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Abstract—Future wireless networks will provide high-
bandwidth, low-latency, and ultra-reliable Internet connectivity
to meet the requirements of different applications, ranging from
virtual reality to the Internet of Things. To this aim, edge
caching, computing, and communication (edge-C3) have emerged
to bring network resources (i.e., bandwidth, storage, and comput-
ing) closer to end users. Edge-C3 improves the network resource
utilization as well as the quality of experience (QoE) of end
users. Recently, several video-oriented mobile applications (e.g.,
live content sharing, gaming, and augmented reality) have lever-
aged edge-C3 in diverse scenarios involving video streaming in
both the downlink and the uplink. Hence, a large number of
recent works have studied the implications of video analysis and
streaming through edge-C3. This article presents an in-depth
survey on video edge-C3 challenges and state-of-the-art solutions
in next-generation wireless and mobile networks. Specifically, it
includes: a tutorial on video streaming in mobile networks (e.g.,
video encoding and adaptive bit-rate streaming); an overview of
mobile network architectures, enabling technologies, and appli-
cations for video edge-C3; video edge computing and analytics in
uplink scenarios (e.g., architectures, analytics, and applications);
and video edge caching, computing and communication methods
in downlink scenarios (e.g., collaborative, popularity-based, and
context-aware). A new taxonomy for video edge-C3 is proposed
and the major contributions of recent studies are first highlighted
and then systematically compared. Finally, several open problems
and key challenges for future research are outlined.

Index Terms—Wireless communications, 5G networks, Internet
of Things, mobile edge computing, edge analytics, video analytics,
caching, task offloading, video streaming, quality of experience.

I. INTRODUCTION

T
HE GLOBAL mobile traffic is expected to grow about

eight times by the year 2022, where video data will

account for about 80% of the traffic [1]. This is not surprising,

given that about 60% of the worldwide population has watched

videos on their mobile devices in 2018 [2]. In general, videos
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are generated and distributed by a wide range of user equip-

ment (UE), such as smartphones, smart wearables, or devices

in the Internet of Things (IoT). Furthermore, different types

of video content are constantly generated in video production

(e.g., film and advertisement), augmented reality (AR) appli-

cations, and tele-surveillance cameras. Besides, over-the-top

service providers (SPs), such as YouTube and Netflix, deliver

live video and video-on-demand (VoD) streaming services to

their subscribers through websites, mobile applications, or

social networks. Indeed, meeting the quality of service (QoS)

requirements of video-oriented applications while satisfying

user quality of experience (QoE) is very challenging, particu-

larly, due to the time-varying nature of wireless links and UE

mobility [3].

As the video traffic over cellular networks grows expo-

nentially, mobile network operators (MNOs) are applying

novel technologies in the fifth-generation (5G) of commu-

nication networks [26] to meet the QoS/QoE requirements

of multimedia applications. The ultimate goal is to deliver

high data-rate, low-latency, and reliable multimedia services

in enhanced mobile broadband and ultra-reliable low-latency

communications [27]. To this end, multi-access edge com-

puting (MEC) [28] has been introduced by integrating cloud

computing and wireless networking technologies. The main

idea in MEC is to bring computing resources close to end-users

within the radio access network (RAN). For instance, deploy-

ing edge servers at the access points of networks allows MNOs

to support applications that require low latency and high-

bandwidth video streams. Several commercial MEC platforms

have been recently deployed [29], [30], which demonstrates

the growing interest in leveraging edge resources to deliver

rich multimedia experiences. As a step further, content caching

capabilities of information-centric networking (ICN) [31] have

been combined with MEC to empower the edge with integrated

edge caching, computing, and communication (edge-C3) capa-

bilities. In the context of multimedia applications, edge-C3

can simultaneously process and cache video content to pro-

vide low-latency and bandwidth-intensive services to users

(Fig. 1). At the same time, UEs are also increasingly equipped

with more powerful computing and storage capabilities, which

allow them to participate in the edge-C3 as well. Moreover,

mobile crowdsourcing [32], [33] and device-to-device (D2D)

communication [34], [35] enable UEs in close proximity to

share their resources with each other, eventually reducing the

network congestion and the resources to be used at edge

servers. Thus, UEs can also be considered as part of the
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TABLE I
SUMMARY OF RELATED SURVEYS AND TUTORIALS, SORTED IN CHRONOLOGICAL ORDER (I.E., NEWER LAST). SYMBOLS IN THE LAST FOUR

COLUMNS INDICATE THE EXTENT OF CONSIDERATION FOR THE TOPICS IN THE CORRESPONDING HEADINGS: � FULL, �� PARTIAL, OR × NONE

Fig. 1. Abstract view of video edge-C3 in wireless networks.

edge-C3, despite their limited resources compared to edge

servers.

Although edge-C3 has been proposed to deliver multimedia-

rich applications and services, several challenges remain.

First, edge-C3 resources are typically more limited than those

available in the cloud data centers. Thus, emerging video-

based applications, such as live streaming, AR, and virtual

reality (VR), place immense stress on edge-C3 resources.

For instance, live streaming applications must simultaneously

support low-latency interactions, as well as deliver high-

bandwidth data to a large audience. Moreover, in the context

of VR, 360◦ videos demand large storage and bandwidth

resources (an order of magnitude higher than traditional

video [36]). On the other hand, AR and video surveil-

lance applications must seamlessly process live video frames

streamed by UEs to identify and annotate objects in real-

time, which requires a large amount of computing resources.

Second, the heterogeneity of edge-C3 resources (including

edge servers and UEs) raises several challenges on how to

efficiently allocate them. Third, the operation and performance

of general edge-C3 solutions are significantly affected by the

properties of video data (e.g., their encoding models). For

instance, caching algorithms for generic content (e.g., in [14])

should be redesigned for segment-based and layered video

models to achieve optimal video delivery performance in terms

of delivery delay and service cost [37]. Finally, a growing

number of UEs (e.g., smartphones, surveillance cameras and

mixed reality glasses) generate video content in the uplink

which requires resource-intensive processing (e.g., to detect

objects in a video frame). In this context, careful system design

(e.g., efficient placement of encoding services) and alloca-

tion of wireless bandwidth for different video qualities are

required. Consequently, understanding the properties of video

data and their impact on video processing, caching, and trans-

mission performance is extremely important for developing

cost-efficient video edge-C3 solutions in wireless networks.

A. Related Surveys and Tutorials

Several existing surveys and tutorials have independently

studied the implications of video delivery, edge computing

and caching in wireless networks (see Table I). Here, we dis-

cuss the most representative publications. First, Mao et al. [9]

studied joint radio and computational resource management in

MEC. They introduced the concept of cache-enabled MEC and
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highlighted the benefits of the combined edge-C3 for emerging

AR and video streaming applications. Wang et al. [11] stud-

ied joint edge-C3 resource allocation in wireless networks.

However, their study of video applications is mostly restricted

to edge caching. Li et al. [16] studied the definition of edge

computing, architectural features of edge-C3, and resource

management therein. They classified the state-of-the-art edge-

C3 systems in terms of the objective (e.g., reducing latency,

bandwidth, energy). In this context, they considered a few

articles related to offloading video analytics tasks to the

edge; however, the discussion on video caching is limited.

Wang et al. [22] studied edge-C3 systems and defined their

key performance metrics and frameworks. They discussed a

representative AR application (see Section IV-E in [22]) which

benefits from edge-C3 for processing both uplink and down-

link video streams. However, the authors do not review the

state of the art that addresses such use cases. In contrast,

we provide a comprehensive review of edge-C3 solutions for

emerging multimedia applications, including augmented real-

ity, live streaming, 360◦ video streaming, and video analytics.

Barakabitze et al. [24] reviewed QoE management solutions

for emerging multimedia applications and edge-based network

architectures. Their main focus was on the efficient delivery of

video to the users. We consider this aspect as well as the use

of edge-C3 resources to efficiently process and deliver videos

generated by users in the context of live streaming, drone ana-

lytics, and video surveillance. Wang et al. [25] reviewed deep

learning-based applications in edge-C3. In this context, they

covered some articles related to video analytics and caching of

deep learning results at the edge. However, they mostly consid-

ered the machine learning-related aspects of such systems. In

contrast, we consider the combined use of edge-C3 resources

(caching, computing, and networking) to support analytics

applications and are not limited to deep learning-based appli-

cations alone. We additionally consider how video-specific

characteristics impact the design of edge-C3-based multimedia

applications.

To the best of our knowledge, none of the existing surveys

specifically addressed edge-C3 in video applications, trans-

mission and delivery. In particular, they have not thoroughly

investigated the benefits of both caching and computing for

different video applications. The more recent video-centric

surveys [21], [24] focus on the QoE aspects of video deliv-

ery and adaptation of bitrates for streaming. In contrast, we

study the computing, networking, and caching requirements

of such applications. The surveys [11], [22] studied the chal-

lenges and solutions of joint edge-C3 resource allocation in

wireless networks. Nevertheless, they did not consider how

the characteristics of video data (e.g., their encoding models,

formats, and properties) affect algorithms and protocols in the

edge-C3. Moreover, none of them address the benefits of edge

computing and caching for emerging applications such as live

streaming and 360◦ video delivery. Furthermore, a study of the

use of edge-C3 for video analytics and real-time processing of

uplink video data is missing from surveys, except for a deep

learning-centric summary in [25]. To fill this gap, this article

provides a comprehensive review of video caching, com-

puting, and streaming in wireless edge-C3. Specifically, we

study edge-enabled video streaming and analytics in wireless

networks for a wide range of emerging applications.

B. Contributions

The primary goal of this survey is to provide the reader

with a comprehensive review of the use of edge-C3 for video-

based applications. We provide a foundational understanding

of video edge-C3 solutions to efficiently process, cache, and

stream videos in future wireless networks. Specifically, we

focus on edge-C3 solutions to enable emerging applications

based on both downlink and uplink streaming of videos, i.e.,

wherein UEs consume (e.g., watch) and generate (e.g., record)

video data, respectively. To this end, we carefully study high-

quality research mainly published since 2012. We provide

readers with an in-depth survey of existing edge-C3 solutions,

their architectures, and the related challenges. This article

mainly targets researchers and practitioners in the fields of

telecommunications, network science, computer vision, and

data science. Fig. 2 illustrates the organization of the article

and Table II summarizes the commonly-used abbreviations.

The main contributions of this article are the following.

• A tutorial on the delivery (streaming) of video over the

Internet (Section II). We discuss the core components of

video streaming, including encoding, decoding, adaptive

streaming, and the related performance metrics. We pro-

vide insights into how such streaming solutions can be

extended to support emerging applications.

• An insightful overview of networking for video edge-

C3 in next-generation wireless and cellular networks

(Section III). We overview networking technologies, and

the challenges associated with processing and delivering

videos both in the uplink and the downlink.

• A thorough review and a new taxonomy of state-of-the-

art solutions for wireless video edge-C3. We split the

related discussion into two main areas, focusing on edge

intelligence and analytics for processing video streams

in the uplink (Section IV), as well as edge caching and

computing for efficient delivery of video streams in the

downlink (Section V). We carefully review system archi-

tectures and optimization problems addressed in these

topics, and provide a summary of the lessons learned.

• An overview of open issues and future research directions

in wireless video edge-C3 (Section VI). We specifi-

cally address selected themes for future work in edge-C3

for video applications and provide a concluding sum-

mary (Section VII).

II. VIDEO STREAMING OVER THE INTERNET:

AN OVERVIEW

We begin with a tutorial on how videos are delivered

over the Internet, with a focus on streaming in wireless

networks (Fig. 3). We introduce the main components of video

streaming (Section II-A), important properties of video data

(Section II-B) and types of video (Section II-C). The efficient

delivery of videos over a network requires that the videos are

converted (i.e., encoded) into different formats. Accordingly,

we describe the common encoding standards used today to



434 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 1, FIRST QUARTER 2021

Fig. 2. Organization of the content in the rest of this article.

TABLE II
LIST OF COMMONLY-USED ABBREVIATIONS IN ALPHABETICAL ORDER

efficiently compress videos (Section II-D). Once the video is

encoded, adaptation is still required to ensure that the network

can reliably transport the encoded videos even under varying

network conditions. We describe adaptive streaming methods

to address these issues (Section II-E). Furthermore, emerging

video formats (e.g., 360◦ videos) and VR applications place

even more demands on the network due to the large size and

format of such videos. To this end, we discuss the streaming

solutions proposed for transporting 360◦ videos (Section II-F).

Finally, we discuss performance indicators (in terms of QoS

and QoE metrics) that can be used to evaluate video streaming

methods (Section II-G).

A. General Video Streaming Pipeline

Video streaming refers to the transmission of an encoded

video from one node to another node over the Internet [38].

The two nodes in a video streaming pipeline may be a server

and a client or two peers, depending on the architecture of a

given video streaming solution [39]. The rest of the discus-

sion assumes a client-server architecture, but the same general
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Fig. 3. Organization of the content in Section II.

principles apply to peer-to-peer architectures as well. A key

characteristic of video streaming is that the encoded video is

progressively downloaded and played out at the same time. As

a consequence, the server is required to control transmissions

to ensure sustained availability of the video at the client for

playout, as opposed to regular file transfer where it is just the

completion time that matters [40].

A video is generally captured as a series of still pictures (so-

called frames) and displayed in rapid succession; the human

eyes perceive such as a moving scene [41]. Each video frame is

represented as a matrix of individual picture elements (namely,

pixels). The features (i.e., attributes) of the captured video vary

(as discussed in Section II-B), for instance, as to compression

formats, resolution, and frame rate. Thus, the transmission of

a video between devices with heterogeneous capabilities over

the Internet poses many challenges, for instance, in terms of

transmission delay or used bandwidth [3].

The process of video streaming between a transmitter and a

receiver over the Internet can be characterized according to the

pipeline in Fig. 4. The main components therein are detailed

next.

Video source: Videos can be created in two different ways:

as a capture of the physical (i.e., real) environment through a

certain device, such as a digital camera, a smartphone, or an

IoT video sensor; or as artificially generated (i.e., synthetic)

content rendered by a graphic engine. Special use cases, such

as AR, may also involve videos in which synthetic elements

are overlaid on natural scenes [42].

Encoder: The encoder compresses a source video into a bit-

stream according to a certain format, generally corresponding

to a standard (e.g., MPEG-4 AVC). In doing so, the encoder

leverages redundant information within the frames to obtain

a more space-efficient representation. Lossless encoding dis-

cards no original information; in contrast, lossy encoding may

discard some information in the source data. Lossless encod-

ing has a lower compression efficiency than lossy encoding;

thus, the latter is widely used in video communications over

wireless networks.

Streaming client/server: The streaming server obtains the

bitstream and the relevant metadata from the encoder, then

repackages the encoded video into a form suitable for trans-

mission over the Internet (particularly, through a transmission

medium), according to a certain streaming protocol. Such

a protocol performs media transport of video segments (or

chunks) and supports client-server interactions to maintain a

Fig. 4. A general video streaming pipeline over the Internet.

certain level of QoS. The streaming client receives the video

bitstream, extracts the encoded video, and feeds it into the

decoder. The streaming server or the client may manage the

rate adaptation of the streaming session based on dynamic

network conditions, depending on the specific use case.

Decoder: The decoder takes the encoded video received by

the streaming client and decodes it into its original format. The

video is exactly restored into its original form when a lossless

scheme is applied; otherwise, the decoded video is (possibly

marginally) different from the source. It is worth noting that

the quality of a decoded video does not only depend on the

encoding scheme, but also on the network conditions (e.g.,

due to delayed or lost messages).

Transcoder and transrater: Transcoders are widely used

in live video streaming scenarios. The transcoder decodes a

compressed (or encoded) video and re-encodes it with a dif-

ferent scheme (e.g., a different encoding standard or media

container). For instance, transcoding is used when stream-

ing clients do not support the video encoding standard of the

original video, which requires a conversion to an appropri-

ate format before transmission. In some scenarios, transrating

is applied to reduce the bitrate of a video, while keeping the

same encoding standard [43]. Both transcoding and transrating

improve the scalability of live video streaming by increasing

its efficiency and (or) reducing the required bandwidth.

Display: The decoded video is shown on a display device,

whose screen comprises a matrix of independent display ele-

ments called display pixels. The number of display pixels is

referred to as the display resolution, generally expressed in

terms of rows and columns. Display resolutions and sizes vary
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from standard to high definition and beyond, due to the diver-

sity of UEs and rich media applications (see Section II-C for a

review). There are often differences between the sensor resolu-

tion during video capture, the resolution of the encoded video,

and the display resolution. Thus, image scaling techniques are

employed to make the decoded video fit the display [44].

B. Video Attributes

A video has several features (or attributes) which affect

its encoding, transmission, and the resulting QoE. The color

information of pixels in a video is represented through a color

space; for instance, a pixel is defined in terms of red, green,

and blue components in the RGB color space. The number

of pixels in a video frame is referred to as video resolu-

tion. In addition, the ratio between the width and height of

a video is called aspect ratio. The frame rate describes the

number of frames in one second of a video, usually referred

to as frames per second (FPS). The quality of a video is

its fidelity with respect to the original (uncompressed) ver-

sion. Quality depends on several factors and can be measured

through either subjective and objective measures. The mean

opinion score is a subjective measure of video quality obtained

from video quality tests involving feedback from human

subjects. Subjective video quality testing methodologies in

telecommunications have been defined by the ITU telecom-

munication (ITU-T) standardization sector [45]. Objective

measures of video quality operate computationally, for exam-

ple, by comparing the encoded video against its original (i.e.,

unencoded) version. Widely used objective video quality met-

rics include peak signal-to-noise ratio (PSNR), video quality

metric (VQM) [46], and video multi-method assessment fusion

(VMAF) [47]. The encoding scheme is another important

attribute of a video, typically including at least the video

format (codec), the arrangement of frames, the output FPS,

the target bitrate, and rate control. Table III lists the major

attributes of videos.

