size compared to a pen’s fine tip.

MobileZoomSlider design

Some traditional video browsing tech-

niques—such as automatic trailer generation,

story segmentation, and so on—are also useful

approaches for mobile devices, for example, to

get a quick overview of a video’s content or to

skip a scene of minor interest. However, as

with hardware-based solutions such as buttons

and joystick-like keys, these techniques aren’t

sufficient for providing the whole range of

functionality used for the advanced browsing

tasks illustrated in the example at the begin-

ning of this article. Approaches such as

interactive manipulation of replay speed (for

example, fast forward and slow motion to skim

a file’s content quickly and do an exact

positioning on frame level) or a flexible

navigation along the timeline as realized with

a timeline-based slider (see Figure 1) seem to

be more appropriate. The latter one has proven

to be a useful approach for video browsing

when combined with real-time visual feedback

while a user is dragging the slider’s thumb

along the timeline.

Getting immediate feedback enables users

to skim a file at random speed and direction

and thus allows them, for example, to browse

a file’s content quickly (for example, to get a

quick overview of all news messages), easily set

replay to a specific area (for example, the

approximate beginning of the most interesting

news story), and do an exact positioning (for

example, to access one of the few frames in the

video showing the map with the temperatures

for the next day). Such a slider-based, video-

browsing approach would therefore be useful

for typical mobile video-browsing tasks. How-

ever, the small screen size of handheld devices

prevents us from using it very easily. First,

small icons often are hard to target even with

the fine tip of a thin pen. Second, and most

importantly, sliders don’t scale to large docu-

ment sizes. Moving the slider’s thumb for the

smallest possible unit on the screen (that is,

one pixel) already results in a jump of several

frames in the video if the document is rather

long, making it difficult if not impossible to do

a fine granular navigation.

The first interface design we implemented,

the MobileZoomSlider (see Figure 2a, next

page), addresses this scaling problem by pro-

viding different sliders with several scales at

various granularity levels. In addition, it

eliminates the need to target small icons.

Instead of relying on particular widgets or

GUI components, users can click anywhere on

the display. Navigation along the timeline is

evoked by moving the pen horizontally, as

Figure 2b illustrates. The scale resolution of

the corresponding virtual timeline depends on

the pen’s vertical position: the finest resolu-

tion (one pixel on the screen corresponds to

one frame in the video) is achieved at the top
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Figure 1. The iPod

touch’s video player

(iPod touch ver. 1.1.4).

Users can skip scenes

using two buttons and

navigate through the

file along the timeline

using a slider at the top

of the window.

Browsing granularity

is high due to the small

size of the screen, thus

preventing users from

performing detailed

browsing and

exact positioning.

Ju
ly

–S
e
p

te
m

b
e
r

2
0
0
8



of the display. The coarsest resolution (one

pixel on the screen corresponds to the number

of frames in the video divided by the horizon-

tal resolution of the screen) is associated with

the bottom of the screen. In between, the

timeline’s scale is linearly mapped to a value

between these two extremes. This way, a user

can access the timeline easily to scroll through

the video at different granularity levels and

immediately switch between different scales.

When reaching the right-screen border, brows-

ing changes from active navigation along the

timeline to passive video browsing by manip-

ulation of replay speed. As with the scale

resolution when browsing along the timeline,

the actual speed value at the screen’s border

depends on the vertical pen position: slow

motion for fine granular navigation at the top

versus fast forward for quick document skim-

ming at the bottom, and a linear interpolation

of replay values in between (see Figure 2c).

Backward replay at different speed values is

similarly implemented on the left-screen bor-

der.

The MobileZoomSlider was initially intro-

duced in Hürst, Götz, and Welte7 as a slightly

modified version of our original ZoomSlider

interface, which was developed for video

browsing on desktop PCs and laptops.8 The

related usability study illustrated the power

and flexibility of the proposed approach and

verified its usability for typical browsing tasks.

The functionality offered by this design is a

combination of two traditional interaction

concepts for video browsing: position-based

navigation (that is, modification of the current

position in a file by horizontal pen move-

ments along the virtual timelines) and speed-

based navigation (that is, modification of

replay speed by vertical pen movements at

the left and right border of the screen). Hence,

the innovation in this interface comes less

from the interaction concepts than from their

clever integration into the overall design.

