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Heng Tao Shen, Senior Member, IEEE, and Yanli Ji

Abstract— In this paper, we propose a novel approach to
video captioning based on adversarial learning and long short-
term memory (LSTM). With this solution concept, we aim at
compensating for the deficiencies of LSTM-based video caption-
ing methods that generally show potential to effectively handle
temporal nature of video data when generating captions but also
typically suffer from exponential error accumulation. Specifically,
we adopt a standard generative adversarial network (GAN)
architecture, characterized by an interplay of two competing
processes: a "generator" that generates textual sentences given
the visual content of a video and a "discriminator" that controls
the accuracy of the generated sentences. The discriminator
acts as an "adversary" toward the generator, and with its
controlling mechanism, it helps the generator to become more
accurate. For the generator module, we take an existing video
captioning concept using LSTM network. For the discriminator,
we propose a novel realization specifically tuned for the video
captioning problem and taking both the sentences and video
features as input. This leads to our proposed LSTM–GAN system
architecture, for which we show experimentally to significantly
outperform the existing methods on standard public datasets.

Index Terms— Video captioning, adversarial training, LSTM.

I. INTRODUCTION

V
IDEO captioning is referred to as the problem of gen-

erating a textual description for a given video content.

The interdisciplinary nature of this problem opens vast new

possibilities for interacting with video collections and there

has been increased research effort on this topic observable over

the past years [1]–[5]. This interdisciplinary nature, however,

also poses significant research challenges at the intersection

between the fields of natural language processing and com-

puter vision. Typically, these challenges have been pursued as

extrapolations of the solutions proposed earlier for image cap-

tioning [6]–[8]. These solutions perform classification in the

visual domain with the goal to generate salient regions, linking
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these regions with some predefined textual attributes and then

synthesize a sentence by completing a predefined generative

model using the recognized attribute [1], [3], [9]–[12].

Different from static pictures [13], [14], the content of

a video is significantly more rich and unlikely to be cap-

tured well by simply extrapolating the methods developed

for images. This richness comes mainly through the temporal

aspect of video content. And comparing to the retrieval and

annotation technology [15]–[18], the captioning task relies

more on narrowing the semantic gap between the visual and

textual information. In order to take this aspect into account,

Yao et al. [1] proposed a 3D Convolutional Neural Network

(3D-CNN) structure, applying convolution not only spatially,

but also temporally. However, 3D-CNN can only capture the

information over a short period of time due to the limit of the

convolution kernel size. Venugopalan et al. [3] implemented

a Long-Short Term Memory (LSTM) network, a variant of

a Recurrent Neural Network (RNNs), to model the global

temporal structure in an entire video snippet. However, this

method was shown to accumulate the grammatical errors

exponentially and to result in decreasing association among

the generated words with the increasing video length. Further-

more, the traditional caption generative models usually select

words with maximum probability, which typically results in a

rather monotonous set of generated sentences, like for instance

around the words “playing” and “doing”, both appearing rather

often in the common training data sets.

In order to eliminate this deficiency of LSTM, in this paper,

we propose a novel approach that expands the LSTM con-

cept towards an adversarial learning concept. As illustrated

in Fig. 1, this expansion involves adding a “discriminator”

module to the system architecture, which acts as an adversary

with respect to the sentence generator. While the generator

has the objective to make the generated sentences as close

to its existing generative model as possible, the discrimina-

tor has the objective to ensure that generated sentences are

reasonable and natural for people better understanding. This

interplay of two concurring processes has recently been intro-

duced as adversarial learning, with a Generative Adversarial

Network (GAN) [19]–[21] as a basic realization. Conse-

quently, we refer to our proposed approach as LSTM-GAN.

We will demonstrate that this expansion of the LSTM concept

will enable the video captioning process to improve the accu-

racy and diversity of generated captions and their robustness

to increasing video length.

Applying a GAN to the context of video caption-

ing is, however, not straightforward. A GAN is designed

for real-valued, but continuous data and may have difficulty

handling sequences of discrete words or tokens as mentioned
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Fig. 1. An illustration of the modular structure of the proposed video
captioning model characterizerd by an interplay of the generator G that
generates text sentences and the discriminator D (adversary) that verifies the
sentences. The optimization goal is that G deceives D, by generating sentences
that are not distinguishable from reference sentences.

in [22]. The reason lies in that the gradient of the loss from

the discriminator based on the output of the generator is used

to move the generator to slightly change the way the sentences

are generated. However, if the output of the generator consists

of discrete tokens, the slight change guidance by the discrim-

inator may not work because there may be no token in the

used dictionary to signal the desired level of change towards

the generator [20].