C. Video Types

Emerging applications for video streaming (such as video

conferencing, Internet TV, and video blogging) and interactive

multimedia [48], [49] (e.g., immersive videos, 3D videos, and

mobile AR) employ digital videos of different types. The

following categorizes them by application scenarios.

Standard Definition (SD): Refers to videos with a resolu-

tion corresponding to that of first-generation digital TV1 (i.e.,

720× 480 pixels or 480p). SD videos are commonly employed

in VoD and live conversational applications (e.g., Skype and

WhatsApp), especially for mobile UEs with comparable screen

resolutions.

High Definition (HD): Refers to videos with a resolution

corresponding to either high-definition (HD) (i.e., 1280× 720

pixels or 720p) or full HD (i.e., 1920× 1080 pixels or 1080p)

digital TV [50]. (Full) HD videos are commonly employed

in VoD and live streaming applications (e.g., sports, cultural

events, and game streaming).

1For the sake of completeness, the low-definition TV resolutions of
320× 240 pixels or 240p and 480× 320 pixels or 320p are also employed in
the context of wireless video streaming.

TABLE III
THE MAJOR VIDEO ATTRIBUTES AND THEIR DESCRIPTION

4K: Refers to videos whose width is approximately

4,000 pixels, corresponding to Ultra-HD digital TV (i.e.,

3840× 2160 pixels) [51]. 4K videos are commonly employed

for VoD, IP television, and immersive VR/AR applications –

in the latter case, as they need to be displayed very close to

the eyes of the viewer.

Multi-view: Describes a scene from multiple points of view

to augment the user experience – for instance, to enable 3D

tele-immersion applications. The most common form of multi-

view is represented by stereoscopic videos which are recorded

by two synchronized cameras located at the average human

inter-pupillary distance. A stereoscopic video is displayed such

that each eye can only see the video channel from one of

the corresponding cameras, thereby simulating a perception

of depth. Stereoscopic videos are mainly used in 3D TV and

3D VR applications.

360◦/180◦: They are characterized by each frame contain-

ing all possible views in every direction so that the whole

visual field is captured. Typically, 360◦ videos are recorded

by using multiple synchronized cameras, each capturing a par-

tial view of the observable visual field. The captured views are

then stitched together to form the entire observable field. 360◦

videos are generally used in VR applications; they are also

called immersive or omnidirectional videos [52]. Similarly,

180◦ videos only capture half of the visual field as a compro-

mise between the level of immersion and ease of production

(in terms of capture, processing, and deployment of a video).

D. Video Encoding

Video encoding reduces the redundant information in a

video – in both the temporal and spatial domains – through

compression. The result is a reduction in the storage size of the

video, with minimal (possibly negligible) impact on its quality.

Block-based video encoding is a commonly used approach that

divides a video frame into multiple rectangles or squares [53].

The size of each block (also called macroblock) can vary from

4× 4 to 64× 64 pixels. If two macroblocks are similar, one

can be derived from another. One technique is to predict a

given macroblock based on those previously encoded as a
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TABLE IV
POPULAR CODECS AND THEIR MAJOR FEATURES

mathematical function. Such a function expresses, for instance,

the displacement of a macroblock with respect to the previous

one. A frame of predicted macroblocks is subtracted from

the actual frame to obtain a residual frame, which is then

transformed into a matrix of coefficients (e.g., by applying

the discrete Fourier transform). These coefficients are finally

quantized according to the specific encoding scheme to obtain

a sparse matrix, which reduces the storage size at the cost of

some information loss [53].

Several encoding standards have been developed by work-

ing groups, such as the ITU-T Video Coding Experts Group

and the ISO/IEC JTC1 Moving Picture Experts Group.

Additionally, other – generally open-source – encoding for-

mats have been developed by private organizations, such as

Google, AOMedia, and Microsoft. Some standards define

network-friendly encoders that format data and add suitable

headers for communication through transport layers over the

Internet; they also provide enhanced capabilities to toler-

ate message errors and losses. Indeed, most video streaming

services over the Internet currently use one of these few

network-friendly encoders, such as H264, H265, or VP9 [54].

Popular encoders and their major features are listed in

Table IV.

1) Scalable Video Coding (SVC): A scalable encoding rep-

resents a video as a set of bitstreams (also called layers) in

such a way that higher quality can be obtained by combining

individual (pre-encoded) bitstreams. SVC is the most popular

solution in this context, as an extension of H.264/MPEG4 [60]

wherein a video includes one base layer and multiple enhance-

ment layers (see Fig. 5(a)). The base layer realizes the first

(lowest) quality of the video, the combination of the base layer

and the first enhancement layer realizes the second quality

of the video, and so on until the highest quality that con-

sists of all layers. Thus, SVC encoding enables flexible video

streaming to UEs in wireless networks as it can adapt to

fast-varying wireless links without requiring re-encoding [61].

Scalable encoding is particularly beneficial in next-generation

wireless networks, wherein streaming servers are located at

the edge. In particular, streaming videos with SVC allows

to optimize the allocation of edge resources (e.g., caching

or computing) to UEs, thereby improving bandwidth utiliza-

tion and energy consumption [62]–[65]. Tele-conferencing,

live Internet broadcasting [66], and video surveillance [67]

are common applications of SVC videos.

There are three scalability modes in video coding: spatial,

temporal, and quality/fidelity. In the spatial scalability mode,

the enhancement layers improve the spatial resolution of a

video. For instance, the base layer may provide 480p video,

while the combination of the base layer with enhancement lay-

ers can increase the spatial resolution to 720p or 1080p. In the

temporal scalability, enhancement layers increase the smooth-

ness of a video by increasing its frame rate. For example, the

base layer may encode a video at 25 FPS, while the combi-

nation of the base layer with enhancement layers can increase

the frame rate to 30, 40, or 60 FPS. In the fidelity/quality scal-

ability, the SNR increases with the availability of enhancement

layers, while the spatio-temporal resolution of a decoded video

is constant irrespective of the number of enhancement layers.

E. Adaptive Streaming

The bitrate of a video is determined by the target qual-

ity, depending on the specific codec employed. For adequate

QoE, the end-to-end link between the streaming server and

the client should have enough capacity to support the trans-

mission rate of the server, namely, it should be at least the

same as the source video bitrate. Unfortunately, network con-

ditions generally vary during a streaming session – irrespective

from the nature of the communication medium – for dif-

ferent reasons, including congestion, shadowing/fading, and

message loss. Sending a video from a server to a client with

a constant (bit)rate may either result in poor link utilization if

the bitrate is set too low (e.g., as a conservative estimate)

or in unsatisfactory QoE due to delayed or lost messages

(e.g., choppy or frozen video playout). Adaptive streaming

techniques have been proposed to address these issues by

dynamically adjusting the bitrate of a video according to

network conditions.

In general, streaming techniques can be distinguished

between stateful and stateless [68]. Both the sender and

receiver store the state of a video streaming session with

stateful streaming; whereas only one of the participants may

maintain the state of the video streaming session with stateless

streaming, thereby releasing the resources of the other partic-

ipant and allowing scalable operations. Stateful streaming is

generally leveraged for live streaming and real-time interactive

applications (e.g., cloud gaming), while stateless streaming is

commonly employed in VoD applications [54]. The rest of

the section introduces commonly-used stateful and stateless

protocols for adaptive video streaming.

1) Stateful Adaptive Streaming: This approach employs a

variety of protocols; the most representative are detailed next.

The Real Time Streaming Protocol (RTSP) [69] is an

application-layer protocol that defines a connectionless stream-

ing session. RTSP leverages two other protocols [70]: the

Real-time Transport Protocol (RTP) for end-to-end media

transport over UDP; and the RTP Control Protocol (RTCP) to

exchange metadata related to the streaming session over TCP,

as an out-of-band control and feedback channel. RTSP has a

syntax similar to that of HTTP and supports three main oper-

ations: retrieving media from a server; inviting a media server

to join an existing conference, for instance, to play or record

media present therein; notifying a client about the availability
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Fig. 5. (a) Scalable and (b) non-scalable representations of a video for DASH streaming. Using the scalable representation, the base layer (i.e., quality
1) is combined with zero up to m–1 enhancement layers to be transmitted as the current segment in each time slot (for example, in Fig. 5(a), quality 1 as
segment 2 and the combination of the base layer with enhancement layer 1 as segment 3). Using the non-scalable representation, one quality is selected to
be transmitted as the current segment in each time slot (for example, in Fig. 5(b), quality 1 as segment 2 and quality 2 as segment 3).

of additional (new) media, especially useful for live streaming.

RTSP supports multicast data delivery.

The Real-Time Messaging Protocol (RTMP) [71] is an

application-layer protocol, initially developed as a proprietary

solution within the Macromedia Flash multimedia platform;

the related specifications are now publicly available. RTMP

leverages TCP to maintain a persistent connection between a

client and a server, while dynamically splitting streamed data

into fragments. The size of fragments is negotiated between

the client and server. RTMP maintains multiple parallel chan-

nels carrying different data at the same time for efficient and

low-latency streaming.

WebRTC is a peer-to-peer protocol for bidirectional

exchange of both multimedia and data in real-time between

UEs [72]. WebRTC relies on RTP as well as RTCP for media

transport and the exchange of control information (respec-

tively); it also supports peer-to-peer data channels through the

Stream Control Transmission Protocol (SCTP), a connection-

less but reliable transport protocol.

Stateful streaming protocols as those described above are

not very suitable for caching, as the streaming session

is transient and may not be re-used. However, they can

employ transcoding (transrating) to serve video requests of

UEs with different wireless link conditions. For instance,

a server may transcode an RTMP video stream from

a live-streaming client into different qualities, so as to

make it available to multiple viewers with diverse link

qualities [73].

2) Stateless Adaptive Streaming: A majority of recent

stateless streaming protocols use the HTTP protocol for

media transmission through so-called HTTP adaptive stream-

ing (HAS), primarily due to the related ease of deployment

(through reuse of existing infrastructure) and scalability.

A common feature of HAS protocols is that the streaming

server stores multiple representations of a video, each divided

into segments (equivalently, chunks) that can be independently

decoded. The client controls the bitrate of a video by request-

ing the appropriate segments (generally determined through

a local policy) during the streaming process. Adobe HTTP

Dynamic Streaming, Apple HTTP Live Streaming, Microsoft

Smooth Streaming (MSS), Dynamic Adaptive Streaming over

HTTP (DASH) are popular HAS protocols [54]. In the next

subsection, we study DASH as the most representative state-

less protocol for video streaming.

Dynamic Adaptive Streaming over HTTP (DASH): DASH is

a scalable and codec-agnostic HAS protocol developed under

the MPEG working group which is supported by telecom-

munication standardization organizations, such as the 3rd

Generation Partnership Project (3GPP) [74]. With DASH,

a video is generally represented by multiple qualities,

where each video quality is divided into multiple segments.

Generally, each video segment has a playout length of a few

seconds.

Fig. 5 illustrates segmentation in DASH through scalable

(i.e., SVC) and non-scalable video representations. In both

cases the video is divided into n segments, where each segment

is represented according to m qualities. The SVC encod-

ing includes one base layer and m–1 enhancement layers

which can be combined to realize m qualities, whereas the

non-scalable encoding includes m discrete qualities. A video

client can dynamically request video segments with different

qualities during a streaming session, since each of them is

independently decoded. With DASH, the location of video

qualities (in terms of URIs) is stored in a manifest file called

media presentation data (MPD). When a DASH client requests

a video, the DASH server responds with the MPD file. The

client can then start the download of video segments by pro-

gressively requesting them from the server, usually through a

CDN (see Section III-C for a discussion about CDNs). The

decision on the specific quality of each segment at a certain

time is realized through a rate control logic module at the

client side. Such a module evaluates the current network con-

ditions and the buffer occupancy at the client to decide on the

appropriate quality [8].

Fig. 6 illustrates a DASH video streaming session in

wireless networks.

1) A DASH client in a mobile UE (e.g., a smartphone)

requests a video from a DASH server (e.g., by clicking

a video link on YouTube).

2) The DASH server sends an MPD file to the client.

The client parses the MPD file to obtain information

about the quality versions of the video, segmentation
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Fig. 6. A DASH video streaming session.

information, and uniform resource identifiers2 (URI) of

all the video segments.

3) The client-side adaptation logic calculates the target

bitrate for the next segment, which is then requested

through its URI (e.g., from a CDN location).

4) The client downloads the video segment from the server

and stores it in its playout buffer.

Steps 3 and 4 are repeated until the last (N) segment of a

video stream is received. In conventional DASH deployments,

CDNs are networks of data centers while DASH in an edge

scenario additionally leverages resources at a base station.

Serving segments through a base station clearly reduces both

the access time and the backhaul traffic, thereby improving

the QoE.

Server and Network-assisted DASH (SAND-DASH): DASH

clients generally have limited information about the network

conditions. Hence, rate control decisions made by a DASH

client might be sub-optimal. Moreover, the service provider

has limited control on the QoS of a streaming session, since all

the intelligence resides at the client side. In contrast, the DASH

server and other nodes in the network – the so-called network

elements – have a better view of the network status, thus, they

can help improve the QoS of the service provider and the

QoE in DASH streaming. Accordingly, SAND-DASH [77] has

been proposed by introducing DASH-aware network elements

(DANEs) that recognize DASH traffic and exchange mes-

sages with each other to improve the streaming performance.

According to the SAND-DASH architecture, the content server

is also considered a DANE and messages may be passed

between the DANEs, from DANES to clients, and from

clients to DANEs. Messages between DANEs streamline seg-

ment delivery and are called Parameters Enhancing Delivery

messages; messages from DANEs to clients improve video

reception by the client and are called Parameters Enhancing

Reception messages; and messages from clients to DANEs

may be either status or metric messages. These messages allow

both the client and the DANEs to access information relevant

for improving DASH performance in terms of both QoS and

QoE.

SAND-DASH fits well the architecture of edge-enabled

wireless networks, wherein edge resources can be leveraged

as DANEs. The collaboration among network entities through

message passing enables the design of optimal rate adaptation

2The MPD file may contain direct addresses of the segments in the
CDN [75], or the server may employ DNS load balancing to redirect the
request to the appropriate CDN location [76].

Fig. 7. Division of a 360◦ video into tiles.

solutions to jointly improve the QoE of streaming and obtain

a fair resource utilization. A number of recent works have

studied SAND-DASH in such a context. The authors in [78]

design rate-control strategies, such as bandwidth reservation

and bitrate guidance, by using edge controllers for SAND-

DASH. They also evaluate the proposed streaming schemes in

terms of the average video quality received at multiple clients

and the fairness in video delivery. Heikkinen [79] proposes an

edge-enabled control mechanism for DASH, which employs

an optimal slot-based resource allocation policy based on aver-

age information on channel state. Experimental results show

that the proposed policy reduces the system-wide probability

that video playout is interrupted. An edge-enabled rate adapta-

tion system is proposed in [80] through a greedy client/server

mapping strategy to jointly maximize the QoE and fairness of

competing mobile video streaming clients. The experiments

therein demonstrate that the proposed solution outperforms

client-based rate adaptation heuristics.

F. Streaming 360◦ videos

Streaming 360◦ (or panoramic) videos is more challenging

than streaming traditional video content. First, 360◦ videos

require higher bandwidth and storage space than regular

videos. Next, such videos allow more interaction, i.e., users

can turn their heads as they want and observe different parts

of the panorama. Thus, the latency requirements for stream-

ing are stricter as a large delay in updating the display (once

a user changes his/her field-of-view) may result in motion

sickness [36]. This delay is referred to as motion-to-photon

latency and must be in the range of a few tens of millisec-

onds for a smooth viewing experience [36]. Additionally, a

streaming solution must support different viewer devices (e.g.,

head-mounted displays and smartphones) and different wire-

less network conditions. To this end, adaptive streaming is

used for streaming 360◦ videos as well, with some modifica-

tions that leverage the properties of such content. Specifically,

the panorama to be streamed is spatially divided into sev-

eral tiles (see Fig. 7), each of which can be encoded into

different bitrates. A streaming server can use a tile-based

approach to reduce bandwidth by only transmitting the tiles

that are visible in the user’s viewport (i.e., field of view),

or transmitting the tiles in the viewport with a higher qual-

ity than other tiles. However, such an approach requires that

the view is updated with a low motion-to-photon latency

when the user’s viewport changes. To this end, some articles

focus on predicting the user’s viewport [81], [82] and accord-

ingly pre-fetching the tiles in the predicted viewport. However,

the rendering of the viewport with multiple independently-

encoded tiles may require multiple decoders on the viewer’s
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device. Qian et al. [81] address this problem by designing

a solution that makes decoding and playback asynchronous.

Specifically, they design a decoding scheduler that assigns tiles

to idle decoders; the decoded tiles are stored in client buffers,

ready to play out when necessary. Finally, the prediction of

viewports may be inaccurate, which may result in rendering

errors. This can be avoided by the server sending the entire

panorama with a low resolution [83] or sending an adaptive

number of extra tiles [84] depending on the available band-

width. The MPEG working group is also in the process of

standardizing 360◦ video delivery and media formats.3

G. QoE in Video Streaming

QoS and QoE are two inter-related but distinct performance

metrics. QoS indicates a set of performance metrics that must

be fulfilled in delivering a service, even though there is no

consensus on its definition [85]. ITU-T defines QoS as “the

totality of characteristics of a telecommunications service that

bear on its ability to satisfy stated and implied needs of the

user of the service” [86]. In contrast, QoE refers to the actual

(i.e., subjective) opinion of users about their experience with

a service. Again, ITU-T defines QoE as “the degree of delight

or annoyance of the user of an application or service” [87].

In the context of multimedia applications, QoE depends on

multiple factors, including QoS, the encoding scheme, the

quality of content/display, the expectations of the user, as

well as contextual parameters (e.g., spatio-temporal or social

aspects) [88].