Users don’t have to target any small icon to

evoke some functionality; instead, they can

just click at the respective area of the screen.

For position-based navigation, interaction is

similar to traditional slider movements: left

and right pen movements for backward and

forward navigation along the timeline.

The timeline’s granularity is clearly associ-

ated with fixed screen areas, giving users

immediate access to the appropriate scale

resolution needed in a particular browsing

situation. The areas on the left and right side

of the screen, which are reserved for speed-

based browsing, resemble a normal (horizon-

tal) slider sometimes used in video editing or

replay tools on desktop PCs. However, here,

the functionality is evoked by vertical pen

movements. The reason for this is to enable

users to switch easily between the two differ-

ent interaction modes: speed- and position-
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Figure 2. The

MobileZoomSlider

interface design: (a)

implementation on a

Dell Axim PDA, (b)

position-based

navigation in the

screen’s center, and (c)

speed-based navigation

at the screen’s borders.



based navigation. The involved parameters—

scale resolution of the virtual timeline and

speed-up factor—are harmonized with each

other. A slow movement along a fine granular

timeline at the top of the screen leads to slow-

motion-like, speed-based navigation when

moving the pen to the display’s right side

(and vice versa). By the same token, navigation

along the timeline at the bottom of the screen

(which is usually faster due to the lower

resolution of the timeline) is associated with

a faster replay at the bottom right corner of the

screen. Our evaluations showed that users

often take advantage of both interaction

modes when confronted with advanced

browsing and search tasks, thus confirming

the need for their smooth integration into the

overall interface design.9

ScrollWheel design

Allocating different functionalities to cer-

tain areas of the screen as with the Mobile-

ZoomSlider is not a new idea and is also used,

for example, in the iPhone for browsing long

lists of text (see Figure A3 in the sidebar). Our

second interface design for mobile video

browsing, the ScrollWheel,9 also has an inter-

esting relation to an Apple device, in this case

the iPod classic, which features the Click

Wheel. This interface element is used not only

to control volume, but also to navigate static

media. And if we linearly map each frame in a

video to a position on the wheel (correspond-

ing, for example, to the hour markers listed on

an analog clock) we also can use such a device

for video browsing (see Figure 3). However, in

our case, we want a software version of such a

wheel, which has an additional advantage

compared to a hardware installation. By

modifying the circle’s radius, users can indi-

rectly manipulate the resolution of the associ-

ated scale so that larger circles result in slower

movements along the timeline and smaller

circles can be used for quick navigation with a

coarser timeline resolution. This behavior is

comparable to the MobileZoomSlider design

where users navigate along the timeline in one

case via linear pen movements and in the

other via circular motions. The larger the

distance between the pen and the screen’s

bottom or center of the circle, respectively, the

finer the scale of the timeline.

In an initial experiment, we compared

different versions of such a ScrollWheel im-

plementation on our Dell Axim PDA:9

& a pure position-based version (see Fig-

ure 4a, next page) where the wheel resem-

bles a virtual clock with a resolution that

can be manipulated indirectly by increasing

and decreasing the distance between the

pen and the center of the wheel,

& a pure speed-based version (see Figure 4b)

where turning the wheel clockwise and

counterclockwise results in an increasing

scrolling speed in forward and backward

directions, respectively, and

& a combined version (see Figure 4c) where

interaction starts with a position-based

navigation and after a while switches to

speed based scrolling.

The latter one is comparable to the change of

interaction modes in the MobileZoomSlider

design once the pen approaches the left or

right side of the screen. However, in a heuristic

evaluation of all three designs, we discovered

that it might be too complex to handle; it

seems better to separate both interaction

modes instead of combining them in a single

interface element.
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Figure 3. (a) The iPod

classic’s Click Wheel.

Positions in the file or

frames along the

timeline are mapped

onto positions on the

circular wheel,

enabling users to scroll

forward and backward

through (b) files or (c)

videos by turning the

wheel clockwise

and counterclockwise.
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On the basis of the results of the initial

evaluation, we implemented a revised version

of the ScrollWheel where the wheel itself is

used purely for position-based navigation, as it

was in the first version from the previous list.

Users achieve speed-based navigation by hor-

izontal pen movements; clicking into the

wheel’s center and moving the pen to the left

or right results in an increase of replay speed in

backward and forward direction (see Figure 5).