In order to overcome this problem, we propose a embedding

layer which can transform the discrete outputs into a consec-

utive representation [23]. Besides that, since the outputs of

our generative model are a sequence, ordinary discriminative

model, consisted of several fully connected layers, has a poor

ability for classifying the sequence-sentence. For solving this

problem, we propose a new realization of the discriminative

model. Specifically, we replace the fully connected layer,

as originally proposed in [19], with a novel convolutional

structure, previously proposed by Zhang et al. [25], Kim [26],

and Collobert et al. [27]. Our discriminative model consists

of convolutional layer, max-pooling layer and fully connected

layer. The convolutional layer will produce local features

and retain the local coherence around each word of the

sequence-sentence. After max-pooling layer, the most impor-

tant information of the sentence will be effectively extracted.

Those informations are denoted by a fixed length of vector.

Additionally, we also introduce a multimodal input for the

discriminative model. We sent not only the sentence to the

discriminative module but also the video feature generated

from our first LSTM layer (Encoder) of generative module.

The novel methods for incorporating the original inputs with

the video feature will help to generate more relevant discrip-

tions about the input video. This method has been confirmed

to be effective by our experiment.

To our knowledge, we are the first to propose the method

for generating video description via advesarial learning. The

remainder of this paper is organized as follows. In Section II,

we review the existing work related to the problem of video

captioning and position our proposed solution with respect

to it. Section III presents our proposed LSTM-GAN video

captioning model. The model is evaluated experimentally

in Section IV where we compare our approach with the

relevant existing methods on four public datasets: MSVD,

MSR-VTT, M-VAD and MSR-VTT. This comparison revealed

that our approach significantly outperforms the existing

methods on these datasets, which justifies our methodological

and algorithmic design choices. Section V concludes the paper

by a discussion of the obtained video captioning performance

and pointers to future work on this topic.

II. RELATED WORK

A. Video Captioning

Generating a textual description for a given video con-

tent, also called video captioning, has been showing increas-

ingly strong potential in computer vision. The primary

challenges of this research lie in two aspects: adequately

extracting the information from the video sequences and

generating grammar-correct sentences easy for the human

to understand. The early research for generating video

descriptions mainly focused on extracting useful information

e.g., object, attribute, and preposition, from given video con-

tent. Krishnamoorthy et al. [27] aim at generating more precise

words to describe the objects in the video. Their method

includes a content planning stage and a surface realization

stage. In their work, object detection and activity recognition

modular are used to extract the related words about the video

and then it applies a template-based approach to generate sen-

tences. Reference [28] is another work about using template-

based approach. Different from [27], the biggest contribution

of this paper is building a hierarchical semantic model to

classify different words. Besides, this model can even detect

unseen verbs with the help of knowledge mining from web-

scale textual corpora. No doubt that the performances of those

methods are limited by the accuracy of the detection of the

word and the robustness of the template. In order to overcome

the problem abovementioned, some novel approaches based on

RNNs [28]–[35] are proposed with the development of deep

learning. Different from the template-based approach in [27],

Pan et al. [10] take advantage of the CNN architecture to get

the representation of every frame and then applies an average

pooling operation to those frame presentations. For generating

video description of the inputted video, they take advantage

of the RNNs architecture to produce sequence output with an

end-to-end training pattern. What’s more, it is noteworthy that

they innovatively embed the sentence and the video content

into a feature with a uniform dimension. And by measuring

the feature diversity of the embedded sentences and input

videos, they get the value of relevance loss between these

two features. By minimizing this loss, the semantic gap will

become narrowed. With the popularization of Convolutional

Neural Network for an impressive performance in feature

extraction, generating the description for a video has made

great breakthroughs. Pan et al. [10] used both 2D CNN and

3D CNN to process video clips and average pooling operation

to process over all the clips to generate a single Dv -dimension

vector which will be used to generate descriptions for video.

But all the abovementioned methods could not work well for a

short video clip containing multi-event. Yu et al. [36] proposed

an attention model which use an attention mechanism to select

the most important video features and has yielded impressive

performance in multi-event videos.

The combination of CNN and LSTM architecture has

become the mainstream form for video captioning research
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Fig. 2. We propose LSTM-GAN incorporating a joint LSTMs with adversarial learning. Our model consists of generative model and discriminative model.
The generative model tries to generate a sentence for the video as accurately as possible, but the discriminative model tries to distinguish whether the input
sentences is from reference sentence or generated sentences. The orange input sentences for discriminative model represent the reference sentences, otherwise
badly constructed sentences or uncorrelated sentences generated by generative model. MP in the figure denotes the max-pooling.

which also demonstrated a excellent performance. Both fea-

ture extraction and words generation methods are important

for the quality of description for the input video. Although

the LSTM scheme has proved promising performance for

handling the temporal nature of video data in the temporal

process, the LSTM scheme critical deficiency is shown to

accumulate the grammatical errors exponentially and may

result in decreasing association among the generated words

with the increasing video length. Based on the problem,

we consider if there is a structure that can discriminate whether

the generated descriptions are reasonable and relevant to the

video. Inspired by the generative adversarial network firstly

for generating an image, we proposed our model LSTM-GAN

incorporating a joint LSTMs with adversarial learning. This

model consists of a generative model and discriminative

model. The generative model is used for encoding the video

clips and generates sentences, while the discriminative model

is trying to distinguish whether the input sentences are from

reference sentence or generated sentences (as in Fig. 2).