More specifically, the factors affecting QoE in video stream-

ing can be divided into three main classes (Fig. 8): system,

context, and human [89]. System factors generally depend

on the video attributes such as the viewing device, network

QoS, as well as quality and content of the video. System fac-

tors often impact on the visual quality and smoothness of the

delivered video stream, as perceived by the viewer. Contextual

factors include spatio-temporal and socio-economic aspects, as

well as those related to the viewing task and the used tech-

nology. For instance, QoE can be affected by the location,

the time, and the duration of a streaming session. Human fac-

tors include user expectations, the level of interaction, and

interest in the content. Human factors are viewer-specific,

ranging from the emotional and mental state of users to their

socio-economic status and even their view of the world.

1) QoE Metrics: Rate control in video streaming affects

QoE metrics that describe QoE from a system perspective [5].

The most important QoE metrics are described next.

• Startup Delay is defined as the time between the explicit

action of a user for watching a video (e.g., a click on the

play button) and the time the first segment of the video

is played out. Rate control at the client side affects the

startup delay, in addition to the network conditions (e.g.,

the server load).

• Stalling occurs when the client playout buffer at a UE

becomes empty (also known as buffer starvation) and

results in the video becoming “frozen”. Stalling mainly

occurs due to high server load, network bottlenecks, and

3https://mpeg.chiariglione.org/standards/mpeg-i

Fig. 8. Main factors affecting QoE in video streaming.

non-responsive bitrate adaptation. QoE is affected by both

the frequency and the duration of stalls.

• Bitrate Switching occurs when the client-side streaming

protocol changes the current bitrate to another one (due

to adaptive mechanisms), resulting in a sudden change

of video quality. QoE is affected by the average quality

of the received video, the perception of bitrate adaptation

(i.e., how noticeable it is), as well as its frequency.

2) QoE Assessment: Adequate QoE is crucial for both con-

tent creators and service providers because it significantly

affects customer acquisition, loyalty, and retention. Therefore,

maximizing QoE is considered at all stages of video delivery,

from network planning to video encoding and rate control in

adaptive streaming (e.g., DASH). Clearly, maximizing QoE

is not possible unless it can be accurately measured and

assessed (see [90] for a survey). A subjective measurement

is an ideal benchmark, since QoE varies across different

users. However, subjective measurements of QoE are expen-

sive and time-consuming, as they require conducting user

studies under very specific viewing conditions. Furthermore,

QoE information may be needed in real-time for appli-

cations employing adaptive streaming; real-time subjective

measurement of QoE is clearly a challenge. As a conse-

quence, QoE is rather modeled (i.e., mathematically derived

or estimated) as a function of objectively measurable quan-

tities (e.g., using a media player, bitstream, or physical-layer

information).

ITU-T has introduced recommendations for non-

invasive parametric QoE estimation of audio-visual

streaming [91], [92]. These leverage parameters from

both the media (e.g., encoder-related) and the transport (e.g.,

message loss) layers. QoE estimation can be carried out

at both the client and at the server in a video streaming

pipeline [90]. At the client side, parametric QoE measurement

is generally employed in rate adaptation. At the server side,

both online and offline QoE measurements are conducted.

Online measurements target efficient resource allocation

and fairness, improving QoE as a side effect. In contrast,

offline QoE measurements are applied to network planning

and content management. Juluri et al. [90] classify QoE

measurement methodologies based on the corresponding data

collection approach (e.g., active, passive, or based on user

feedback), the place of data collection (e.g., user or network),

and QoE metrics (e.g., initial buffer time, stall duration, and

re-buffering frequency). The authors in [93] list the factors
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Fig. 9. Organization of the content in Section III.

that affect QoE and classify methods for QoS measurement

into subjective and objective.

A QoE model at the network edge can use the resolu-

tion of delivered video segments as a measure of QoE [94].

Additional indicators of QoE are represented by the cumulative

state of playback in terms of video stalls [95] or effective loss

rate over the communication channel [96]. Khan et al. [97]

propose a QoE model for video streaming which leverages

a non-linear function of content type and sender bitrate to

predict QoE. However, their proposed model is not validated

for adaptive streaming. Nightingale et al. [98] employ flow-

based QoS metrics in a virtualized environment to model QoE

for UHD video streams. In particular, QoE is modeled as a

function of content-dependent network parameters. However,

the model therein is designed for RTP-based streams and

is not suitable for adaptive streaming applications such as

VoD. Ge and Wang [99] propose a virtualized, real-time QoE

monitoring network function for MEC which utilizes HTTP

proxying and packet sniffing to estimate buffer occupancy,

quality switching, stalling, and initial playout delay. However,

the mapping between QoE and metrics related to the video

stream is not discussed. A general QoE monitoring framework

in 5G networks is presented in [100]; it employs virtual probes

to monitor parameters such as radio resource allocation, trans-

port layer metrics, user behavior, and content characteristics.

A proof of concept MEC application is proposed in [101]

to model QoE as a function of the quality requested by a

UE and its standard deviation, as well as the related stall

duration.

3) QoE Prediction: QoE estimation aims at deriving QoE

metrics based on other parameters, as previously discussed.

QoE estimation could be performed either once or continu-

ously over time to obtain an up-to-date characterization of

video delivery. In contrast, QoE prediction aims at forecasting

QoE in the (short-term) future [102].

QoE prediction has been mainly addressed through machine

learning algorithms [21]. In general, existing techniques train

an online or offline machine learning model with (objective)

QoS and (subjective) QoE parameters. Next, they use the

trained model to predict QoE in actual deployment scenarios.

Singh et al. [103] apply random neural networks to imple-

ment a QoE-aware video transcoder for H.264/AVC video.

Specifically, playout interruptions and encoding quantization

are employed to predict QoE. Li et al. [104] propose a

rate adaptation algorithm to run DASH as a MEC service

that dynamically changes MPD files in DASH based on

QoE estimation and network conditions measurements. The

work includes a proactive strategy that leverages congestion

prediction to further improve QoE.

III. NETWORKING FOR VIDEO EDGE-C3

This section overviews the advances in networking tech-

nologies that enable edge-C3 for video applications (Fig. 9).

First, we describe the most important features of radio access

networks (Section III-A) that support video streaming and

related applications. Next, we present the softwarization of

the cellular network (Section III-B) as a key enabler for flex-

ible deployment of edge-C3. We then discuss the features

of edge-C3 deployments, including their potential locations

and software platforms (Section III-C). Finally, we charac-

terize video delivery in both the uplink and the downlink

(Section III-D).

A. Radio Access Network

Several new technologies have been included in the radio

access networks to support emerging video applications as

part of the enhanced mobile broadband requirements for

5G [105]. Specifically, enhanced mobile broadband encom-

passes use cases (e.g., 4K videos, live streaming, AR) that

require higher data rates and lower latency than current Long

Term Evolution (LTE) networks. Moreover, the number of UEs

using such multimedia services is only expected to increase.

Thus, 5G must simultaneously support a high connection

density as well as a high volume of data traffic per unit

area [106].

5G new radio: A new radio interface called 5G new radio

has been introduced to flexibly support different requirements

(i.e., high data rate, low latency) through changes in the radio

physical layer. Specifically, changes have been proposed in

the radio waveforms, subcarrier spacing, and frame struc-

ture [105]. 5G new radio also supports data transmission

in highly directional beams between the base stations and

users through beamforming [105]. Beamforming is crucial for

transmissions in higher frequencies, for instance, millimeter

wave frequencies beyond 10 GHz [107]. Such frequencies are
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expected to be a part of 5G networks as they offer much higher

capacities and data rates than the (sub-6 GHz) frequencies

used in LTE networks [26]. However, transmissions in higher

frequencies incur increased path loss, as well as blockage from

walls and objects [107]; in this regard, highly directional trans-

missions using beamforming are key in providing sufficient

coverage. Consequently, 5G new radio supports beamforming

at both the physical and the medium access layer. Moreover,

it defines a set of beam management operations to align

directional data transfer between users and base stations.

Massive multiple-input and multiple-output (MIMO):

Massive MIMO enables high throughput applications by using

multiple antennas (e.g., at least 64 of them [108]) at both the

receiver and the transmitter [109]. The antennas support both

horizontal and vertical beams. This allows parallel data trans-

missions (called layers) on the same time-frequency for each

UE, thereby increasing the overall throughput. Furthermore,

multi-user MIMO enables simultaneous transmissions on dif-

ferent layers to multiple UEs [105]. Spatial multiplexing

allows base stations to increase the overall capacity by several

orders of magnitude [26].

Heterogeneous Networks (HetNets): Another method to

increase capacity in the radio access network is through

the deployment of HetNets [110], as shown in Fig. 10.

Specifically, low-power base stations, called small cell base

stations (SBSs), are added to the network to supplement the

capacity provided by higher-power macro base stations (MBS).

SBSs also help to extend connectivity in regions with coverage

holes [109]. HetNets are more cost-efficient than deploy-

ing additional MBSs, as the latter requires extensive site

planning, particularly in dense urban areas [110]. HetNets

also encompass networks that seamlessly combine multiple

radio access technologies, including macro cells, small cells,

and wireless LANs; multiple technologies can provide up to

twice more capacity than a pure 5G network [111]. However,

HetNets require careful planning and coordination policies to

reduce interference between diverse cells [109]. Moreover,

it is challenging to provide sufficient backhaul capacity for

a large number of SBSs to the core network [112], [113].

Although wired connectivity between MBSs and SBSs has

been proposed [113], all SBSs cannot be connected through

fiber links due to the high costs [112]. Thus, the choice of

backhaul connectivity is left to the MNO [113].

Device-to-device (D2D) communications: Adding base sta-

tions in a network to increase capacity is an expensive

prospect [114]. As an alternative, network coverage and capac-

ity can be improved by allowing UEs in close proximity to

establish direct D2D links to communicate and share their

resources with each other. Such communication relies on either

licensed spectrum in inband D2D or unlicensed spectrum in

outband D2D [115]. Furthermore, the 3GPP standards include

support for multi-hop D2D networks that enable network

services for UEs that are outside coverage by using nearby

UEs as relays [114], [115]. More recently, D2D communi-

cations have also been proposed to circumvent the coverage

issues with millimeter wave transmissions [114].

Dynamic spectrum access: Spectrum shortage and under-

utilization of available spectrum remains a challenge for 5G

Fig. 10. HetNet architecture.

networks [116]. To this end, cognitive radios have been

proposed, wherein secondary users (i.e., UEs) opportunisti-

cally sense and utilize the spectrum whenever it is not occupied

by primary users. Cognitive radios can help increase the

spectral efficiency and capacity of networks [116], [117], par-

ticularly for multimedia and video streaming services [118].

However, opportunistic spectrum sensing is challenging due

to fading, shadowing, and potential security issues [119].

Future networks may rely on a spectrum prediction service

instead, and accordingly utilize algorithms to efficiently and

dynamically share spectrum between multiple users [117].

New spectrum policies have been proposed [119] and already

been deployed in the 3.5 GHz band of LTE networks (in

USA) through the citizens broadband radio service [120].

Specifically, a three-tiered spectrum access policy is defined

to protect the incumbent primary users (tier-1) from priority

secondary users with licenses (tier-2) and generally authorized

users that are unlicensed (tier-3). More recently, the same spec-

trum sharing system has been announced for 5G networks,4

which enables the deployment of private 5G networks to

support high-bandwidth services (e.g., in large hotels).

B. Softwarization of the Cellular Network

The deployment of edge-C3 in a cellular network is enabled

by virtualization throughout the network. Specifically, virtual-

ization in both the radio access and core networks plays a key

role in supporting flexible deployment of compute and storage

resources in different parts of the network.

Network function virtualization (NFV) and software defined

networking (SDN): The cellular network is expected to be fully

virtualized as part of the NFV [121] paradigm. NFV decou-

ples the network functions from the underlying infrastructure

4https://www.cbrsalliance.org/news/cbrs-alliance-opens-gates-for-first-u-s-
mid-band-5g-deployments/
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to provide flexible deployment of services and network func-

tionality. In particular, the software for specific network

functionality (e.g., mobility management) are developed as

virtual network functions (VNFs) that can run on a stan-

dard physical server [121]. Such a virtualized deployment

also enables flexible scaling and deployment of functions;

for instance, additional instances of a network function can

be instantiated on-demand according to the actual traffic.

Furthermore, SDN is used to control the flow of data to and

from the virtualized functions [122]. SDN, a complementary

technology to NFV, decouples the control plane (which makes

forwarding decisions) from the data plane (which forwards

the data) to provide flexible routing. The control plane func-

tionality is implemented in a logically-centralized controller

that can be realized as a software running on general-purpose

hardware [121]. Thus, the SDN controller itself may be imple-

mented as a VNF and leverage the benefits of scaling and

flexibility offered by such virtualized instances. On the other

hand, SDN can benefit NFV by providing the flexible routing

required to chain together VNFs to provide services. Thus,

SDN and NFV, together, enable the flexible management and

programming of the cellular core network.

Cloud radio access network (C-RAN): The architectures

of the base stations in the radio access network have also

evolved, and thus, can utilize the benefits of virtualization.

Specifically, the base station is split into two units – a remote

radio head (RRH) and baseband unit (BBU) [109], [123].

RRHs are deployed at base station sites and perform digital

processing, analog-digital conversion, power management, and

filtering [109]. On the other hand, BBU functions are central-

ized into BBU pools where they can utilize shared, virtualized

computing resources to efficiently meet the baseband process-

ing requirements of multiple RRHs. The RRHs are connected

to their respective BBU pools through point to point (often

optical) links as part of the fronthaul network [123]. Such an

architecture (Fig. 11) is referred to as C-RAN [123] and brings

the benefits of virtualization to the radio functions. BBU pools

are located at more centralized locations, such as the central

office of cellular networks [109] or distributed antenna system

hubs [124]. In 5G new radio, the BBU functions are fur-

ther split into distributed units and central units [105], [123].

The lower-layer functions in the networking protocol stack are

hosted by the distributed unit, whereas the higher-layer func-

tions are located at the central unit [105]. The C-RAN brings

significant savings in capital and operational expenditures for

MNOs by relying on centralized and virtualized processing

of radio functions [109]. Moreover, the shared processing at

BBU pools allows flexible allocation of extra resources when

traffic volume is higher [123].

Control and user plane separation: The cellular core

network supports mobility, connection establishment, and

management of user sessions [122]. The core network relies

on control and user (or data) plane separation through distinct

functions. Such an architecture also benefits from virtualiza-

tion. Specifically, the functional split allows the control and

data planes to scale independently when deployed as virtual-

ized instances. For instance, content-rich 360◦ videos and VR

scenarios demand a larger volume of data plane traffic. When

Fig. 11. C-RAN architecture.

the demand for such services increase, the data plane enti-

ties may be scaled up to support such demand. Moreover, a

fully virtualized environment allows functions to be deployed

in locations geographically closer to the users and the traffic

to be re-routed accordingly.

Support for edge computing: 5G networks support service

hosting environments [105] in different locations, where edge

computing applications can be deployed as virtualized enti-

ties. To this end, the 5G specifications support the flexible

deployment of virtualized user plane functions closer to the

users to reduce latency. Moreover, decisions about routing are

made application-specific and traffic can be steered to a local

area data network [105], which is geographically closer to the

user. Such a local network is accessible by the UEs only from

specific locations. Simultaneous access to both a local and

centralized data network allows low-latency access to specific

applications in the local network [105].

Network slicing: The concept of network slicing introduces

logical partitioning of the 5G network for different business

scenarios or applications [125]. Specifically, a slice comprises

a set of network elements specialized in providing a par-

ticular type of service [105]. Additional constraints include

supporting a certain performance (e.g., latency and data rate)

or specific UEs (e.g., corporate customers) [105]. To this end,

a new network function – namely, the network slice selec-

tion function – has been introduced in the core network to

select and create network slices [105]. A virtualized network

can be efficiently partitioned on-demand into slices comprising

the required network elements and according to the requested

QoS [125]. For instance, customized network slices can be

created, where each slice is assigned to serve video streaming

requests of particular devices (e.g., smartphones, AR glasses,

and TVs) with distinct latency and data rate requirements. A

slice for 4K streaming may require a caching function, data

unit, and cloud unit [125]; whereas a more latency-critical

service such as AR may require all functions deployed in the

edge.
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C. Deploying Edge-C3

The actual location of the caching and computing resources

for edge-C3 is not strictly defined. This section describes

the potential locations as proposed in the literature, and also

presents software platforms that enable the deployment of

edge-C3.

Deployment locations: Several locations are proposed

by the multi-access edge computing (MEC) specifica-

tion group (within European Telecommunications Standards

Institute) for deploying edge computing in LTE and 5G

networks [126], [127]. Specifically, the edge servers may be

co-located with base stations, core network functions, or

network aggregation points [127]. Examples of network aggre-

gation points include central offices or distributed antenna

system hubs where BBU processing is centralized [124].

Choosing a specific location depends on an MNO’s technical

and business constraints, including the available site facilities

and application requirements [127]. Such application require-

ments include not just latency constraints, but also bandwidth,

transport network capacity, and capabilities of the UEs [128].

For instance, co-locating edge servers with base stations results

in lowest latency, but incurs a higher deployment cost than

at the aggregation points [128]. Moreover, as UEs become

more computationally capable, they can be used to carry out

some processing themselves [129]. Thus, such devices can be

considered as part of the edge as well [10], [130].

Content delivery networks (CDNs): Although the discussion

above has discussed computing resources alone, the edge is

expected to host both compute and caching resources. Indeed,

an alternate location for hosting compute resources is in the

network of data centers deployed as part of CDNs used to

cache content [128]. For instance, three large CDN providers,

namely, Akamai,5 Cloudflare6 and Limelight,7 already sup-

port running software functions at the edge. However, these

are currently limited to simple functions – with the excep-

tion of Limelight, that also allows to run bare metal compute

services. The CDNs are usually deployed in points of pres-

ence of Internet service providers [131], thus, they are located

just outside the cellular network [132]. Recently, proposals

have been made to deploy new network functions that reside

closer to the users (e.g., co-located with base stations), and

obtain radio link information to dynamically select CDNs

accordingly [133]. Moreover, local caching at base stations

can further reduce the stress on CDNs, for example, during

live streaming events [133].