We evaluated this implementation in a com-

parative study with the MobileZoomSlider

design. The experiment confirmed that the

strict separation of interaction styles (circular

and horizontal pen movements for position-

and speed-based navigation) improves Scroll-

Wheel usability. In addition, we found initial

evidence that users might prefer the circular

movements for position-based navigation over

the horizontal movements required by the

MobileZoomSlider, whereas the MobileZoom-

Slider’s speed-based navigation was sometimes

preferred over the version implemented in the

revised ScrollWheel. Hence, a combination of

the ScrollWheel’s position-based browsing

mode with the MobileZoomSlider’s speed-

based navigation seems to be the interface of

choice for most participants of our experi-

ment. However, further evaluations are need-

ed before we can generalize these observations.

ElasticSlider design versus iPhone-
like flicking

In our latest implementation,10 we com-

pared the so called ElasticSlider design with an

approach for video browsing that resembles

the flicking used to scroll through large lists of

text on the iPhone or the iPod touch (see the

sidebar). Elastic sliders were originally intro-

duced for navigation in static documents, such

as lengthy text or lists with a large number of

entries.11 We adapted them for video browsing

on desktop PCs.12 The basic idea is that users

don’t grab the thumb of a slider directly, but

instead pull it along the timeline via a virtual

rubber band that spans the space between the
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Figure 4. Different

versions of the

ScrollWheel

implementation: (a)

position-based

navigation, (b) speed-

based navigation, and

(c) combined version.

Figure 5. Implementation

of the revised version of

the ScrollWheel: (a)

position-based

navigation and (b)

speed-based

navigation.



thumb and the mouse pointer. The thumb

follows the pointer with a speed proportional

to the rubber band’s length—that is, a larger

distance increases the tension on the rubber

band and thus scrolling speed, whereas a

smaller distance decreases the tension on the

rubber band resulting in a slower movement of

the slider’s thumb (see Figure 6). As with the

MobileZoomSlider, this elastic scrolling func-

tionality is not coupled to a particular GUI in

our implementation; rather, it is evoked by

clicking directly on the screen and moving the

pen to the left or right. The implementation

on our Dell Axim PDA is similar to the one

described in Hürst, Götz, and Lauer11 with

small differences, for example, in the mapping

of distance-to-scrolling speed and the visuali-

zation: Because of the small screen size, we

decided to keep the illustration of the interface

on the screen to a minimum to avoid blocking

significant parts of the video during browsing.

As with the ElasticSlider, iPhone-style flick-

ing can be explained on the basis of a physical

movement characteristic: flicking the pen over

the screen (or the finger in case of the iPhone)

pushes the content of the file’s visualized part

(the current frame of a video or the visible

parts of a text) in the same direction as the pen

is moved. Scrolling speed depends on the

momentum of the pen flick (scrolling gets

faster the harder the user pushes the pen). It

decreases after a while, simulating a frictional

loss effect. For video browsing on our PDA, we

implemented a slightly modified version of

the iPhone-style flicking where the user

doesn’t push the actual video and instead

scrolls the file by flicking the pen in the

direction a related slider thumb would move

along the timeline. That is, scrolling and

pushing direction behaved reversely compared

to the original iPhone implementation be-

cause for video, such a realization seemed

more intuitive to us (see Figure 7).

In the comparative study of these two

interface designs, users had to solve different

browsing problems that were quite similar to

the three tasks described in the introductory

example at the beginning of this article. We

measured the time participants took to solve

these tasks as an objective evaluation criterion

and recorded subjective user opinions and

some ratings given for different aspects of the

interfaces. Interestingly, there was only a

minimum difference in the average ratings

given to both designs. However, the distribu-

tion of the single ratings differed significantly.

Whereas the ratings for the ElasticSlider were

almost all quite close to the average value,

iPhone-style scrolling obviously polarized the

users into two groups: one was strongly in

favor of this kind of interaction and the other

gave it a lower rating compared to the

ElasticSlider. It was quite surprising to us that

in the actual performance test, both interfaces

performed equally well; we observed no sig-

nificant difference.