B. GAN in Natural Language Processing

Generative Adversarial Networks (GAN), introduced by

Goodfellow et al. [19], has achieved promising success in

generating realistic synthetic real-valued data. On account of

impressive performance, GAN has been widely applicated in

computer vision (CV) and natural language processing (NLP).

Original Generative Adversarial Networks consist of genera-

tive model and discriminative model. The generative model

tries to produce data, which is to mix the spurious with

the genuine. While the discriminative model learns to deter-

mine whether the data is from genuine distribution or not.

Typical applications can be found in, for instance, image

synthesis [22] where discrete data with normal distribution

are used to generate realistic images. Besides showing the

excellent performances in the image processing, GAN struc-

tures also work well in natural language processing recently.

Li et al. [37] proposed a dialog generation method using

Adversarial reinforce model. They adopted policy gradient

training method to encourage the generator to generate utter-

ances that are indistinguishable from human-generated dialogs.

Later, Press et al. [38] presented a text generating model with

RNNs for both generator and discriminator. Different from

policy gradient training in [37], this work applied curriculum

learning, as a result, it vastly improves the quality of generated

sequences. For captioning research, Dai et al. [39] firstly

presented an image captioning method, which can generate

sentences much more closely to what human saying than

original caption models.

In summary, our work presents the first effort to incorporate

the GAN with the video caption model. Our model can



YANG et al.: VIDEO CAPTIONING BY ADVERSARIAL LSTM 4

overcome the aforementioned problem and the performance of

our model is also excellent through our experimental results.

III. LSTM-GAN FOR VIDEO CAPTIONING

Fig. 2 depicts our LSTM-GAN architecture which consists

of a generator G, and a discriminator D. The generator G uses

an encoder-decoder architecture to generate descriptions for

relevant videos under the umbrella of incorporating a CNN

architecture as the discriminator D which is for evaluating

whether the generated sentences reasonable or not. Specifi-

cally, we begin this section by introducing the fundamental

Long Short-Term Memory Networks (LSTM) and Generative

Adversarial Network (GAN) model briefly. In the remainder of

the module, we elaborate on the algorithm’s theory and design

choices underlying the proposed framework in more detail.

A. Long Short-Term Memory Networks

Traditional RNNs [40], [41] is designed to learn complex

temporal dynamics by mapping the input sequences to a

sequence of hidden states and then generating outputs via the

following recurrence equations as Eq. 1:

ht = ψ(Wh xt + Uhht−1 + bh),

ot = ψ(Uhht + bo), (1)

where the Wh , Uh denote the weight matrices and b denotes

the bias, ψ is an element-wise non-linear function, such as

RELU or hyperbolic tangent. xt is the input, ht ∈ RM is

the hidden state with M hidden units, ot is the output at

time t. The traditional RNNs have proven successful in text

generation and speech recognition. But it is difficult to handle

well about long-range temporal dependencies videos because

of the exploding and vanishing gradient problem. The LSTM

network proposed by Hochreiter and Schmidhuber [41] has

demonstrated to be able to effectively prevent the gradient van-

ishing and explosion problems [41] during back-propagation

through time (BPTT) [42]. This is because it incorporates

memory units, which facilitate the network to learn long-range

temporal dependencies, to forget previously hidden states and

to update them given new information. More specifically,

as illustrated in Fig. 3 and implemented in our framework,

LSTM incorporates several control gates and a memory cell.

Let xt , ct and ht represent the input, cell memory and hidden

control states at each time t respectively. Given a sequence

of inputs (x1, . . . , xT ), the LSTM will compute the hidden

control sequence (h1, . . . , hT ) and the cell memory sequence

(c1, . . . , cT ). Formally, this process can be described by the

following set of equations:

it = σ(Wi [ht−1, xt ] + bi ),

ft = σ(W f [ht−1, xt ] + b f ),

ot = σ(Wo[ht−1, xt ] + bo),

gt = ϕ(Wg[ht−1, xt ] + bg),

ct = ft � ct−1 + it � gt ,

ht = ot � tanh(ct ). (2)

Fig. 3. A diagram of a basic LSTM memory cell used in our paper, where
the input gate, forget gate and output gate represents by it , gt , ot respectively.

Here, � stands for element-wise product and W j -like matrices

are the LSTM weight parameters. Additionally, σ and ϕ denote

the sigmoid and hyperbolic non-linear functions respectively.

B. Generative Adversarial Networks

In a nutshell, a GAN-based learning approach [19] involves

simultaneous training of two network models, generator G and

discriminator D. In the field of image super-resolution, image

generation, image to image translation, Neuro-Linguistic Pro-

gramming, GAN has made great contributions [43]–[46].