Platforms for edge-C3: Several platforms have been

proposed to deploy edge-C3 through either commercial offer-

ings or open-source platforms. Among the commercial solu-

tions, AWS Wavelength [29] enables developers to use the

compute and storage resources within the data centers of

selected 5G networks. Similarly, Microsoft Azure provides

Edge Zones [30] where compute and storage are hosted close

to the users, either in data centers of selected 5G MNOs or

in private infrastructure on-premise. Both AWS Wavelength

5https://developer.akamai.com/akamai-edgeworkers-overview
6https://developers.cloudflare.com/workers/
7https://limelight.com/resources/data-sheet/edge-compute/

and Azure Edge Zones provide a consistent software develop-

ment experience with realizing and deploying applications on

their respective public clouds. However, the support for cellu-

lar network providers and locations are currently limited, and

may result in vendor lock-in. As an alternative, several open-

source platforms have been proposed as well. First, the Linux

Foundation Edge8 aims to build an open and inter-operable

framework for edge computing. To this end, Akraino [134]

and EdgeXFoundry [135] are the most mature open-source

projects within the Linux Foundation Edge. Akraino defines

an edge computing platform that supports multiple access

network providers, including cellular, wired, WiFi, and IoT

networks [134]. It defines a set of application and infrastruc-

ture blueprints (i.e., declarative configurations of the entire

deployment stack) for different use cases and network deploy-

ments. EdgeXFoundry defines an open source software frame-

work that is targeted towards IoT networks [135]. The platform

was initially developed to run on IoT gateways, and has

since been extended to support both heterogeneous hardware

(e.g., gateways, servers and the cloud) and tiered deploy-

ments. Next, the Open Networking Foundation9 is a non-profit,

operator-led consortium that includes several projects for

transforming the architecture of network providers. Central

Office Re-architected as a Data Center (CORD) [136], [137]

and Aether [138] are two such projects that target edge

deployments. First, CORD utilizes NFV, SDN, and cloud tech-

nologies to reconstruct existing infrastructure (e.g., central

offices) as data centers [137]. Such an architecture supports

flexible deployment of VNFs at the edge to support emerging

applications. Aether extends CORD to support an edge cloud-

as-a-service platform. Moreover, it supports multiple radio

access (licensed, unlicensed, and citizens broadband radio

service spectrum), and flexible deployment of VNFs across

multiple edge locations.

D. Edge-C3 for Video

The advances in communications and networking of wire-

less networks highlighted so far enable the high-bandwidth,

video-based applications that are the focus of this survey.

Moreover, emerging applications rely on processing videos

in real-time. This section discusses such application scenarios

and highlights the key differences between them.

Application scenarios in edge-C3: Videos can be generated

by either the UEs (e.g., smartphones, AR glasses, surveil-

lance cameras) or video content providers (e.g., YouTube,

Netflix). Videos published by large content providers are

accessed by UEs (i.e., streamed by their subscribers) over the

Internet. On the other hand, videos generated by UEs can be

either consumed by other UEs (e.g., live streaming), or pro-

cessed by computer vision algorithms to gain insights from

the videos (e.g., live surveillance). Integrating content caching

and computing at the network edge can significantly improve

the performance of such applications in wireless networks.

Specifically, edge-C3, comprising both compute and storage

close to the users (at the edge of the network or on the UEs

8https://www.lfedge.org/
9https://www.opennetworking.org/
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Fig. 12. Video edge-C3 tasks.

themselves), is crucial for efficiently streaming and processing

videos. For instance, popular videos can be streamed to UEs

from locations closer to the users, thereby maximizing spec-

tral efficiency, improving QoE, and reducing network traffic

in the backhaul. Furthermore, edge-C3 can efficiently process

videos generated by UEs, extract useful information, and fur-

ther convert the video streams into appropriate formats that

can be served to other users.

Thus, edge-C3 is beneficial for videos generated by UEs (in

the uplink), as well as videos consumed (watched) by the UEs

(in the downlink). In particular, some of the important tasks

(Fig. 12) that are carried out are as follows. In the downlink,

videos from content providers are distributed to viewers using

edge-C3 resources that cache and stream videos with a low

latency to UEs. On the other hand, in uplink scenarios, videos

generated by the UEs are encoded / transcoded in the edge-C3

to efficiently stream such content. Moreover, analytics tasks

(using either computer vision or machine learning models)

are run to derive intelligent insights from the video streams.

Certain tasks such as encoding, decoding, and transcoding

(see Section II) are required for both uplink and downlink

video streams to efficiently support different types of devices

and network conditions. However, in the downlink, encoding

and transcoding are typically done in large cloud-based data

centers before being distributed to UEs.

Differences between uplink and downlink: Uplink and

downlink scenarios exhibit different properties which impact

resource allocation and application design in edge-C3. First,

the wireless bandwidth available in the uplink is typically

smaller than that in the downlink. For instance, in 5G

networks, the data rates in the uplink are expected to be

half of those in the downlink [105]. Thus, interesting trade-

offs arise in applications that rely on videos generated from

UEs. Such applications must intelligently adapt requirements

(e.g., detecting an object within a certain deadline) accord-

ing to variations in the quality of the video frames (e.g.,

bitrate, dropped frames) due to constrained uplink bandwidth.

Second, the limited computing capabilities in the edge-C3

place constraints on the pre-processing of videos (encoding

and transcoding) that are streamed in the uplink. Specifically,

streaming videos is demanding in the uplink, as the choice of

representations often needs to be made in real-time with lim-

ited computing resources. In fact, real-time encoding of 4K

videos is not feasible without a powerful CPU or GPU, and

sufficient energy capacity [139]. In contrast, in the downlink,

content is typically processed offline in to multiple repre-

sentations (e.g., resolutions and encoding formats to support

different devices and network links) on powerful cloud servers

and then streamed to users. Third, video content in downlink

streaming is typically consumed by human viewers, and thus,

adaptation targets improving the viewer’s QoE. In contrast,

new applications need to run real-time analytics and infer-

ence on uplink video streams generated by IoT devices and

UEs [140]. Streaming content for such applications is differ-

ent, as it aims to maximize the quality of the analytics results

rather than user-perceived QoE [67], [141]. Finally, applica-

tions relying on uplink video streams typically have strict

latency constraints (e.g., surveillance, AR, and live streaming)

as compared to downlink scenarios (e.g., VoD). Thus, in the

uplink, there exist different application-specific considerations

than in the downlink for hiding latency from the UEs.

To this end, we classify the works reviewed in this survey

into uplink (Section IV) and downlink scenarios (Section V).

Specifically, for uplink scenarios, we focus on the processing

of videos generated by UEs: how applications can leverage

the computing and caching resources in edge-C3 for video

analytics and intelligence. On the other hand, for downlink

scenarios, we focus on the use of edge-C3 for efficient delivery

of videos to the UEs.

IV. UPLINK SCENARIOS IN VIDEO EDGE-C3

This section overviews video edge-C3 for uplink scenarios.

In particular, it focuses on emerging applications that lever-

age video data streamed by UEs (for instance, smartphones,

AR glasses, and surveillance cameras). Such applications

typically have strict latency requirements for end-to-end trans-

mission and processing, which are highly dependent on the

considered use case. For instance, AR demands stringent

latency deadlines, whereas live video surveillance places more

emphasis on reducing bandwidth of large number of video

streams. Accordingly, this section focuses on application-

specific approaches at the edge-C3 for processing video

streams from UEs (Fig. 13). First, we introduce the main

characteristics of applications that rely on streaming videos

in the uplink (Section IV-A) and the representative processing

tasks in such applications (Section IV-B). Next, we provide

a comprehensive review of the state of the art leveraging

edge-C3 in emerging applications: live video surveillance,

augmented reality, drone analytics, vehicular video analytics,

privacy-preserving analytics, and live streaming (Sections IV-C
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Fig. 13. Organization of the content in Section IV.

to IV-H). Specifically, we take an application-centric approach

as many trade-offs are specific to application requirements.

To this end, in each sub-section, we first introduce the main

features of such applications and describe how the problems

of limited bandwidth and computing resources at the edge-C3

have been addressed in the literature. Finally, we conclude with

a summary of the lessons learned and highlight commonalities

across different applications (Section IV-I).

A. Overview

The edge-C3 allows seamless processing of compute-

intensive and delay-sensitive data streamed from diverse UEs

such as smartphones, drones, surveillance cameras, and wear-

ables. For instance, surveillance applications can process and

query live video streams generated by UEs in real-time. AR

is another emerging application wherein video streams from

hand-held smartphones or head-mounted displays (e.g., Magic

Leap10 or HoloLens11) are processed in real-time so as to

overlay useful information for end users. Furthermore, drones

and connected cars can take advantage of edge resources for

several applications, including surveillance, streaming of sport

events, traffic analysis, and parking management. The edge-

C3 can also ensure privacy-preserving processing of video

streams in different ways. For instance, sensitive information

(e.g., faces) can be removed from a video before it is sent

to a cloud server for batch processing. Finally, live stream-

ing applications allow normal users to broadcast live video

streams from their handheld devices and interact with viewers

in real-time.

The applications described above require processing of live

video streams to extract information from them and take

real-time actions. Computer vision and machine learning mod-

els are extensively used to analyze video streams. Thus,

relatively powerful computing resources are required at the

edge, with multi-core processors of at least 2.7 GHz [142],

[143], [144] and powerful GPUs (e.g., in [143], [145], [146]).

10https://www.magicleap.com
11https://www.microsoft.com/en-us/hololens

Fig. 14. Main components in video analytics at edge-enabled wireless
networks.

However, recent advances in machine learning allow not

only edge servers but also resource-constrained UEs to per-

form complex computer vision tasks. To this end, UEs may

carry out less resource-intensive tasks whereas the remaining

compute-intensive tasks are offloaded to the edge or the cloud.

Offloading requires the UEs to transmit video frames (or rel-

evant data such as image features) to the edge-C3 or cloud,

where the tasks are run and the results of which are typically

sent back to the UE. Fig. 14 provides a high-level overview

of an edge-based architecture, along with representative tasks

(detailed later) that are carried out at the different layers of the

network. It is important to note that the cloud is still required

for batch processing of videos, long-term storage, or more

resource-intensive computations.

Several challenges remain in the design and deployment

of video applications in the edge-C3. First, applications must

identify whether analytics tasks (e.g., object detection) are to

be processed by the UE itself or offloaded to edge servers

(e.g., co-located with base stations). This is challenging when

considering the limited and heterogeneous computing capabil-

ities of the edge devices (both UEs and edge servers). Second,

the wireless network bandwidth becomes a bottleneck when

multiple video streams are streamed to the base stations. Novel

approaches are thus required to reduce the bandwidth require-

ments and allow real-time processing of videos from multiple

devices at the edge servers. Finally, latency constraints are

very stringent for applications such as AR, wherein the overlay

needs to be processed and rendered seamlessly at high frame

rates. This requires careful system design to fulfill the require-

ments of real-time processing applications while meeting their

bandwidth and computational constraints.

B. Video Analysis Pipelines at the Edge

Video analytics typically consists of object detection, recog-

nition, and tracking chained together in an analytics pipeline.

Object detection determines whether an object (face) is present

in a video frame or not and localizes the object by drawing a

bounding box around the detected object. Recognition consists

of object detection and additionally classifying or recogniz-

ing its type (e.g., a face). Finally, object tracking in a video

requires detecting an object, localizing the object within each

video frame, and then tracking the object across frames.
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The tasks in an analytics pipeline mainly rely on com-

puter vision algorithms or – more recently – deep neural

networks (DNNs) and convolutional neural networks (CNNs).

Fig. 15 shows an overview of the main steps in object recog-

nition through computer vision algorithms on edge-C3. Once

a video is streamed by a UE, the video is segmented into

multiple frames (e.g., images) and the background is removed

from each frame in the pre-processing stage. Next, feature

descriptors are extracted from each frame in the feature extrac-

tion component. Such descriptors are typically vectors that

represent important points in an image (or frame) and are

usually invariant, i.e., independent of orientation, scale, or

transformation [147]. Some commonly used algorithms to

compute feature descriptors are SIFT [148], SURF [149], and

ORB [150] for objects, as well as HOG [151] and Haar fea-

tures [152] for faces.12 The algorithms differ in terms of the

size of the generated vectors and processing time required.

For instance, ORB is more efficient and compact followed

by SURF and SIFT [147]. In the context of face or human

detection, HOG feature descriptors represent the human shape,

whereas Haar features describe the appearance (e.g., color and

texture) [153]. Once the feature descriptors are extracted, the

images can be classified by matching the features through

existing models that are already trained with features extracted

from a database of images. This step involves using differ-

ent algorithms, such as nearest neighbor matching or machine

learning models [154]. The final results from object recogni-

tion can be transferred to the cloud or UEs. In the case of

object tracking, feature descriptors are additionally used to

track and localize objects in different frames.

CNNs have become very popular in computer vision

recently as they do not require feature descriptors to be

selected beforehand; instead, the features of an image are auto-

matically learned through the different layers in the CNN.

In edge-assisted video analytics, CNNs are typically trained

offline against a database of images and then deployed on edge

devices to run inferences on the video frames. The popular-

ity of CNNs started growing in 2012, when AlexNet [155],

a CNN model, achieved a low top-5 error rate (that mea-

sures the presence of the correct label in the top five predicted

classes) in classifying images from the ImageNet dataset.13

This was achieved through the use of GPUs and a deep

network architecture [156]. Other noteworthy architectures

that appeared thereafter – VGGNet [157] and ResNet [158]

– achieved better performance by increasing the depth of

the networks [156]. Next, new models emerged that specif-

ically address the problem of object detection (i.e., drawing

a bounding box around an object in addition to classifying

the object therein). To this end, R-CNN [159] uses a region-

based approach, wherein a CNN is used to extract features

from 2,000 different region proposals in an image. The fea-

tures are then fed into a classifier to detect the presence of

objects in the proposed regions. However, the computational

time and memory required for training R-CNN models is very

12The interested reader may refer to [147] for a review of feature descriptors
for objects and [153] for a review of descriptors for humans.

13ImageNet (http://www.image-net.org/) is a popular dataset commonly
used in computer vision research.

Fig. 15. Object recognition in video streaming at the network edge (adapted
from [154]).

high [156]. A real-time object detection, YOLO [160], was

proposed to address this issue. This model uses a single CNN

to predict both the bounding boxes and the class probabili-

ties in each box directly from an image in a single evaluation.

Thus, it is able to perform inference in real-time at 45 frames

per second [160].

Running video analysis and computer vision tasks by

resource-constrained UEs or edge servers requires lightweight

versions of standard computer vision algorithms and CNN

models. For instance, Drolia et al. [161] demonstrate how

the resources required by SIFT, SURF and ORB descriptors

can be reduced by changing the number of extracted features.

This results in lower processing time at the expense of a small

decrease in accuracy. Similarly, reducing the number of layers

in CNNs lowers the storage and computational requirements at

the expense of a small decrease in accuracy. Furthermore, layer

reduction has the added benefit of lower inference latency.

Finally, the CNN models can be specialized for the particular

task for which they are intended; for instance, CNN models

can be trained to detect objects of a specific color. Such spe-

cialized models are smaller in size and require less time for

inference. The approaches discussed above have been imple-

mented in different application scenarios, which we discuss

next.

C. Video Surveillance

Video surveillance systems involve queries (generated by

UEs or at cloud servers) to detect or track objects such as

humans or cars. Real-time surveillance of videos can help

locate a target person (e.g., missing child) or detect danger-

ous situations such as slippery roads. The analytics pipeline

for such systems typically includes object detection, tracking,

and recognition. In the context of surveillance, the analytics

pipeline is sometimes referred to as a query plan, as each

query requires a set of analytics tasks to be carried out. We

study edge-assisted surveillance applications from the follow-

ing perspectives: task offloading models, trade-off between

latency and accuracy of queries and collaborative processing

of surveillance queries.

1) Task Offloading Frameworks: Several recent works have

studied strategies for offloading video analytics tasks to edge

servers by taking into account the latency, network bandwidth,
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and computational constraints. Offloading frameworks need to

make complex decisions to choose whether tasks are executed

on the UEs, at edge servers, or on the cloud. Specifically,

the limited computational resources on the UEs and the edge

servers may be stressed when the number of queries increases.

Moreover, edge servers may have intermittent connectivity

which affects what tasks can be realistically offloaded to such

devices. Finally, task offloading decisions need to consider the

network bandwidth required to offload videos to edge servers.

The following studies propose task offloading frame-

works for video surveillance with different objectives.

Trinh et al. [142] design an energy-efficient task offloading

framework in which facial recognition tasks submitted by UEs

can be executed by edge servers or the cloud. The offloading

decisions take into account the energy and latency require-

ments, as well as the workloads at edge and cloud servers.

In addition, the authors propose an energy-aware routing

algorithm for data forwarding that is aware of the network con-

ditions and node failures. Offloading decisions are evaluated

through experimental evaluation, whereas the routing algo-

rithm is evaluated through simulations. Li et al. [162] focus

on the latency and bandwidth constraints of video surveillance.

They propose a distributed deep learning approach for object

recognition in video streams. Specifically, they optimally place

deep learning layers at edge servers with respect to latency and

bandwidth constraints. Both online and offline schedulers are

proposed to maximize the number of tasks (layers) deployed

at the edge. Simulation results show that this solution outper-

forms other task placement schemes in terms of the number of

offloaded tasks with guaranteed QoS. Ding et al. [144] focus

on the problem of limited radio spectrum and propose a cog-

nitive radio access for data delivery between UEs and edge

servers. The placement of tasks take both the limited compu-

tation and spectrum resources into account. Caching resources

at the edge are employed to temporarily store data when the

wireless spectrum is not available. The authors propose a

mixed integer linear programming formulation to achieve an

optimal task placement that maximizes the number of queries

served. The specifics of the tasks from the analytics pipeline

are not presented; instead, the computational requirements are

modeled as CPU cycles.