Summary and outlook

Recent and ongoing work on better inter-

faces for video browsing on handheld devices

is essential for increasing the usability of
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Figure 6. Illustration of

the ElasticSlider

interface design: (a)

basic idea of the elastic

slider (scrolling speed is

proportional to the

rubber band’s length

(the longer the band,

the stronger the

tension, and hence, the

faster the scrolling), (b)

on-screen version, and

(c) implementation on

a PDA.

Figure 7. Illustration of

the iPhone-style

flicking for video

browsing. By flicking

the pen over the screen,

users can navigate

forward and backward

through a video. Initial

scrolling speed and the

decreasing factor

depend on the

momentum of the

pen’s flick. Our

implementation

calculates this

momentum according

to the speed at which

the user moves the pen

over the screen.
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Static Media Browsing on the iPhone and iPod Touch

One of the most significant contributions

of the iPhone and the related iPod touch is

the introduction of some innovative inter-

face concepts. For example, users can zoom

in and out by tapping or using multitouch

input, thus enabling them to interactively

adapt the visible content to the small screen.

Whereas these techniques for zooming are

mainly intended for manipulation of static

content (images and text), some of these

innovative approaches for scrolling could be

useful for video browsing as well.

On a desktop, long lists of text, such as

thousands of titles from a private music

collection, are normally browsed using a

scrollbar. For small mobile devices, such an

approach is normally unsuitable. The small

screen size not only makes it difficult to target

and operate such a tiny interface element, but

also results in a resolution of the scrollbar’s

scale that is too coarse to access each single

list entry directly. Not all elements from the

list can be mapped to an individual position

on the scrollbar. The iPhone and iPod touch

deal with this problem by introducing a

combination of browsing techniques. Placing

the finger on the screen and moving it up and

down simulates moving the file’s content

behind the visible area, as illustrated in

Figure A1.

However, if the user flicks the finger, that

is, touches the screen and quickly pushes

the file upwards or downwards before

releasing it, the file keeps scrolling, as Figure

A2 illustrates. Initial scrolling speed depends

on the momentum of the finger’s flick and

then slowly decreases. By modifying this

momentum, users can scroll through a long

list of text at different speeds. One problem

with this approach is that even if you flick a

file’s content very quickly to cover larger distances, getting to the end of a long list might require many finger flicks.

Figure A3 illustrates one way to deal with this problem: if the user touches the screen’s right border, an index appears,

allowing the user to access particular parts of the alphabetically sorted list by selecting the respective letter. Such an index

resembles a coarse scrollbar.

The combination of these three interaction techniques provides users with a wide range of scrolling functionality at different

granularity levels. They can do an exact positioning on a very fine scale by placing the finger on the screen and moving it up or

down (see Figure A1), skim through a list at different speeds by flicking the finger over the screen with different momentums

(see Figure A2), and do a rather coarse navigation by skipping larger parts of the list with the letter-based index on the screen’s

right side (see Figure A3).

Figure A. (1) By

holding and moving

the finger on the

screen, users can

manipulate the visible

part of the file by

moving it up and

down. The maximum

distance to scroll is one

height of the screen, as

illustrated by the

dashed line. (2) By

flicking the finger over

the screen, users can

scroll through a long

list or text document

at different speeds

(granularity levels). (3)

By touching the

screen’s right border,

users can access an

alphabetic index

enabling them to jump

directly to the

corresponding part of

the list.



mobile video. Our latest evaluation—which

compared the ElasticSlider design with

iPhone-like flicking—illustrates two important

issues in this context. First, subjective assess-

ment plays an important role and differs

among users. Second, neither of the two

interfaces could clearly outperform the other

in the objective evaluation. Although we have

not yet performed any comparative study

among all interface designs discussed in

this article, we are pretty sure that such an

evaluation would also not identify a clear

winner.

Whereas the laboratory studies done with

the proposed designs clearly illustrated their

usability and demonstrated their intuitiveness

and powerful functionality, several long-term

studies conducted in real-world conditions are

needed to identify the best possible solution

and better evaluate the advantages and disad-

vantages of the different implementations. In

addition to working on such projects, we plan

to include the integration of further video

browsing approaches—such as scene-based

navigation—into the proposed designs. Also,

we are investigating the applicability of the

presented interfaces for finger-based interac-

tion. For example, the MobileZoomSlider

design doesn’t seem to be very useful for such

situations because the finger blocks too much

of the video content. Initial tests with the

other designs seemed quite promising. MM
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