Through the interplay of the two learning processes, the G

and D models facilitate each other interactively to individually

reach their goals. The generator G tries to generate real data

given a noize z∼Pnoise(z), while the discriminator D ∈ [0, 1]

aims at classifing the real data x∼pdata(x) and the fake data

G(z)∼PG (z) generated from G. More specifically, the gen-

erator G also learns to generate samples from the generator

distribution PG by transforming a noise data z∼Pnoise(z) into

a sample Gz (z will be replaced with input video to generate

corresponding descriptions in our later experiments). Similarly,

the goal of D is to distinguish between samples from the true

data distribution Pdata and the generator’s distribution PG as

accurate as possible. After a period of competition between

the two processes, the two network models will achieve some

degree of balance with the optimal discriminator being D(x) =

Pdata(x)/(Pdata(x)+PG(z)) and with the generator being able

to generate data which are difficult for the discriminator D to

distinguish whether from training data or synthetic data. This

“game” is steered towards convergence by the optimization

criteria expressed through loss functions, designed for both

G and D. We define the following loss functions LG and L D :

LG = −
1

m

m∑

i=1

log(1 − D(G(z(i)))),

LD = −
1

m

m∑

i=1

[log(D(x i )) + (log(1 − D(G(z(i)))))], (3)
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where {z(1), . . . , z(m)} are a mini-batch of m noise samples by

random initialization and {x (1), . . . , x (m)} are a mini-batch of

m samples from true data distribution pdata(x).

C. Problem Definition

Consider a video V including a sequence of n sample frames

where V = {v1, v2, . . . , vn}, with associated caption S where

S = {w1, w2, . . . , wm} consisting of m words. Let vi ∈ RDv

and w j ∈ RDw denote the Dv -dimensional visual presentations

of the i-th frame in video V and the Dw-dimensional textual

features of the j-th word in sentence S, respectively. In our

work, our goal is to maximize the conditional probability of

an output sequence (w1, . . . , wm) given an input sequence

(v1, . . . , vn). The conditional probabilities over the sentences

can be defined as follows:

p(s|v) = p(w1, . . . , wm |v1, . . . , vn). (4)

This problem is similar to the problem of machine transla-

tion in natural language processing, where a sequence of words

serves as input into a generative model that outputs a sequence

of words as the translation result. What is different from

aforementioned is that, in our work, we replace the textual

input by our video frames and look forward to a sequence of

caption as output. What is more, we not only expect to get the

relevant description of the input videos but also to make the

sentences natural and reasonable for people to understand.

D. Proposed Solution

For the sake of overcoming the above-mentioned problem,

in this section, we devise our model to generate video descrip-

tion under the umbrella of an adversarial system. Specifically,

our overall framework consists of a generative model G and

discriminative model D. The generative model G, similar

to sequence-to-sequence models [47], defines the policy that

generates a sequence of the relevant description given a short

video. The discriminative model D is a binary classifier that

takes a sequence of sentences {s, y} as input and outputs

a label D(S) ∈ [0, 1] indicating whether the sentence is

natural, reasonable and grammatical correct. In particular,

several variants of our designed model are utilized to compare

with other methods. We now elaborate on the implementation

of our designed architecture.

1) Objective Function: In order to achieve faster conver-

gence of the objective, we firstly pre-training the genera-

tive model G and the discriminative model D, respectively.

For G, similar to sequence-to-sequence models [47], our

goal is to estimate the conditional probability p(S|V ) where

V = (v1, v2, . . . , vt ) is an input sequence consisting of a sam-

ple of frames and S = (w1, w2, . . . , wt1) is the corresponding

output sequence as a descriptive texture for the input video.

t and t1 represents the length of the video and the input

sentence respectively. As sequence-to-sequence models [3],

we conclude the follow objective function:

p(S|V ) = p(w1, w2, . . . , wt1 |v1, v2, . . . , vt )

=

t1∏

i=1

p(wi |V , w1, . . . , wi−1). (5)

From Equation (5) for our model with θ and output

sequence S = (w1, w2, . . . , wt1), we could get the optimal

θ with the follow formula:

θ∗ = arg max
θ

t∑

i=1

log p(wt |hn+t−1, w1, . . . , wt−1; θ). (6)

where hn+t−1 denotes the hidden state at time step n + t − 1

which will be introduced detaily in the next section. For D, our

primary purpose is to train a classifier which can be used for

sentence encoding and mapping the input sentence to an output

D(S) ∈ [0, 1] representing the probability of S is from the

ground-truth captions, rather than from adversarial generator.

The objective function of D for pre-training can be formalized

into a cross-entropy loss as follow:

LD(Y , D(S)) = −
1

m

m∑

i=1

[(Yi ) log(D(Si ))

+ (1 − (Yi )(log(1 − D(Si )))]. (7)

where m denote the number of examples in a batch,

Yi and D(Si )) represent the real label and predicted value

of discriminator respectively.