2) Accuracy-Computation Trade-Off Analysis: Performing

computer vision tasks with very high accuracy is not always

the main objective in surveillance applications at the wireless

edge. The reason is that achieving very accurate results often

requires more edge computing resources as well as higher

wireless bandwidth to transmit high-resolution frames. The

following articles leverage this trade-off by designing task

schedulers for edge servers. Zhang et al. [163] empirically

characterize the accuracy of computer vision tasks with dif-

ferent settings (e.g., frame resolution, sampling rate) against

the resources required to execute them. The data are then used

in a query scheduler that places tasks appropriately based on

the available resources, required accuracy of results, and a

latency threshold. The proposed solution is evaluated over

representative datasets (of videos and queries) and found to

outperform a fair scheduler by 80% in terms of the quality

of results. In contrast to [163], Hung et al. [164] characterize

the accuracy of different implementations of analytics tasks

– including both CNNs and computer vision algorithms –

against both resource requirements and network conditions.

Moreover, tasks in the analytics pipeline (or query plan) can

be reused for different queries. Based on these insights, the

authors propose a binary integer program to determine a query

plan that maximizes the accuracy of the tasks upon placement

on heterogeneous clusters. The objective of the scheduler is to

maximize the accuracy of the query result while taking into

account the cluster capacity. The proposed formulation has an

exponential time complexity and, thus, a greedy heuristic is

proposed. The authors evaluate their solution over represen-

tative video datasets and find that the accuracy is 5.4 times

higher than what is achieved in [163]. Yi et al. [165] focus on

the trade-off between accuracy and speed, and rely on client-

side adjustments of video resolutions to address this. They

propose a mixed integer non-linear programming-based sched-

uler that uses empirical data on the accuracy of analytics tasks

for different devices with varying resource capabilities. The

scheduler places tasks on edge servers with the objective of

minimizing the overall latency while meeting bandwidth con-

straints. The scheduler is then evaluated through experimental

evaluation in terms of number of tasks executed per second

as well as the response time per client query. The proposed

solution outperforms other baseline algorithms.

3) Cooperative Processing: Some studies incorporate a col-

laborative approach for processing surveillance queries. In

particular, cooperative processing leverages overlapping videos

generated by different UEs of the same scene to maximize the

accuracy of computer vision tasks. Moreover, edge servers can

utilize the spatio-temporal locality of surveillance queries to

re-use tasks for different queries. In this context, Lu et al. [166]

propose a computing platform for cooperative object detec-

tion on videos generated by smartphones. The components

from the analytics pipeline are performed either on UEs or

the cloud. The object detection tasks are carried out with

CNNs on CPUs (and not GPUs) of the smartphones. Thus,

the processing time becomes shorter when the video frames

are processed in batches. Based on this observation, an inte-

ger linear programming solution is formulated to determine

the optimal number of batches, as well as the number of

frames in each batch, such that the computation latency is

minimized. Furthermore, a heuristic is proposed to determine

the batch features and decide whether to offload the tasks

to the cloud. The system is implemented on Android phones

and evaluated through experiments. The cooperative process-

ing approach results in a two times speedup with respect

to state-of-the-art offloading platforms such as MAUI [167].

Long et al. [168] apply cooperative processing on smartphones

to detect humans in video streams. In contrast to [166], the

offloading framework in this work is not specific to CNNs. The

authors propose an integer non-linear programming formula-

tion to partition video analytics tasks, create groups of edge

devices, and assign the partitioned tasks to the edge devices.

The objective is to maximize the accuracy of detection of all

tasks within a latency threshold. The proposed solution is eval-

uated through simulations and the accuracy is found to be

higher than a non-cooperative approach. Zhang et al. [169]
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Fig. 16. The analytics pipeline for AR applications (adapted from [171]).

propose a video surveillance system that uses collaborative

data from clusters of cameras with overlapping views to

improve the accuracy of object detection. Edge servers pro-

cess the data streams from multiple cameras and transfer

analytics information to the cloud for further processing. The

system aims to send the maximum number of frames having

a queried object. Finally, Jang et al. [170] address the collab-

orative processing of video frames by multiple applications

on a surveillance camera. To this end, they design a practi-

cal framework that allows multiple virtualized applications to

simultaneously access the video stream from a single camera.

They then address the configuration of video parameters to

support different application-specific QoS requirements.

D. Augmented Reality and Continuous Mobile Vision

Augmented reality (AR) and continuous vision appli-

cations display an overlay of virtual information on live

videos streamed from devices such as head-mounted dis-

plays and smartphones. The AR pipeline (Fig. 16) requires

both recognition and tracking of objects detected within video

frames [171]. Additionally, a mapper builds a model of the

environment. Finally, an overlay is rendered on the video

shown to end users. The tracker, mapper, and object recog-

nition modules can be offloaded to the edge servers, whereas

rendering of the overlay has to be carried out on the UE.

The latency requirements in AR applications are very strict.

For instance, objects need to be recognized and the over-

lay rendered before users change their field of view. The

overall latency of the entire pipeline needs to be lower than

100 milliseconds [146]. Thus, it is challenging to offload tasks

from the analytics pipeline to edge and cloud servers due to

the very low latency constraints and limited wireless network

bandwidth for video in the uplink. We classify existing studies

in AR into task offloading frameworks and trade-off between

accuracy and latency of AR tasks.

1) Task Offloading Frameworks: Offloading tasks from

an AR pipeline to edge or cloud servers should take into

account strict latency constraints, in addition to the wireless

bandwidth and computational constraints. Moreover, the lim-

ited energy requirements of UEs should be considered when

making offloading decisions. To this end, Al-Shuwaili and

Simeone [171] study task offloading in multi-user AR appli-

cations through edge servers with the aim of minimizing the

energy consumption of UEs. In particular, the authors propose

to share the CPU cycles required by common tasks offloaded

by multiple users. Only one user is required to send the data

stream to the edge server if multiple users offload similar

content or tasks (e.g., image recognition of objects from the

same view). The authors propose an optimized task allocation

formulation for offloading under such assumptions, which is

then numerically evaluated. The works in [146], [172] design

edge-assisted AR systems for low-latency object recognition

at high frame rates (e.g., 60 FPS). Their main goal is to offload

the computationally-heavy recognition tasks to edge servers,

whereas the relatively faster tracking algorithms are performed

on UEs. Local object tracking allows UEs to render overlays

when the output is received from the recognition tasks. Such an

approach results in improved detection accuracy with very low

resource consumption on UEs. Accordingly, network band-

width is saved by not sending all frames to the edge server or

by lowering the encoding quality of uninteresting portions of

the frames.

2) Accuracy-Latency Trade-Off Analysis: As latency is

a stringent constraint for AR applications, several articles

analyze the trade-off between latency and accuracy of the

analytics tasks. In particular, a high accuracy is not always

required for recognition tasks in AR – a good-enough result

is often better than a late but very accurate result. Such a

trade-off can be leveraged to determine the placement of

analytics tasks for AR applications, which we discuss next.

Han et al. [173] empirically examine the trade-off between

the accuracy of several DNN models and their resource uti-

lization in terms of memory, energy, and latency. Accordingly,

the authors propose an algorithm to choose a certain vari-

ant of the model and where to execute it. The goal is to

maximize the accuracy of the analytics tasks under resource

utilization budgets and latency constraints. Similar to [173],

Ran et al. [143] first empirically characterize the trade-off

between accuracy and different attributes of the videos (frame

rate, resolution, bitrate). In addition, the authors consider the

impact of network conditions (bandwidth and latency) on

accuracy. Again, empirical measurements are employed in an

optimization problem to choose the most appropriate config-

uration of the tasks to maximize accuracy. The authors then

propose an online heuristic algorithm to achieve a near-optimal

result. The proposed solution adaptively configures the set-

tings of the analytics tasks under varying network conditions

and achieves a higher accuracy than [173]. Liu et al. [174]

design a multi-objective optimization problem to optimally

assign edge servers and video resolutions to end users. The

objective function includes a weight parameter to charac-

terize the accuracy-latency trade-off at different resolutions.

Specifically, a high-resolution video can increase the detec-

tion accuracy at the expense of longer latency. The proposed

formulation is a mixed integer non-linear problem that cannot

be solved efficiently. The authors design an algorithm using

the block coordinate descent method to find a near-optimal

solution. Their solution is evaluated through simulations and

a prototype implementation. The latency of the task place-

ment is overall lower than other baseline approaches with

minimal loss of accuracy, even under scenarios where the

edge server is overloaded or the network latency is signifi-

cant. Finally, Drolia et al. [154], [161] examine the trade-off
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between the accuracy and latency of computer vision algo-

rithms. The authors find that the accuracy increases along with

an increase in latency as the number of extracted features from

an image increases. Thus, the authors propose dynamically

adjusting the number of extracted features to minimize latency.

Moreover, only relevant parts of the trained computer vision

model are stored at the edge based on the spatio-temporal fea-

tures of the requests. The proposed system reduces the latency

of image recognition tasks while maintaining accuracy under

different conditions.

E. Drone Video Analytics

Edge-assisted analytics has recently become popular for

videos streamed from unmanned aerial vehicles or drones.

Drones are increasingly being used in surveillance and

mission-critical rescue applications. They represent a different

class of surveillance applications due to the different capa-

bilities of drones. For instance, drones are mobile, which

affects the decisions on when to offload frames to edge servers.

Moreover, the computing resources available on the drone are

affected by the form factor and weight of the processing units.

Accordingly, we classify the works in this area into those

which carry out analytics on the drones themselves and those

that offload computation to edge servers.

1) On-Drone Processing: Performing analytics on drones is

becoming popular due to the increasing availability of small

computing boards that allow running complex computer vision

algorithms locally [175], [176]. However, the size and weight

of a hardware board attached to a drone impact its flight

time and energy consumption [177]. Thus, analytics on-board

the drones demand less computationally intensive algorithms

and CNN models. Accordingly, Tijtgat et al. [176] analyti-

cally determine the energy requirements for a drone to carry

a certain mass on-board. The authors then evaluate the quality

(in terms of the precision and achievable frame rate) of stan-

dard CNN models (e.g., YOLO and TinyYOLO) and feature

descriptor-based approaches with different video resolutions.

The results show that YOLO outperforms other solutions with

a higher frame rate and high accuracy. Next, Azimi [175]

designs a lightweight CNN model that is specialized for the

real-time detection of vehicles. The proposed CNN model

is compared with state-of-the-art CNN models; the obtained

results demonstrate the feasibility of applying the devised

model on drones.

2) Task Offloading: Offloading tasks from drones to edge

servers can reduce the computational demand on the drones

at the expense of increased use of wireless network band-

width. To this end, the following two solutions aim to reduce

bandwidth requirements of offloading. First, Wang et al. [178]

investigate methods to reduce network bandwidth require-

ments by offloading only certain video frames selected using

context-aware information (e.g., a specific color in the video

frame). The experiments show that applying context-aware

filters also significantly reduces the computational require-

ments of object detection algorithms on edge servers. Next,

Chowdhery and Chiang [179] apply edge computing to gen-

erate image mosaics from aerial images captured by drones

(see Fig. 17). The computationally expensive components of

Fig. 17. Overview of generating a mosaic with aerial images captured by
drones.

the pipeline, such as feature extraction, are carried out at

edge servers. The drones compress captured video frames and

offload only selected frames to the edge server to save limited

bandwidth. Moreover, the drones run a predictive algorithm

to maximize the utility of the application by adjusting the

compression parameters based on real-time feedback about

the quality of images from the edge server. Different from

the above, Wang et al. [180] study real-time video stream-

ing at sports stadiums. In particular, video streaming servers

are deployed near a stadium to which the drones stream their

data over a wireless network. A controller running at the edge

server decides the paths of the drones and assigns each drone

to a streaming server. The authors propose a joint optimization

problem to maximize both the coverage and quality of video

streaming. The proposed system is evaluated through simula-

tions and achieves 94% coverage with a high average quality

of the video streams.

F. Vehicular Video Analytics

Vehicular analytics typically consist of queries to detect or

track objects (e.g., vehicles and parking spaces). Detecting

license plates of cars (e.g., using OpenALPR [181]) is also

an important component of such analytics applications. The

related pipeline consists of first detecting a license plate and

then carrying out character recognition on the video frames. The

components of this pipeline can be offloaded to the edge servers.

However, the mobility of vehicular UEs makes offloading tasks

to edge servers extremely challenging. Nevertheless, it is possi-

ble to run complex video processing tasks (e.g., object detection)

on vehicles, as they today have sufficient computational capabil-

ities. To this end, the following two articles present frameworks

for vehicular data analytics. Zhang et al. [182] present an open-

source vehicular data analytics platform – namely, OpenVDAP –

which distributes computing tasks of the analytics pipeline over

multiple vehicles and edge servers. Additionally, OpenVDAP

addresses the sharing of data between different applications

deployed at the wireless edge. Zhang et al. [183] present

an edge analytics framework called Firework. Firework allows

sharing of data from multiple sources for different applications.

The authors focus on developing a programming interface that

allows software developers to program applications on top of

the proposed framework. The authors evaluate their solution

with an application to detect license plates. The following

systems leverage other mobile devices such as smartphones to
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carry out analytics. Qiu et al. [184] design a system to track a

car’s path over a network of fixed surveillance cameras that uses

computational resources on mobile devices (e.g., smartphones

and cameras on-board vehicles) when necessary. Specifically,

the tracking system uses a light-weight analytics pipeline on

the mobile devices. In addition, it uses a resource-intensive

pipeline on the cloud, consisting of object detection, track-

ing, and association of cars between video frames captured by

multiple cameras. Processing is carried out on mobile UEs only

when the results from the cloud have low confidence. Finally,

Grassi et al. [185] present a system to detect vacant parking

spots in a city using video streams captured by smartphones.

Analytics are carried out on the smartphones and the output is

sent to the cloud, where data from multiple cars is aggregated.

G. Privacy-Preserving Analytics

Applications deployed at edge servers can enhance the pri-

vacy of users by removing sensitive information from their

videos before sending them to the cloud. This concept was

first introduced in a system for analytics on crowd-sourced

videos [186]. The system allows users to specify privacy poli-

cies (e.g., to blur faces) that are applied to their streamed

videos. The policy is implemented through a denaturing pro-

cess. The denaturing pipeline consists of first detecting an

object (e.g., a face), recognizing the object to apply user-

specific policies, and finally applying a blur or filter to the

region. In this pipeline, interesting trade-offs arise between

the achieved throughput, accuracy of denaturing, and different

video resolutions. The denaturing process is further explored

in [187], where the authors extend the denaturing pipeline to

speed up the overall process. In particular, a tracking compo-

nent is added to track already recognized faces across video

frames to prevent multiple invocations of the recognition algo-

rithm. Fig. 18 presents the improved denaturing pipeline with

added revalidation tasks to prevent drifting of the detected

boxes (around the object or face) as well as the option to save

encrypted original frames. Finally, the authors describe a pol-

icy for reversing the denaturing process by trusted third parties

(such as the police) in case of surveillance queries. Different

from the approaches above, Miraftabzadeh et al. [188] present

a privacy-aware framework for identifying and tracking peo-

ple across surveillance cameras. Each surveillance camera is

equipped with computing resources on which face detection

is run, and feature vectors or embeddings of the faces are

generated. The cameras send the embedding vectors to edge

servers, which aggregates the vectors from different cameras

within its range. The actual recognition of faces occurs in the

cloud. Privacy is preserved as only the embedding vectors (and

not images) are sent to edge servers and the cloud.

H. Live Streaming

Live streaming applications such as Facebook Live,14

Periscope,15 and Twitch16 allow users to stream live video

content from their smartphones and other handheld devices.

14https://www.facebook.com/facebookmedia/solutions/facebook-live
15https://www.pscp.tv/
16https://www.twitch.tv/

Fig. 18. A denaturing pipeline for blurring or removing privacy-sensitive
data from videos [187].

Live streaming systems need to ingest large volumes of video

content from the UEs (broadcasters), transcode the content,

and adaptively stream the videos to multiple viewers from edge

servers close to the viewers. Transcoding is required to provide

the appropriate format to viewers based on their device capa-

bilities and quality of their network links. Such systems differ

from video-on-demand services as content must be transcoded

and delivered to users with a very short end-to-end delay

(e.g., 100 ms [189]). Moreover, the broadcasts are sponta-

neous in nature (i.e., users can stream videos whenever they

want); thus, decisions to transcode streams need to be taken in

real-time based on the quality of the network link and avail-

ability of computing resources for transcoding. An analysis of

user traces from existing cloud-based live streaming applica-

tions demonstrate the need for edge-C3 to provide localized

resources for such systems. For instance, Ma et al. [190] find

that 45% of the computing resources are consumed by broad-

casts which are all viewed by users in the same geographic

region as the broadcaster [190]. Raman et al. [191] demon-

strate that close to 40% of broadcasts are not viewed at all;

however, current systems still upload these streams to dis-

tant cloud data centers resulting in unnecessary use of cloud

resources and congestion in the backhaul links.