Hence, when we train our overall framework called

LSTM-GAN, the whole training procedure for the

LSTM-GAN is same as in Fig. 2. We aim at minimizing the

log likelihood formulated as follows:

minimizing : L(S|V ) = Es∼P(s),v∼P(v)[log P(S|V )]

+ Es∼P(s)[log(1 − D(G(S)))]. (8)

2) Generative Model: As mentioned before, We use a joint

recurrent neural networks, also called encoder-decoder LSTM

similar to sequence-to-sequence models [47], as the generative

model. The encoder architecture is used to encode the video

features into a fixed dimension vector. While the decoder

architecture decodes the vector into natural sentences. To begin

with, we adopt VGG16 [48] as the CNN architecture to map

the sequence frames V = (v1, v2, . . . , vt ) into a feature matrix

Wv ∈ RDd×Dt = (wD1, . . . , wDt ). Dd and Dt denote the

dimensions of a feature vector and the number of frames,

respectively. Particularly, the encoder LSTM net, referred

to as “encoder”, maps the input embedding presentations

wD1, . . . , wDt , namely features matrix, into a sequence of

hidden states h1, h2, . . . , ht mentioned in previous section by

using the update function as eq. (2) recursively.

According to the above description, we make it clear that the

last status ht as the presentations of the whole video, generated

from “encoder”, will be sent to the decoder LSTM which is

referred to as “decoder”. Specifically, given the ht (in our

Fig. (2) marked as ht−1 for straightforward) and a correspond-

ing sentence S also referred to textual description in Fig. 1,

encoded with one-hot vectors (1-of-N encoding, where N is the

size of the vocabulary), our decoder LSTM is conditioned step

by step on the t th word and on the previous ht−1, and is trained

to produce the next word of the description for input video.

We commit ourselves to minimize objective function as eq. (5)

to generate an excellent performance generative model. The

probability of those words is modeled via a softmax function

applied on the output of the decoder. As we know, those
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words should be in an one-hot format which not only are high

dimensionality but also are discrete and discontinuous. Passing

those words with a one-hot format to the D (Discriminator)

will make it difficult to pass the gradient update. Although

score function based algorithms, such as REINFORCE [49]

obtains unbiased gradient estimation for discrete variables by

using Monte Carlo estimation. However, the variance of the

gradient estimation could be large [50]. In order to cope with

this problem, we adopt a soft-argmax function similar to the

one proposed in [24]:

wt−1 = εwe (softmax hV ht−1 � Li , We). (9)

Here, We ∈ RZ×C is a word embedding matrix (to be learned)

which is similar to the GloVe [51] and transforms the one-hot

encoding of words to a dense lower dimensional embedding,

C is the dimension of the embedded word (1024 in our

experiments) and Z is the size of vocabulary in our training

data. V is the set of parameters and encodes the ht−1 to a

vector. wt−1 represents the generated word of LSTM at t th

step. L is a big enough integer which would make the vector

of softmax hV ht−1 � Li closes to a one-hot form. Each value

of it is constrained to be either approximately 0 or 1 which

can help the wt−1 more close to We[t − 1] (suppose the value

at the t − 1 position is the largest of V ht−1) and also help

the word embedding to be more smooth and speed up the loss

function to convergence. ε denotes a function that maps the

decoder output space to a word space.

3) Discriminative Model: In the discriminator D, our pri-

mary purpose is to maximize the probability of assigning

the correct label to both training sentences and generated

sentences from G. As well konwn, deep discriminative models

such as deep neural network (DNN) [52], convolutional neural

network (CNN) [25] and recurrent convolutional neural net-

work (RCNN) [53] have shown an impressive performance

in complicated sequence classification tasks. In our paper,

referring to [54] which has recently been shown of great

performance in text classification using CNN, we choose the

CNN as our discriminator.

As illustrated in Fig. 2, our discriminator consists of a

convolution layer and a max-pooling operation, which can

capture the most useful local features produced by the con-

volutional layers [25], [26], [54], over the entire sentence for

each feature map. The input sentences to our discriminator

contain both the ground-truth sentences as the true label (also

called textual description in Fig. 1) and generated sentences

generated by our generator as the false label. For convenience,

we fix the length of input sentences by adopting the length

of longest sentence in a mini-batch (padded 0 when nec-

essary). A sentence of length T is represented as a matrix

Xd ∈ RC×T = (xd1, . . . , xdT ) by concatenating the word

embeddings as columns, where T is the length of sentence

and C is the dimension of a word. Then a kernel Wc ∈ RC×l

applies a convolution operation to a window size of T words to

produce a feature map as one of the representations of the input

sentence. The specific process like Fig. 4 could be formulated

as follow:

Out = f (X ∗ Wc + b) ∈ RT −l+1. (10)

Fig. 4. The convolution process of input sentence in discriminative model.

where f(·) is a nonlinear activation function (in our experi-

ments, we use the RELU), b ∈ RT −l+1 is the bias vector and *

represents the convolution operator. We then apply a max-over-

time pooling operation over the generated feature maps and

take its maximum value, ]Out = max{Out1, . . . , OutT −l+1}.

As proved by Collobert et al. [26], the max-pooling oper-

ation can not only help capture the most important feature

by effectively filtering out less informative compositions of

words, but also guarantees that the extracted features are

independent of the length of the input sentence. To be more

persuasive, we conduct a contrast experiment using max-

pooling and mean-pooling respectively on discriminator. The

accuracy of classification with max-pooling improves over the

mean-pooling by 1.8% which proves that max-pooling have

a better capacity to classify the sentences. The dataset for

classification consists of the ground-truth of corresponding

video and the false sentences generated from the generator.

The above process describes how the features are extracted

from CNN for the sentences. Although the present CNN

architecture process a impressive performance in complicated

sequence classification tasks. But in this paper, we devote to

generate the sentence that not only needs to be natural and

reasonable for people to understand but also can describe the

input video precisely. In order to overcome this difficulty,

we adopt a linear connection method which could integrate

the video feature and pooled feature from different kernels

into a new representation. Given a video feature F ∈ RH

extracted from the last hidden layer in encoder of generator,

where H is the dimension of hidden layer, we concatenate

it with its corresponding textual feature ]Out ∈ RH1, where

H 1 is the dimension of ]Out . We will get a synthetic feature

vector Fnew ∈ RH+H1. We then pass Fnew to a fully connected

softmax layer to get the probability D(Xd ) ∈ [0, 1], an output

close to 1 indicates a bigger probability that X is drawn from

the real data distribution or not.

Previous literature [19], [55] has discussed the difficulty in

training GAN model using the gradient-based method. In order

to reduce the instability in training process, we initialize

the LSTM parameters for generator and CNN parameters

for discriminator by pre-training a standard encoder-decoder

LSTM model and a standard CNN classification model afore-

mentioned.
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E. Attention Mechanism

Attention structure is a kind of extension of LSTM. It has

been widely used in many previous jobs [6], [56], [57]. Rather

than compress an entire image into a static representation,

attention allows for salient features to dynamically come to the

forefront as needed. For example, when a captioning model

uses “a child is running on the ground” to describe a picture,

the attention model will focus on the area where the child

located in the picture when the model generate the word

“child”, while generating the word “ground”, the model will

focus on the ground in the picture.

In our model with attention, we use attention structure in

Generative Model when generating words. At each time step

t, the attention model accept the video’s visual information,

which is a n by d matrix, where “n” is the number of the

visual vectors and “d” is the dimension of visual vector. In the

attention structure, each visual vector is multipeld by different

weight α, which reflecting the importance of the corresponding

visual vector in that time step. After that, the vectors are added

together and become the input of LSTM unit to generate a

new word. For example, when generating the word “boy”,

the weight for visual vectors with boy’s information will be

larger; While generating the word “soccer”, the weight for

visual vectors with soccer’s information will be larger. The

visual information mentioned above are the output of hidden

layers of Encoder illustrated in Fig. 2 in our paper. The weight

α at timestamp t is the result of softmax for the combination

for hidden state at timestamp t-1 and the visual information.

For a video with n visual contexts C = c1, c2, . . . , cn ,

we have:

et,i = h0
t−1Ucci

αt,i =
ex p(et,i)∑n

j=1 ex p(et, j)
(11)

where h0
t−1 is the transposed vector of hidden state at the last

time stamp, Uc is the mapping matrix and ci is i th of visual

vector.

In our model with attention, we use attention mechanism

for generating the description of the input video. At each

time step t, the attention unit accepts video visual information

vectors ct , which are the output of hidden layers of Encoder

structure illustrated in Fig. 2 in our paper. After the encoding

stage, we get the (c1, . . . , cn) where n denotes the num of

frames of input video.(problem definition use the a n, need

to check) As eq.12, the vectors are multiplied by different

weights in attention unit and these weights can determine

which frame of input video st should be concerned with

current time step. After that, the yt and the last hidden status

represent the new input for the next LSTM unit to generate

the new word. The weights mentioned above are calculated

dynamically and the sum of those weights is 1.

yt =

n∑

i=1

αt,i ci ,

n∑

i=1

αt,i = 1. (12)

And eq. 2 with attention can be written as follows:

iy, t = σ(Wi [ht−1, xt , yt ] + bi ),

fy, t = σ(W f [ht−1, xt , yt ] + b f ),

oy, t = σ(Wo[ht−1, xt , yt ] + bo),

gy, t = ϕ(Wg[ht−1, xt , yt ] + bg), (13)

IV. EXPERIMENTAL VALIDATION

In this section we describe the experimental validation of

our proposed video captioning approach in detail.

A. Datasets

To verify the impressive performance of our video cap-

tioning by abversarial training approach, we evaluate and

compare our experimental results on four large public datasets,

including MSVD [9], MSR-VTT [58], M-VAD [59] and

MPII-MD [60].