To address the aforementioned problems, some recent works

discuss the use of edge-C3 for live streaming. The following

studies discuss the assignment of broadcasters to edge servers

with the objective of minimizing latency of streaming.17

Ma et al. [190] study the efficient scheduling of broadcasters

to appropriate edge regions to minimize latency while keeping

operational costs low (i.e., the cost of running the computa-

tional resources for transcoding and delivering services). The

authors design a matching algorithm with a classic many-

to-one matching to assign broadcasters to edge regions. If

necessary, the broadcasters are re-assigned to different regions

to balance load while meeting QoS requirements, and until

a Nash-stable solution is obtained. The proposed solution is

evaluated by using traces from a live streaming platform. The

authors find that an edge-based solution reduces latency by

35% as compared to a cloud-based system. Chen et al. [192]

focus on the problem of choosing both the bitrate of the

uploaded video and the edge server where the videos are

17See Section V for a discussion about the downlink aspects of live
streaming.
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Fig. 19. Organization of the content in Section V.

uploaded and transcoded. The authors propose an optimization

problem to choose the bitrate and server while minimizing the

end-to-end latency and maximizing the bitrate of all viewers.

Their system model also includes routing of videos between

different servers and the choice of edge servers for view-

ers. They present polynomial time heuristic algorithms to

solve the problem and evaluate the performance through trace-

driven evaluation. Their solution improves latency and bitrates

of viewers as compared to baseline approaches that simply

choose the nearest edge server.

Some studies propose the use of smartphones for transcod-

ing and distributing live streams. To this end, Zhu et al. [193]

focus on the problem of choosing UEs for transcoding as

well as incentivizing them. In particular, the authors propose

a greedy algorithm to select UEs and payment schemes to

offer such transcoding services. The objective is to lower the

costs of delivering such applications and reduce the end-to-end

latency. In their system, a local edge server is responsible for

assigning tasks to the UEs, ingesting and forwarding source

videos, and recollecting transcoded videos. On the other hand,

Dogga et al. [189] focus on the operational aspects of live

streaming systems that also allow users to distribute videos in

a peer-to-peer manner. In particular, they describe a multicast

tree-based system wherein users demanding a particular bitrate

are modeled as a distributed balanced tree. The leader/root of

each tree transcodes video frames and distributes the video to

its children in the tree.

All the articles reviewed above use a trace-driven approach

to evaluate their solutions, typically using a dataset from

Twitch, whereas a more comprehensive dataset (including QoS

metrics such as buffering events) is used in [190].

I. Summary and Discussion

Table V summarizes the key features of the articles surveyed

in this section. In particular, it describes whether the compu-

tation is carried out on UEs (on-device), edge servers or the

cloud, and the models or algorithms used to implement tasks

in the analytics pipeline (where available). First, we observe

that many articles consider running tasks from the analytics

pipeline locally on UEs. In the case of analytics applica-

tions, these tasks typically comprise lightweight or specialized

models for computer vision or computationally-inexpensive

tasks such as tracking objects. In the case of live stream-

ing, these tasks typically comprise transcoding. Next, we

observe that most surveyed articles use state-of-the-art CNNs

for implementing tasks in the analytics pipeline. The CNNs

are modified to enable these models to run seamlessly on

resource-constrained devices. Moreover, the models may also

be specialized for a particular task (e.g., to detect objects

of a specific color or type) to further reduce their resource

requirements.

In addition to the computational requirements, the design

of edge-assisted analytics systems requires careful considera-

tion of latency thresholds and network bandwidth constraints.

Different approaches have been proposed to reduce the uplink

bandwidth utilization. First, tasks such as object recognition

need not be run on all video frames as there is usually

some spatio-temporal similarity between frames. Thus, video

frames can be sampled at the application layer or by using

hardware-based solutions (e.g., [194]) to run analytics only

on a subset of frames. The network bandwidth requirements

of offloading can be further reduced by compressing videos

or reducing the frame resolution. However, such approaches

result in reduced accuracy. This can be balanced by defining

application-specific QoS requirements and designing offload-

ing frameworks that balance the trade-off between accuracy

and latency, bandwidth, and computing constraints. Many arti-

cles use an empirical approach, wherein the tasks are first

profiled in an offline phase and then used to optimize task

placement. However, such an approach may exhibit local pat-

terns and the empirical estimates may need to be updated

over time. This aspect has not been addressed in the sur-

veyed articles. Second, the bandwidth requirements can be

reduced by running the computer vision tasks at the UEs

and only aggregating the results at the edge or the cloud.

However, this is usually limited to only certain types of spe-

cialized tasks. Finally, customized video streaming protocols

for uplink video streams have also been recently proposed to

control frame settings while ensuring a minimum accuracy for

inference [67]. Such custom protocols are key to improving

the overall performance of systems for video analytics [141].

V. VIDEO EDGE-C3 IN DOWNLINK SCENARIOS

This section reviews and categorizes recent works on video

delivery through edge-C3 in downlink scenarios (Fig. 19).
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TABLE V
SUMMARY OF WORKS ON VIDEO ANALYTICS IN EDGE-C3

First, it describes the implications of video streaming and

processing through resources deployed at the edge, in the

specific context of wireless networks (Section V-A). Next,

it proposes a new taxonomy for video edge-C3 techniques

and introduces the state-of-the-art in each category by high-

lighting the most important contributions. Specifically, we
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Fig. 20. A general video edge-C3 scenario.

consider collaborative approaches, wherein network elements

(e.g., SBSs or UE) explicitly cooperate for resource allo-

cation in video delivery (Section V-B). Next, we examine

popularity-based schemes that (re)allocate storage and com-

puting resources based on how popular videos are among sets

of UEs (Section V-C). Moreover, we address how contextual

information support video delivery based on knowledge of

UE mobility, users’ social ties, or viewport for 360◦ videos

(Section V-D). Then, we focus on joint optimization for

resource allocation based on two primary criteria, namely, QoE

of users and revenue through pricing/trading in a market-based

setting (Section V-E). Finally, we conclude by a summary and

comparison between the considered approaches (Section V-F).

A. Overview

Edge-enabled video streaming and delivery for downlink

scenarios aims at utilizing the edge-C3 resources to provide

cost-efficient and seamless video streaming services to client

UEs in next-generation wireless networks [195]. The main

rationale is to cache popular videos with an appropriate qual-

ity (e.g., the most downloaded quality) at edge devices (i.e.,

base stations or UEs). Once a video requested by a UE is

hit at the edge (e.g., in a base station or a neighboring UE),

the video segments (or chunks) are transcoded to appropriate

bitrates in real-time (e.g., based on the current wireless link

quality) and transmitted to the UE. Fig. 20 illustrates a general

video edge-C3 scenario for downlink streaming, in which dif-

ferent qualities of a (cached) video are transmitted to UEs with

different service requirements through an edge server. In par-

ticular, the requested video is transmitted to UE 1 without any

transcoding, whereas the video is transcoded to appropriate

qualities before it is streamed to UEs 2-4.

Optimal allocation of edge-C3 resources to simultaneous

video streaming tasks in real-time is challenging because

specific allocation policies result in different performance

trade-offs (e.g., QoE versus traffic or latency) [195], [196] and

economic models [197]. For instance, by allocating more com-

puting resources, edge servers can transcode and send videos

with different qualities to UEs rather than fetching them from

the network backhaul, thereby reducing the network backhaul

traffic. In addition more videos can be cached at the edge

Fig. 21. An SBS-assisted video edge-C3 scenario.

by increasing the storage space in edge devices. As a conse-

quence, the number of video requests served by edge devices

increases, thereby reducing the download latency observed by

UEs [198].

B. Collaborative Video Edge Delivery

Video delivery through edge-C3 resource involves com-

plex network systems with different elements involved (recall

Fig. 20). As a consequence, effective allocation of resources

requires coordination between base stations and UEs. In the

following, we focus on collaborative approaches that leverage

explicit cooperation between network elements. In particular,

we distinguish between: SBS-based approaches, as performed

exclusively by MNOs; and D2D-assisted schemes, wherein

UEs actively participate in video delivery according to the

crowdsourcing paradigm.

1) SBS-Assisted: Fig. 21 illustrates an SBS-assisted video

edge streaming scenario in which SBSs cooperate with each

other to serve the video requests of their UEs. It is assumed

that a 1080p quality video cached in SBS 1 is requested in

different qualities by UEs 1-3, where each UE is associated

with a distinct SBS. UE 1 requests the video with the same

quality; thus the video is transmitted to UE 1 through SBS 3.

The video requested by UE 2 is transcoded to quality 720p

in SBS 1 and then transmitted to the UE through SBS 2. In

a different scenario, the video with 1080p quality at SBS 1

is first transmitted to SBS 4. Next, it is transcoded to 480p

quality by SBS 4 and streamed to UE 3. As highlighted in

this scenario, the coordination among SBSs in collaborative

video streaming is non-trivial, especially when neighboring

SBSs have different traffic loads.

Different SBS-assisted video edge delivery mechanisms

have been proposed in the literature. Octopus [199] is a

hierarchical video caching strategy in C-RAN in which the

video requests of UEs are first looked up in their associ-

ated SBS and then in their neighboring SBSs. The problem

is formulated as a delay-cost optimization, where proactive

cache distribution and reactive cache replacement algorithms

are proposed to solve the problem. The experiments using

real-world YouTube data shows that Octopus improves cache

hit ratio, video delivery delay, and backhaul traffic load sig-

nificantly. Qu et al. [200] study how multiple bitrate videos

should be cached in SBSs proactively so that the cooperation
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Fig. 22. D2D-assisted video edge-C3 scenarios (adapted from [197]).

between SBSs in video delivery maximizes UEs’ QoE func-

tion. The QoE function is defined as a UE’s perceived QoE

and received bitrate. Analytical and experimental results show

that the proposed greedy algorithm achieves an approxima-

tion ratio arbitrarily close to 1/2, which outperforms existing

benchmark solutions (such as FemtoCaching [201]) under

non-linear and linear QoE functions. Ao and Psounis [202]

design a video delivery architecture by combining the idea of

FemtoCaching [201] and SBS cooperation in which clusters

of neighboring SBSs are formed dynamically to cooper-

atively deliver UEs’ video requests. Specifically, a cross-

layer optimization (i.e., video placement in the application

layer and cooperative transmission in the physical layer) is

proposed to jointly optimize the video caching and transmis-

sion. Liu et al. [203] address collaborative video caching and

delivery wherein different segments of a video are streamed

to UEs by different SBSs. When one UE requests a video,

a greedy algorithm selects a proper SBS for downloading

the segments of the video, and when multiple UEs request

to watch a video, the greedy algorithm is combined with

interference alignment method to jointly reduce the video

freezes while improving UEs’ QoE. Yu et al. [65] propose a

centralized collaborative caching mechanism in which appro-

priate video bitrates are selected for streaming with the aim of

maximizing the number of video requests served while min-

imizing the transmission cost. The problem is formulated as

a joint video caching and scheduling optimization, for which

a two-stage rounding-based algorithm is proposed. Simulation

results show that collaborative caching significantly reduces

the delivery delay but not the number of served UEs.

Next, collaborative caching and delivery has also been stud-

ied in the context of 360◦ videos. Maniotis et al. [204]

study a collaborative approach with SVC encoding of 360◦

videos to decide which tiles and layers of videos are cached

in each SBS and which route to deliver them to interested

UEs. Decoupling the problem into caching and routing opti-

mizations, Lagrange partial relaxation method is applied to

solve the problem. Dai et al. [205] propose a synthesis-based

VR caching scheme in C-RAN. Synthesis involves combining

multiple views (e.g., texture and depth) to generate a multi-

view 360◦ video. The authors propose an architecture where

edge servers are deployed in the BBU pool and RRH to syn-

thesize views and serve the 360◦ video requests of UEs. The

problem is formulated as a hierarchical collaborative caching,

where an online MaxMinDistance algorithm is applied to find

optimal video tiles for caching. The experiments show that

the proposed solution maximizes the cache hit ratio and UEs’

QoE while minimizing the backhaul traffic.

2) D2D-Assisted: In this model, UEs in close proxim-

ity cooperate with each other via short-range RATs (e.g.,

Bluetooth or Wi-Fi) [34] to serve the video requests of each

other. Crowdsourced mobile streaming (CMS) [206] is a com-

mon D2D-assisted communication model in which UEs with

high-quality Internet access share their resources (e.g., band-

width) with those in proximity that have slower or unreliable

Internet connections [197].

Fig. 22 illustrates different D2D-assisted (or crowdsourced)

video streaming scenarios in which UEs 1-3 in proximity

download video segment from SBSs and share them among

each other cooperatively. In particular, Fig. 22(a) shows a

video with three frames delivered to UE 1, where some seg-

ments of the video are delivered to UE 1 by UEs 2 and 3. For

the same video, Fig. 22(b) illustrates the case where UEs first

download video segments and then share them with each other.

Finally, Fig. 22(c) shows the delivery of three different videos

to distinct UEs; UE 2 has a higher-speed and reliable Internet

access, thus, it downloads and delivers some segments of other

videos to UEs 1 and 3 (according to the CMS paradigm).

Different techniques have been proposed to realize D2D-

assisted video caching and computing at the wireless edge.

Some studies have investigated the impact of cache size

and video popularity on the performance of D2D-assisted

video delivery. Golrezaei et al. [207] extended the idea of

FemtoCaching [201] to D2D-assisted video delivery in which

UEs with caching capabilities play the role of mobile helper

nodes and upscale the network capacity with low deploy-

ment cost. The experiments demonstrate that D2D-assisted

video delivery achieves 1 to 2 orders of magnitude increase in

network capacity. However, how to stimulate UEs to partici-

pate in video relaying and coordinate their cooperation are the

main challenges in D2D-assisted video delivery. Zhou [208]

proposes a D2D-assisted video delivery system wherein UEs
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make caching decisions by estimating the popularity of videos

using information from neighboring UEs. Moreover, UEs can

vary their mobility and transmission parameters based on the

availability of videos. The proposed scheme outperforms com-

mon practical video streaming methods in terms of robustness

and efficiency.

Some studies have explored the impact of caching policies

of UEs and video size on the performance of video stream-

ing. Kim et al. [209] consider a scenario in which each UE

caches a subset of video files from a library. Next, UEs in

proximity fetch their requested videos through D2D communi-

cation from their neighboring UEs. A quality-aware stochastic

DASH streaming algorithm is designed for link scheduling

and streaming phases. The experiments show a considerable

gain in terms of fair link scheduling with respect to off-

the-shelf streaming components. The experiments in [210]

show that the current fixed-thresholding mechanisms for con-

tent caching in Android devices cannot effectively balance

the trade-off between the cost of unconsumed content and

the QoE. To resolve this issue, an adaptive thresholding

solution is proposed to efficiently cache content in UEs.

Zhang et al. [211] consider the high bit cost of video caching

over flash memory as opposed to conventional (magnetic) hard

drives. Accordingly, they design a fault-tolerant solution to

enable the use of lower-cost (thus, less-reliable) flash memory

chips; their solution also reduces the complexity of transcod-

ing by leveraging both video characteristics and the physics

of flash memories.

C. Popularity-Based Video Edge Delivery

The popularity of videos viewed by UEs is highly pre-

dictable [212], [213]. Hence, the video viewing behavior of

UEs can be collected and locally analyzed by edge servers

(e.g., at SBSs) to proactively decide resource allocation in

edge-C3, particularly of storage at SBSs. Popularity prediction

of content in a general context (i.e., other than video) has been

extensively studied [214]. In the following, we only consider

works specifically targeting video in wireless networks. We

classify the surveyed article according to their focus: place-

ment of resources in the network, or their replacement if

previously allocated.

1) Video Placement: Hou et al. [215] propose a light-

weight transfer learning technique to estimate the popularity

of videos through base stations with short training time.

The motivation is to transfer the popularity knowledge from

previous learning tasks to a target task when the latter has

limited high-quality training data. The experiments show that

the proposed method improves the cache hit ratio between

17%-117% while reducing average transmission cost by 15%

compared to alternative caching solutions. Müller et al. [216]

propose an online multi-armed bandit algorithm to learn

context-specific popularity of videos. The devised solution

dynamically updates cache placement by observing contextual

information of UEs. In addition, the authors derive a sublin-

ear regret bound which characterizes how fast the proposed

solution converges to optimal cache placement. Numerical

evaluation using real-world datasets demonstrates that the

proposed method increases the cache hit rate by 14% with

respect to the state-of-the-art. Chen et al. [217] apply echo

state networks – a type of recurrent neural network – in

a C-RAN setting, which leverages patterns of UEs’ content

requests at each base station to predict video popularity and

UEs’ mobility at the BBUs. Experimental results using real-

world video traces show that the proposed solution increases

the total effective capacity by 27.8% and 30.7% with respect

to two random-caching with clustering and random-caching

without clustering, respectively.

Once the popularity of videos in each edge server is pre-

dicted, proactive caching techniques are applied to identify

which videos need to be cached at each base station or

edge server. StreamCache [218] leverages the video popular-

ity to provide proactive online caching in ICNs, where the

popularity of videos is modeled using a Zipf distribution.

StreamCache updates the popularity of videos in rounds using

the most recent video request statistics. The objective is to

fill the gap between offline theoretical optimal solution and

the real-world application. Simulations show that StreamCache

obtains an average video throughput per UE that is very

close to optimal offline caching. Hoiles et al. [219] propose

an adaptive video caching algorithm that leverages both the

short-term and long-term video popularity to maximize cache

hit ratio. In particular, a non-parametric learning algorithm

is applied to characterize preferences of YouTube viewers

and predict their video request probability in the short term.

In addition, a regret-matching algorithm is applied to pro-

vide base stations with caching decisions for the long term.

Liu et al. [220] analyze 10 million video requests of six popu-

lar video SPs in China to derive optimal regions for deploying

cache-enabled base stations and to determine what content

is cached in each location. The authors propose new met-

rics such as view concentration, popular video number, cache

revenue, and popular topics. Their evaluation shows that con-

sidering these metrics improves the average cache hit ratio

up to 30%. Carlsson and Eager [221] analyze YouTube video

data collected over 20 months to design on-demand edge video

caching policies. Specifically, a workload model is applied to

study the ephemeral popularity of videos, i.e., videos that are

watched once or a few times in a particular period. Finally,

Hong and Choi [222] propose caching the beginning (called

prefix) of popular videos on the UEs themselves. The goal is to

minimize the startup delay by building a library of prefixes of

videos based on the user’s interests. Accordingly, they derive

optimal prefix sizes that are to be cached to minimize average

delay and storage space.