1) MSVD: MSVD dataset consists of 1970 short video

snippets downloaded from YouTube. Each video snippet is

annotated with around 40 textual descriptions collected via

crowdsourcing. This results in 80839 sentences. In our exper-

iments, we split the data into train, validation and test sets,

containing 1200, 100 and 670 videos snippets, respectively.

2) MSR-VTT: MSR-VTT is a new large-scale benchmark

video captioning dataset specially suitable for the video-to-text

translation task. This dataset was created by using 257 popular

queries from a commercial video search engine and by collect-

ing 118 videos for each query. Each video is annotated with

about 20 natural sentences provided by 1,327 crowdsourcing

workers. In total, MSR-VTT provides 10K web video clips

(41.2 hours) and 200K clip-sentence pairs, covering various

semantic categories and diverse visual content.

3) M-VAD and MPII-MD: Montreal Video Annotation

Dataset (M-VAD) and MPII Movie Description Corpus

(MPII-MD), are two datasets which contain Holly-wood movie

snippets with descriptions sourced from script data and audio

description. M-VAD contains about 49000 DVD movie snip-

pets extracted from 92 DVD movies. And MPII-MD is com-

posed of about 68000 movie snippets from 94 movies. Each

snippet is equipped with a single sentence from movie scripts

and DVS.

B. Evaluation Metrics and Baselines

Similar to traditional machine translation, the generated

descriptive sentences for the correlative video also can be

measured by comparing a set of reference sentences. Recently,

some common metrics in machine translation also are used for

evaluating visual captioning, i.e., BLEU [61],ROUGEL [62]

and METEOR [63]. ROUGE-L simply to compile statistics

the maximum matches of generated sentences and reference

sentences. BLEU-N (N = 1, 2, 3, 4) usually measures the

precision of N-gram matches. METEOR is used to measure

semantic matcher which is more robust for more consistent

with human’s judgment. In our experiment, for convenient

comparison and robust results, we adopt BLEU and METEOR

to evaluate our proposed approach following [5] and [66].
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We used the evaluation script provided by Chen et al. [66]

to compute scores on our datasets.

To empirically verify the merit of our LSTM-GAN models,

we compared the following state-of-the-art methods on the

four mentioned datasets.

• LSTM [11]: LSTM, incorporating CNN with RNN frame-

work, attempts to directly translate from video pixels to natural

language. The video representation is generated by performing

mean pooling over the frame features across the entire video.

• S2TV [3]: S2VT adopts a stack of two LSTMs for the

encoding and decoding of the inputs respectively and word

presentations are learnt jointly in a parallel manner. Besides

that, S2VT incorporates both RGB and optical flow inputs.

• LSTM-E [10]: LSTM-E integrates 2D CNN and 3D CNN

to extract video feature representation, and simultaneously

explores the learning of LSTM and visual-semantic embedding

for video captioning.

• TA [1]: TA combines the frame representation from

GoogleNet and video clip representation based on a 3D CNN

trained on hand-crafted descriptors. whats more, the model

add a weighted attention mechanism to dynamically attend

to specific temporal regions of the video while generating

sentence.

C. Experimental Setup

For video representation, we extract the video features

from VGG16 network. We take the output of the 4096-way

fc7 layer from VGG16 pre-trained on the ImageNet

ILSVRC12 dataset [10] as the input representation. Before

training the overall model LSTM-GAN, we first separately

pre-train the G and D to speed up the convergence of the

overall model. For the pre-training process of G, we set the

video features as the input of encoder and the corresponding

reference sentences as the output of the decoder. For the

pre-training process of D, we first collect both the reference

sentences and generated sentences from the output of G as the

training data. Following [24], we used a confusion training

strategy. In detail, we randomly swap two or three words to

construct tweaked counterpart sentences as negative samples.

Referring to the generated sentences from pre-traing G which

generates repeated word frequently about some specific words,

we also select those sentences including aforementioned word

to copy twice or three times as the incorrect sentence for D.

Besides that, we employ filter windows (l of Wc) of sizes

3, 4, 5 with 300 feature maps each, hence each sentence is

represented as a 900-dimensional vector. For ensuring the

correlation between generated description and input video,

we concatenate the video representation to the sentence vector

as a multi-modal input [5]. In this way, we can make D have

the ability to distinguish the sentences with grammar mistakes

from correct ones.

For the training process, we adopt the Stochastic Gradient

Descent (SGD) optimization function, for which we set the

momentum attribute to 0.9. We first set the learning rate as

0.001. When the loss became unstable and started to fluctuate

repeatedly, we decrease the learning rate to 0.0001 for follow-

up training. In order to avoid over-fitting, we set the dropout

TABLE I

METEOR AND BLEU4 SCORES OF OUR LSTM-GAN AND OTHER

EXISTING METHODS ON MSVD DATASET. ALL VALUES

ARE REPORTED AS PERCENTAGE

Fig. 5. Log-likelihood convergence performance of LSTM-GAN and LSTM,
denoted by orange and blue curve respectively. And before 2300 of iterative
times, there is a pre-training process.

ratio to 0.5 for all full-connected layers. In addition, we also

added the weight decay and set the value to 0.01. The bath-

size in our experiment is 128. If the memory capacity is large

enough, we can also set a bigger value. All experiments were

implemented in Theano, using a NVIDIA GTX1080 GPU with

8GB memory. The model was trained for about one day.