2) Video Replacement: The popularity of videos in some

applications can change frequently, which implies that some

already-cached content need to be replaced in order to reflect

the newer video demand. Thus, a reactive video replacement

policy should be applied periodically to replace some already-

cached low-popular videos with newer and more popular items

so that the cache hit ratio is maximized. To this end, conven-

tional cache replacement strategies include the least recently

used (LRU) and least frequently used (LFU) [223]. The LRU

scheme replaces the least recently used content with newer

items, whereas the LFU method replaces the least frequently

used content with newer content. However, methods leveraging
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LRU/LFU can result in poor performance in wireless edge

caching scenarios because UEs may be associated with differ-

ent base stations at different time periods (e.g., due to their

mobility or time-varying features of wireless channels).

To deal with above-mentioned challenges, novel stud-

ies have leveraged the RAN information to improve the

performance of video replacement at the wireless edge.

Mokhtarian and Jacobsen [224] propose a flexible ingress-

efficient algorithm to enhance the LRU strategy by forecasting

future requests of UEs and considering the varying traffic load

at the edge devices. The experiments show that the proposed

scheme increases the caching efficiency by up to 12% during

peak video traffic periods. Ahlehagh and Dey [225] pro-

pose a combined proactive and reactive video-aware resource

scheduling technique which utilizes UEs’ profile information

to maximize the number of parallel video sessions served

by base stations while satisfying UEs’ QoE and minimizing

the stalling. The experimental results show that the proposed

scheme improves the network capacity by 50% compared to

video replacement methods that use LRU. Qiao et al. [226]

develop a video replacement method to support highly-mobile

users. Their solution leverages UEs’ video request statistics

to identify videos to be cached at each mmWave base sta-

tion so that the handoffs of UEs are minimized. Specifically,

a Markov decision process is applied to dynamically allocate

proper cache memory space of each SBS to its associated UEs.

Zhan and Wen [62] study SVC video placement at SBSs using

the RAN topology information, in addition to the popularity

and structural characteristics of layered videos. A heuristic

solution with convex relation is proposed to solve the inte-

ger programming problem, where the objective is to minimize

the average download time under the constraint of cache size

at each SBS. Claeys et al. [227] propose cache replacement

algorithms for video streaming by using not only the tempo-

ral features of videos but also user behavior, i.e., in watching

consecutive episodes of video series. Based on trace-driven

VoD data, simulation results show that the proposed caching

strategies improve the state-of-the-art with a 20% increase in

the cache hit rate and 4% lower bandwidth usage.

D. Context-Aware Video Edge Delivery

The video delivery process can significantly benefit

from information other than the sheer content itself. Such

information is mostly represented by the context of UEs, which

include their activity (e.g., spatio-temporal network utiliza-

tion and mobility pattern) and intrinsic characteristics (e.g.,

social ties and view within the video). We group recent works

on context-aware video accordingly under the following cate-

gories: approaches that rely on knowing the mobility of UEs;

schemes leveraging social ties between different users; and

solutions specifically considering the portion of video that is

interesting for a user, particularly, the view or gaze in videos.

1) Mobility-Aware: Streaming videos to highly-mobile UEs

is extremely challenging because different segments of a video

viewed by a UE might be fetched from different base sta-

tions as the UE passes through their coverage areas [223].

Furthermore, frequent quality switching may occur in adap-

tive streaming due to the time-varying quality of wireless

links, which in turn negatively impact users’ QoE. A com-

mon solution is to leverage movement information about the

UEs to predict their future mobility (e.g., moving speed and

direction) [213].

In this context, the majority of mobility-aware video

edge caching and streaming studies have addressed vehicular

network scenarios. Zhang et al. [228] propose a mobility-

aware hierarchical caching architecture in which smart vehi-

cles store popular video content by explicit cooperation with

SBSs. Moving vehicles communicate with each other or with

the roadside communication infrastructure to facilitate efficient

delivery of content to mobile UEs. Experimental evaluations

show that the proposed solution improves the performance of

content delivery in term of delivery latency. Guo et al. [229]

propose a video caching and streaming solution in vehicu-

lar networks that relies on two time-scales. Specifically, video

quality adaptation and cache replacement are performed at

a larger time-scale, whereas the transmission of video seg-

ments is carried out at a small time-scale. The objective is

to maximize the weighted sum of video quality delivered

to UEs while reducing the backhaul traffic. Dai et al. [230]

analyze video caching in a C-RAN in which the centralized

BBU pool leverages the UEs’ mobility and video popularity

information to predict the next cell visited by each UE, so as to

efficiently allocate caching and computing resources to base

stations. Experimental results demonstrate that the proposed

solution improves on traditional caching solutions by 20%

and 16% in terms of average transmission delay and cache

hit rate, respectively. Kumar et al. [231] propose a QoS-aware

hierarchical Web caching scheme for video streaming in vehic-

ular ad hoc networks. Their solution takes into account two

metrics, namely, load utilization ratio and connectivity ratio.

Simulation results show that the proposed scheme reduces

communication costs by about 16% and increases the cache

hit rate by nearly 9% with respect to conventional approaches.

Vigneri et al. [232] propose to use vehicles as mobile relays

for low-cost video delivery without imposing any streaming

delay on UEs. Simulations using real traces – for both video

popularity and vehicular mobility – determine that up to 60%

of traffic load on the cellular network is reduced by caching

content in the vehicular infrastructure.

2) Social Ties: UEs with strong social ties or similar

interests exhibit similar mobility and content demand behav-

iors [213], [233]. Hence, the social features of UEs can be

leveraged to predict their preferences and future interactions

in video edge delivery. Su et al. [234] propose a social-aware

caching algorithm for SVC videos in which multiple groups

of users with social ties compete with each other for the

number of layers they request to cache. Specifically, a non-

cooperative game is designed to model the competition among

user groups with the aim of maximizing their total profit.

Social-Forecast [213] leverages the propagation patterns of

content on social media to predict the popularity of videos

for different UEs. The objective is to maximize the forecast

reward by jointly optimizing the accuracy of predictions and its

timeliness. The analytical and simulations-based results reveal

that Social-Forecast improves the prediction reward by more

than 30% against approaches that use no context information.
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Wu et al. [236] explore mobility patterns and social aspects of

UEs to design a pricing-based system for video edge caching

and delivery. In particular, they elect so-called core users to

collaborate with an SBS and distribute videos to other UEs

through D2D communications. Zhao et al. [237] leverage the

history of UEs’ requests and their social similarity to optimize

cache hit ratio and transmission delay in D2D-assisted video

edge caching and streaming. The cache replacement problem

is formulated as 0-1 knapsack problem which is solve using

Lagrangian multipliers to maximize the cache hit rate while

minimizing the transmission delay. Sermpezis et al. [238]

introduce the concept of soft cache hits based on which

UEs get recommendations on similar videos rather than the

requested one, when the latter is not cached at SBSs. The

authors argue that UEs are likely to accept the recommended

alternative since the majority of video content in the Internet

is entertainment-oriented.

3) View-Aware: The current view of a user can be used

to improve its QoE in scenarios such as cloud gaming and

streaming 360◦ videos. This is known as foveated video

streaming, wherein the downlink bandwidth requirements are

reduced by streaming high quality video at the viewer’s gaze

location in a frame and low quality video elsewhere. This

relies on the fact that the acuity of the human visual system

is highest in the gaze direction and decreases exponentially

away from the gaze [239]. Thus, foveated video streaming

can be imperceptible with suitable parameterization. We first

discuss some approaches which rely on foveated streaming

for conventional videos and then discuss them in the con-

text of 360◦ videos. An additional eye tracker is required for

traditional videos, whereas newer VR head-mounted displays

contain built-in eye trackers. Thus, a view-aware approach

to caching and streaming is a promising method to support

streaming of 360◦ videos.

Ryoo et al. [240] design a foveated video streaming solu-

tion using a Web-camera based eye tracker and a tile-based

encoder. The proposed solution divides a video frame into

multiple spatial tiles and encodes each tile in multiple res-

olutions. The resolution of a tile delivered to the streaming

client is proportional to its spatial proximity to the gaze

location reported by the client. Illahi et al. [241] design a

foveated video streaming solution for cloud gaming, wherein

a consumer-grade eye tracker at the gaming client is used to

report the players’ gaze to a cloud gaming server deployed

in the edge-C3. The cloud gaming server is configured to

encode the gameplay video with a quality dependent on the

gaze location. Such a solution reduces the downlink bandwidth

requirement by upto 50% with minimal impact on players’

quality of experience.

In the context of 360◦ videos, properties of the field-of-view

or viewport of the user are used to cache or proactively send

high quality frames, such that the users’ QoE is improved.

Maniotis et al. [204] consider an optimal caching scheme

that uses layered and tile-based encoding of 360◦ videos.

Specifically, each tile is encoded into layers of different quali-

ties. The tiles belonging to popular viewports are cached with

higher quality in the edge-C3, whereas the remaining tiles are

cached with a lower quality. The authors propose an algorithm

to determine the optimal set of tiles and their qualities to

cache in the edge-C3 considering the limited storage space.

Mahzari et al. [242] propose a tile-based caching policy at

the edge servers, that additionally determines which tiles to

replace from the cache when capacity is exceeded. In their

system model, the UE chooses the quality of the requested

tiles based on network conditions and informs the edge-C3

whether the requested tiles are within its viewport or not.

These parameters are used by the edge server to learn a proba-

bilistic model of the tile and quality requests. Such a model is

used to make caching decisions, i.e., which tiles and qualities

are to be cached or replaced. Their proposed solution outper-

forms the cache hit ratio as compared to LRU and LFU by 17%

and 40% respectively. Papaioannou and Koutsopoulos [243]

consider an optimal caching scheme for tile-based 360◦ video

streaming. The authors examine both layered and non-layered

video encoding scenarios where each tile has multiple pos-

sible resolution levels and each level has different request

frequencies based on historical viewing data. The authors

propose a solution to maximize the caching of tiles at the

resolution level with the highest request frequency, while con-

sidering foveated display of the tiles. Different from the above

approaches, Perfecto et al. [244] propose a proactive schedul-

ing algorithm of 360◦ video frames to UEs based on predicted

viewports. Specifically, they consider a scenario where high-

quality (e.g., HD) frames are already cached at the base

stations, and SD frames on the UEs themselves. The UEs

report their viewports and video indices to an edge server.

This information is used in the edge-C3 to predict UEs’ future

viewports as well as to cluster UEs (based on their over-

lapping viewports and physical locations). The edge server

then proactively sends high quality frames to clustered groups

from the appropriate base station. Such an approach allows

the streaming service to maintain low latency of streaming

and prevent VR sickness, while maximizing the quality of

streaming. Lungaro et al. [245] propose a gaze-aware video

streaming solution for 360◦ videos using a head-mounted dis-

play with an eye tracker. The proposed solution utilizes a

server for video tile provisioning and streaming that can be

deployed in the edge-C3. The authors propose modifications

to the HEVC encoding standard to support foveated streaming

of 360◦ videos. They determine through user studies that the

downlink bandwidth is reduced by 60% to 80%.

E. Joint Optimization of Video Edge-C3 Resource Allocation

Complex resource allocation problems arise in video

streaming systems, due to trade-offs between the utilization

of different resources (e.g., network bandwidth, caching, and

compute) and the QoE of UEs. For instance, videos may be

streamed with a higher quality at the expense of increased

network bandwidth. On the other hand, the choice of video

quality levels depend on both the storage capacity and com-

pute capacity (for transcoding in case the requested quality is

not cached) at the edge server. Finally, an increasing empha-

sis is placed on lowering the energy consumption of UEs in

emerging VR applications based on 360◦ videos. On the other

hand, allocation of edge-C3 resources can also be driven by

the goal to maximize the revenue of MNOs and video SPs. For
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instance, caching and compute resources in the edge-C3 result

in increased operating costs for the MNOs. Furthermore, when

many MNOs and video SPs are part of the system, competi-

tive market-based allocation problems emerge wherein MNOs

sell caching resources to SPs. The objective is to maximize

the revenue while meeting a target quality.

In the following, we classify recent solutions for the joint

optimization of edge-C3 resource allocation for video stream-

ing according to the criteria above. Specifically, we distinguish

solutions wherein the optimization is driven by the QoE of

UEs from those primarily addressing the revenue of different

actors in a market-based (or economic) setting.

1) QoE-Driven: The following articles propose

optimization problems to maximize the QoE of UEs

while minimizing the utilization of edge-C3 resources.

Different combinations of edge-C3 resources are considered

in the surveyed articles, which we describe next.

Jin et al. [246] study the joint optimization of edge caching,

computing (i.e., transcoding), and bandwidth resources for

on-demand video streaming. They formulate a constrained

optimization problem to minimize the total caching, comput-

ing, and bandwidth utilization for each user request. They

then derive closed-form solutions for the optimal transcod-

ing configuration and allocation of cache space. They evaluate

their solution through simulations and find significant resource

savings compared to state-of-the-art approaches. Moreover,

they investigate the trade-offs between utilizing different types

of resources and how they impact practical video streaming

solutions in edge-C3. For instance, they report that if the tran-

coding costs are high, it is better to fetch content directly from

the SP’s server rather than caching the high quality repre-

sentations. Liang et al. [94] propose an optimization problem

to assign an optimal video quality level to each UE while

determining an optimal network path. They also incorporate

the computing resources required for transcoding the video

streams in case the chosen quality level is not cached at the

edge server. A dual-decomposition method is applied to obtain

the decision variables (video data rate, computing resource,

and network path selection) independently while maximizing

the user’s QoE. In contrast, Xu et al. [247] investigate joint

cache allocation and bitrate selection in adaptive video stream-

ing and leave the computing costs as future work. The authors

use a combination of a Stackelberg game and matching algo-

rithm to identify videos to be cached in each base station.

Mehrabi et al. [248] investigate QoE-based traffic optimization

in collaborative DASH video caching and streaming. They

devise a self-tuned bitrate selection algorithm to maximize the

QoE while minimizing both the backhaul and fronthaul traffic.

The same authors in [80] jointly optimize the QoE of UEs and

the balancing of load between edge servers connected to base

stations. They aim to fairly allocate edge computing resources

for adaptive video streaming to base stations while maximiz-

ing the QoE of UEs. The problem is shown to be NP-hard,

thus an auto-tuned parameterization technique is proposed to

find a near-optimal solution.

In the context of VR, new types of content (360◦ degree

and 3D videos) have to be streamed to UEs. This results in

novel considerations of the caching and computing capabilities

of both the edge server and the UEs (head-mounted displays)

themselves. Liu et al. [249] aim to maximize the quality of the

tiles in a viewport for 360◦ video streaming while minimizing

the energy consumption of the UE. First, they provide closed

form equations for the transmission latency and energy con-

sumed in different scenarios of 360◦ streaming. Specifically,

they consider different types of network links (both mmWave

and sub-GHz bands) and whether the viewport is rendered

at the edge server or at the UE itself. Next, they propose

a multi-objective joint optimization problem to optimize the

video chunk quality, link adaptation, and adaptive viewport

rendering. As the proposed problem is NP-hard, the problem

is solved using a genetic algorithm. Next, Sun et al. [250]

study the joint allocation of resources for mobile VR that

includes both 3D and 2D content. They analyze the differ-

ent trade-offs between utilizing both computing and caching

resources for delivering VR streams that contain 3D con-

tent. Specifically, both 2D and 3D content can be cached

at the edge, and the compute resources are used to project

3D to 2D content. Caching 3D content lowers the comput-

ing requirement as no projections need to be computed before

streaming the content to the UE. However, this comes at the

expense of increased storage space; specifically, 3D content

requires twice more storage space than regular 2D content.

The authors investigate different trade-offs taking into the

account the caching/compute capabilities of the UE and devise

optimal joint caching and computing policies for streaming

such content.

Finally, different resource allocation approaches have been

proposed in live streaming scenarios, which have stricter

latency requirements. Ge et al. [251] propose a cache-based

mechanism at the edge for live streaming 4K video that

reduces the latency, buffering, and startup delays at the

viewer’s device. To this end, they propose an edge-based

transient holding of live segment scheme that holds back an

optimal number x of video segments from the receiver in order

to ensure a certain QoE. The edge server than opens up paral-

lel connections to the live source and downloads the segments

before the viewers request them. When the local content at

the edge server is at least x segments ahead of the viewer’s

request, the parallel connections are no longer maintained and

only one segment at a time is downloaded from the live source

to remain ahead of the viewer’s request. They evaluate their

solution through real-world experiments and show that such

an approach eliminates buffering and significantly reduces the

live stream latency. Zhang et al. [252] aim to maximize the

quality of the live stream (in terms of PSNR) while minimiz-

ing the latency of the video stream. Their system model takes

into account the computing resources required for trancod-

ing and allocation of wireless spectrum to the viewers. They

model the problem as a Markov Decision Process; the authors

then propose an enhanced version of reinforcement learn-

ing to solve the problem. Their solution outperforms baseline

reinforcement learning approaches. Finally, Hung et al. [253]

focus on the assignment of caching space to live streamers to

improve the QoE of UEs. They use an auction-based mech-

anism to optimally assign caching space to streamers taking

into account both storage space and backhaul capacity. They
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provide low-complexity and scalable algorithms to solve the

assignment problem in real-time at the edge server.

2) Revenue-Driven: Video caching at base stations result

in additional operational costs to MNOs, particularly in terms

of the costs of edge resources (e.g., storage and process-

ing). Thus, resource allocation problems for video stream-

ing can also be studied in terms of the costs to MNOs.

Ghoreishi et al. [254] formulate the trade-off between the stor-

age cost and bandwidth savings in hierarchical video caching

systems as a binary-integer programming model. The objec-

tive is to find the optimal cache size at different layers of a

hierarchical caching system so that the ratio between the trans-

mission costs and storage cost is minimized. The evaluations

show that benefit-cost and cost-efficiency ratios are improved

more than 43% and 38%, respectively. Poularakis et al. [37]

address the joint optimization of the storage costs and per-

ceived latency for the delivery of SVC videos in HetNets. The

proposed framework takes into account different system con-

straints, such as the backhaul link capacity, the cache size, and

wireless capacity of SBSs. Moreover, the framework includes a

penalty cost to account for future revenue losses when the UE

requests cannot be met due to limited resources. The experi-

mental results reveal that a 10% improvement in video delivery

latency may cause about 10% to 30% increase in the opera-

tional costs, depending on the network load. Zhou et al. [255]

study the joint optimization of video caching, transcoding, and

communication resources in a virtualized HetNet. In particu-

lar, the costs of computing and caching are inversely related.

Specifically, when more video versions are cached, the require-

ment for transcoding (and thus computing) is lowered. Their

proposed system uses multicast to simultaneously transmit the

same video content to multiple UEs over the same frequency

band. They then evaluate the impact of storage and computing

capacity on the MNO’s revenue. For instance, when the size

of the cached videos increase, fewer versions can be cached

resulting in lower caching revenue and higher computing cost.

Data sponsoring has been considered as a promising mech-

anism to increase the number of video streaming subscribers

of SPs (and thereby their revenue). Through this approach,

video SPs subsidize the UE’s cost for watching videos thereby

increasing the number of users (and thus, advertising revenue

by placing in-video advertisements in exchange for the reduced

data access cost). In such a context, Sun et al. [256] propose

a two-stage decision making process to maximize the revenue

of a single SP within a fixed budget that has to be spent on

both sponsoring and storage costs. Accordingly, SP determines

the edge caching policy in the first stage and the real-time

sponsoring decision in the second stage. Simulation results

demonstrate that such a joint optimization improves the rev-

enue of the SP by 124%–154%, compared to data sponsoring

without edge caching.

The articles described above have focused on single MNOs

and single video SPs. In practice, the network infrastructure

and edge resources are provided by one or multiple MNOs,

which are rented by different video SPs. Due to the limited

edge resources, sellers compete with each other over renting a

portion of them to deliver quality services to UEs. This implies

the creation of a market, where the price of edge-C3 resources

is defined based on profit analysis (i.e., based on related costs

and revenues) for both resource sellers (e.g., MNOs) and buy-

ers (e.g., video SPs). Generally, the sellers and buyers of edge

resources have incomplete information about each other and

the network status, thus they have to estimate their expected

profit (i.e., the utility and cost) from trading these resources.

Different economic models (e.g., game-theoretic

approaches) have been employed to analyze the pricing

and trading of edge-C3 resources in wireless networks. The

authors in [257], [258] apply a Stackelberg game to model

the trading of caching resources between one SP who aims

at renting and caching its popular videos in SBSs provided

by multiple MNOs. The problem is formulated in terms of

social welfare maximization (i.e., the total profit of the video

SP and MNOs). Next, the Stackelberg equilibrium is applied

to find optimal cache prices while maximizing social welfare.

Numerical results reveal that effective resource pricing can

maximize the profit of the SP and MNOs. Li et al. [259]

study a different scenario wherein an MNO leases its edge

resources at SBSs to multiple video SPs. The authors also

use a Stackelberg game to maximize the social welfare of the

system. Analytical results based on stochastic geometry show

that the proposed solution achieves efficient resource pricing

which matches the empirical data. Dai et al. [260] study

collaborative multimedia streaming in edge-enabled wireless

networks in which selfish SPs compete with each other

to maximize their individual revenue. Given limited edge

caching resources, the authors propose a Vickrey-Clarke-

Groves auction to maximize the system social welfare while

satisfying economic properties such as incentive-compatibility

and truthfulness. Jedari and Francesco [261] propose a double

auction method called DOCAT for cache trading of SVC

videos between an MNO and multiple video SPs in HetNets.

They assume that SPs have different popularity, hence, videos

of highly popular SPs are requested by their subscribed UEs

more frequently. As a consequence, the value of caches at

SBSs is higher for more popular SPs, compared to those that

are less popular. DOCAT targets efficient and fair trading

through an iterative auction; specifically, the cache of SBSs

is segmented and then traded in multiple rounds through a

many-to-one matching algorithm. Numerical results based

on a real video dataset show that DOCAT maximizes the

system welfare while guaranteeing the economic properties

of rationality, balanced budget, and truthfulness.

F. Summary and Discussion

Tables VI, VII, VIII and IX summarize the major con-

tributions and key features of the articles surveyed in this

section. The tables show that the majority of recent works

focused on caching, whereas edge computing for downlink

video scenarios is more relevant for emerging use cases such

as live streaming and 360◦ video streaming. This is because

videos are typically encoded offline in multiple resolutions

for VoD scenarios and thus, do not require further process-

ing (computations). On the other hand, edge computing is

important in the context of live streaming, wherein transcod-

ing of live streams may be required to support heterogeneous

devices and network links (e.g., transcode to lower quality
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TABLE VI
SUMMARY OF WORKS ON COLLABORATIVE VIDEO EDGE-C3

TABLE VII
SUMMARY OF POPULARITY-BASED VIDEO EDGE STREAMING AND DELIVERY APPROACHES

for UEs with low-bandwidth wireless links). In this context,

UEs may also cooperate to share their computing resources

to transcode and stream live videos with low latency to

neighboring devices. Moreover, edge computing is required

for streaming VR content (e.g., to compute projections from

spherical to equirectangular coordinates). For instance, edge
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TABLE VIII
SUMMARY OF CONTEXT-AWARE VIDEO STREAMING AND DELIVERY APPROACHES AT THE WIRELESS EDGE

computing resources can be used to pre-render complex 3D

content and stream such content to resource-constrained VR

devices.

Next, popularity-based and context-based video caching has

received significant attention from the research community

(see Tables VII, VIII). However, none have considered the use

of edge computing resources to learn patterns of user requests

and determine which videos are to be cached or replaced.

Finally, the joint optimization (Table IX) of edge-C3 resources

may be QoE or revenue-driven. However, most of economic

models have considered simple trading models in video edge-

C3 and did not study how the structure of videos (e.g., their

encoding models) can affect the cost and utility of SPs and

MNOs in video service delivery.

VI. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS

This section introduces several important open questions

and future research directions for video edge-C3 in next-

generation wireless networks.

Learning-based video edge-C3: Artificial intelligence (AI),

specifically (deep) learning techniques, is expected to play a

vital role in delivering low-latency and ultra-reliable video

services in wireless cellular networks [262]. For instance, deep

learning models can be used to predict the popularity of videos

at the edge by utilizing the context and request patterns of

UEs connected to the local SBS. Such predictions enable

intelligent video placement decisions based on the context of

users, which can improve the cache hit ratio and video deliv-

ery latency. This is especially beneficial in scenarios where

local popularity trends do not reflect the global trends. Thus,

predicting content popularity trends at the network edge allows

SPs to proactively react to local changes (e.g., to allocate more

resources to hotspots). Moreover, training prediction models at

the edge removes the need to send private information about

UEs to the cloud. In this context, federated learning [263]

has emerged as a promising solution to enable collabora-

tive model training at the edge servers. Federated learning

is a distributed learning approach wherein a global model is

learned with updates from multiple distributed devices. Each

device (edge server, in this case) updates a model (that can

be shared with other edge servers in the region) with train-

ing data observed locally. Thus, a popularity prediction model

can be created based on contextual information gathered at

the edge servers. However, there are several practical open
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TABLE IX
SUMMARY OF THE WORKS ON JOINT OPTIMIZATION OF VIDEO EDGE-C3 RESOURCE ALLOCATION

issues for training models at the edge. First, the impact of

limited edge computing resources for training models must

be analyzed. Second, the communication overhead with fed-

erated learning may be quite large as the model parameters

need to be shared and aggregated at regular intervals in the

edge servers. Recent studies show that the convergence of

the trained model depends on the choice of system param-

eters such as the frequency of updates and aggregation [264].

Thus, a careful study of such parameters is required for edge-

based solutions. Third, the design of prediction models must

take into account the trade-off between prediction accuracy

and algorithm complexity. Applying highly-accurate popular-

ity prediction algorithms improve the caching performance, but

it entails higher computational complexity and thus, increased

utilization of computing resources in the edge-C3. Finally, it

is important to quantify the benefits of using a localized popu-

larity model at the edge (in terms of cache hit ratio or latency)

as a trade-off against the increased computation and latency

incurred in the training itself. Based on such a trade-off, MNOs

can decide whether to use a localized popularity model or a

global one to make caching decisions.

Economics of resource allocation in video edge-C3: From

an economic perspective, cost-efficient allocation of edge-C3

resources provided by MNOs to multiple video SPs is non-

trivial due to several reasons. First, the revenue and cost of

different types of edge-C3 resources for MNOs and SPs are

different. For instance, the cost of storage resources at the

edge (e.g., SBSs) might be lower than processing resources

for MNOs, but it can bring higher revenue to SPs. Thus, it

is challenging to allocate both dynamically and economically

edge-C3 resources to SPs (i.e., their subscribed UEs) such

that the social welfare of the system is maximized. Second,

since SPs generally have different popularity (e.g., they have a

different number of subscribers), the revenue and cost of edge-

C3 resources for different SPs might vary. For instance, the

revenue of high data-rate bandwidth can be more significant

for popular SPs. Therefore, how to allocate edge-C3 resources

to SPs with different popularity is a critical and vital decision
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Fig. 23. Main directions for future work by theme.

for MNOs. The problem becomes even more challenging when

MNOs and SPs do not have complete information about the

profit of each other. Few recent studies have addressed the

economics of video edge-C3 resource trading in terms of either

caching (e.g., [261]) or computing (e.g., [265]). Nevertheless,

how to maximize social welfare in a system with multiple

video SPs when they price edge-C3 differently remains an

open research problem.

Sustainable video in edge-C3: Infrastructure in edge-C3

systems consume a large amount of energy, which is expected

to only increase with the roll-out of dense deployments of

edge servers and base stations in future 5G networks. MNOs

aim to reduce the energy consumed, both from the perspec-

tive of lower operating costs as well as meeting sustainability

goals. Thus, new solutions are required to reduce energy con-

sumption as an increasing amount of video content is being

consumed and generated by UEs. First, renewable energy

sources can be integrated into the edge-C3. Currently, edge

servers are mainly powered by energy from brown power

grid sources which in turn causes unavoidable environmental

concerns in long-term system operation. Renewable sources

such as solar or wind help to move towards environmentally-

friendly video processing and streaming. In this context,

interesting resource allocation problems emerge that require to

balance the trade-off between the QoE of streaming, backhaul

traffic, and energy consumed [266]. Second, energy consump-

tion can be reduced by switching off under-utilized edge

servers. In the context of video edge-C3, switching off servers

requires re-directing processing tasks (e.g., transcoding or ana-

lytics tasks) from multiple servers to a few edge servers. The

design of such a solution requires careful consideration of

balancing the trade-off between lowered QoE and reduced

energy consumption. Furthermore, determining a switch-off

schedule remains an open challenge. For instance, the time

intervals can be determined either in an online (e.g., whenever

observed traffic is low) or offline manner (based on predicted

request patterns). Future research directions include determin-

ing the impact of different switching-off schedules on the

QoE of video applications and energy consumption. In addi-

tion to designing intelligent algorithms, system measurements

are required to quantify the trade-off between reducing energy

consumption and lowered QoE (e.g., due to processing on edge

servers that are further away) for the end users.

Video streaming for emerging applications: AR and VR

place new demands on wireless networks in terms of real-

time processing of uplink streams with low-latency. We have

surveyed state-of-the-art solutions that reduce latency through

intelligent application design and caching of data. However,

several open research directions still remain. For instance,

emerging wireless technologies (such as mmWave in 5G

networks) demand new scheduling algorithms to transmit 360◦

videos to UEs with low latency [267]. Moreover, none of the

surveyed articles have considered the end-to-end design of live

streaming, wherein the edge server adapts the video streams

based on both uplink and downlink bandwidth capacities.

Additionally, new forms of video content are being gener-

ated today. For instance, volumetric videos [268], comprising

three-dimensional content in the form of volume pixels or

3D meshes, are increasing in popularity. Such content can be

viewed on both smartphones and head-mounted displays, and

provide a wider range of interactions compared to traditional

or even 360◦ videos. Specifically, volumetric videos provide

users with 6 degrees of freedom, allowing them to change even

the orientation (yaw, pitch and roll) of their viewport. The

enhanced capabilities of 5G networks are expected to support

the streaming of such content over the Internet. This gives way

to several new applications, such as immersive telepresence

and live streaming of concerts. However, streaming volumet-

ric content is challenging as it is not possible to simply buffer

frames at the client device as users may zoom-in or rotate the

3D content when desired. Thus, traditional video streaming

solutions (e.g., DASH, WebRTC, HAS) require modifications

to support such interactions with a small latency and adequate

QoE for end users. To this end, new QoE metrics are also

required to evaluate the performance of streaming solutions.

Finally, the heterogeneity of viewer devices (smartphones and

head-mounted displays) mean that all devices may not be able

to decode and render 3D content. Edge-based solutions are

ideally suited to provide the computational resources for such

applications with very low latency [268]. To this end, new

algorithms are required to determine when to render content

at the edge server or at the UE based on the available network

bandwidth, computational resources and energy available at

the UE.

Offloading video analytics tasks: The surveyed articles

demonstrate the importance of edge computing to enable real-

time analytics on live video streams. There are still several

open research challenges in designing efficient edge-assisted

systems for analytics. For instance, running analytics tasks

such as object recognition at high frame rates is still an open

problem. As reviewed in this article, several works propose the

use of specialized CNN models at the edge to speed-up the

inference. Such specialized models are trained offline based

on known application characteristics (e.g., detect object of a
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certain color) or user request patterns. However, contextual

information and the spatio-temporal locality of requests could

be used to automatically specialize CNN models deployed at

the edge. For instance, the CNN models can be re-trained

at the edge based on recently observed input video streams

and user requests. This would increase the efficiency of ana-

lytics by reducing the latency of inference for similar future

requests at the edge-C3. Second, real-time analytics in the

presence of high mobility of users – for instance, in vehicles

– is an important open issue. Specifically, offloading decisions

require careful consideration of where tasks are offloaded,

where the UEs will receive the computational results, and

whether applications (or tasks) need to be migrated between

edge servers. Designing task offloading frameworks for mobile

users and with strict latency constraints required by video

analytics has yet to be fully addressed. Specifically, system

measurements and experimental benchmarks are required to

understand the trade-off between migrating application tasks

(or state) between edge servers and reducing latency towards

the end users.

Security and Privacy: Security and privacy in video edge-

C3 remains an open problem. In this context, securing both the

processing and streaming of uplink and downlink video data is

required. Securely caching and streaming downlink videos to

end users has been well-studied, even in the context of edge-

C3 (see [269] for a review of threat models and solutions).

However, ensuring the security and privacy of uplink video

streams raises several new challenges. First, secure processing

of video frames (e.g., to detect objects) can be achieved using

either homomorphic encryption and secure multiparty com-

putation [129]. In homomorphic encryption, the input data

is encrypted and analytics tasks are carried out directly on

such encrypted data. However, this requires a large amount

of computing resources. On the other hand, secure multiparty

computation allows multiple servers to compute a function

over the input data that is kept private. In the edge-C3, such

an approach places stress on the communication resources as

intermediate results need to be exchanged between the coop-

erating servers. An evaluation of such different approaches

in the edge-C3 remains an open direction for future work.

Specifically, it is important to quantify the impact of the above

methods taking into account the limited computing resources

of both UEs and edge servers, as well as the overhead in

communication. Second, in the uplink, video streams may

be manipulated to negatively impact video analytics tasks.

This aspect is crucial for analytics based on crowdsourced

video streams, but has not been well-studied in the literature.

One approach to verify the integrity of the source is through

watermarking the video frames, which can then be verified at

the destination [270]. However, watermarking all frames is a

compute-intensive process, whereas watermarking only certain

key frames requires careful consideration (e.g., certain frames

are more important from an analytics perspective). The design

of an analytics pipeline that takes into account the integrity

and security of processing while still maintaining a low latency

(e.g., in the range of 100 ms for AR applications) is an open

challenge. Finally, the privacy of end users in analytics systems

is discussed only in a few articles [187], [188] that address

such concerns in detecting faces (discussed in Section IV-G).

However, several open challenges remain for general analyt-

ics tasks, where even input frames from a general environment

may reveal private information of the end user. To this end,

obfuscating the input data has been proposed to alleviate such

concerns. Unfortunately, the amount of noise to be added may

be large [129], as there may be only few users (and conse-

quently less input data compared to a cloud-based solution)

as well as specialized CNN models in the edge-C3. Thus, a

rigorous analysis of the amount of noise for different analyt-

ics tasks and in the presence of different specialized models

is required.

VII. CONCLUSION

This article presented a comprehensive review of video

edge caching, computing, and communication (edge-C3) in

next-generation wireless networks. In particular, it has first

overviewed the core components of video streaming and how

they can be extended to support emerging applications. Next, it

has discussed the networking technologies for edge-C3 and the

challenges associated with processing and delivering videos

both in the uplink and the downlink. The latter part of the sur-

vey provided a thorough and up-to-date review of the state of

the art in video edge-C3 according to different classes, based

on the primary target of the considered solutions: the uplink

(for video analytics at the edge) and the downlink (for edge-

assisted video delivery). The works presented in each class

have been crisply summarized, classified according to a novel

taxonomy, and compared with each other. Several illustrations

and summary tables therein further assist the reader in under-

standing the broad landscape of video edge-C3. Finally, the

article provided insights on open issues and future research

challenges in the considered context. We hope that this sur-

vey will help networking protocol designers and multimedia

application developers to design efficient solutions for video

streaming and delivery in future wireless networks.
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