D. Performance Comparison

1) Performance on MSVD Dataset: Table I summarizes

the obtained results and Fig. 5 shows the log-likelihood

of the convergence performance when training the network.

Overall, the results on two evaluation metrics consistently

demonstrate that our proposed LSTM-GAN achieves better

performance than all the existing techniques including non-

attention models (LSTM, S2VT, LSTM-E) and attention-

based approaches (TA). Comparing to the two the metrics

of METEOR and BLEU@4, we note that our LSTM-GAN

method with attention achieved the best score of 30.4 and
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Fig. 6. Examples to demostrate the effectiveness of our model to generate much richer lexicon. We display the caption from ground-truth, LSTM-GAN(our
model), and LSTM model respectively. We can observe that our model can describe the event of the video appropriately and generate more representative
words like “sauce, frying, loaf”.

42.9 respectively, outperforming all other methods. Table I

shows the experimental result compared to other methods.

By additionally incorporating attention mechanism to LSTM

model, LSTM-GAN leads to a performance boost, demon-

strating that adversarial training has the ability to improve the

performance of our caption model. Additionally, we notice

that our proposed LSTM-GAN (without attention) makes

also a relative improvement over S2VT (RGB) which has

a stack of two LSTMs layer one for encoding video and

the other for decoding. The result effectively indicates that

LSTM incorporating with adversarial training do benefit the

learning of video sentence generation. But we also notice

the method with the performance closest to this was S2VT

with optical flow feature. Good performance of S2VT (Optical

Flow) may be due to the usage of optical flow features, which

are important for depicting the motion information of object in

video. By incorporating with optical flow features, the model

may generate more relevant descriptions to the video. After

using attention mechanism to better handle the video features,

our LSTM-GAN model has both sentence correction capability

and feature processing capability. So that our LSTM-GAN

with attention model outperforms all other models, including

TA, which also incorporates with a weighted attention mecha-

nism. Fig. 6 provides some examples come from ground-truth,

TABLE II

METEOR SCORES OF OUR LSTM-GAN AND OTHER EXISTING

METHODS ON MSR-VTT DATASET. ALL VALUES

ARE REPORTED AS PERCENTAGE

LSTM-GAN (our model), and LSTM (without adversarial

training) respectively. we can notice that our LSTM-GAN

model can generate richer lexicon, which also is logically

correct and more relevant to the video.

2) Performance on MSR-VTT Dataset: Table II lists the

statistics and comparison in MSR-VTT datasets. We compare

our experimental results with the baseline SA-LSTM proposed
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TABLE III

METEOR SCORES OF OUR LSTM-GAN AND OTHER EXISTING

METHODS ON M-VAD AND MPII-MD DATASET. ALL VALUES

ARE REPORTED AS PERCENTAGE. (a) M-VAD
DATABESE. (b) MPII-MD DATABASE.

by Xu et al. [60] which achieve the attention mechanism

on MSR-VTT datasets. From the statistics in Table II, our

proposed approaches LSTM-GAN achieves 26.1 and 36.0 on

METEOR and B4 respectively which outperforms all other

methods based on different feature extraction approaches. But

we also notice that our LSTM-GAN model without attention

has the better score about METEOR but has poor performance

in B4 compared with the LSTM. The cause of the problem is

most likely our LSTM-GAN generates longer sentences which

cause the relatively lower score about B4. Actually, our model

with adversarial learning generates more words (in total about

2000 words for all test data) than the model without adversarial

learning. When added the attention mechanism which will help

to select most important and relevant information about the

video clips, our model outperforming all other methods. The

fact shows that, with the help of attention mechanism, our

LSTM-GAN can generate more reasonable descriptions for

videos although with a longer sequence output.

3) Performance on M-VAD and MPII-MD Dataset:

Table III lists the statistics and comparison in M-VAD and

MPII-MD datasets, which are both more challenging due

to the high diversity of visual and textual content. For

M-VAD dataset, we compare our experimental results with the

baseline TA [1] and LSTM [11]. From the first part of statistics

in Table III, our proposed approaches LSTM-GAN achieves

6.3 on METEOR, which improves over the TA by 2.0% and

over the LSTM by 0.2%. Comparing to our baseline model

(LSTM without GAN), our model improves over it from 5.9%

to 6.3%, proving the effectiveness of our proposed model.

For MPII-MD datasets, we achieve METEOR score

of 7.2%, outperforming all the existing methods including

SMT [60], LSTM [11], Visual-Labels [67] and S2VT [3].

Similar to the observations on MSVD, and MSR-VTT,

Our LSTM with GAN model exhibits better performance than

LSTM without for video captioning.

V. CONCLUSIONS

In this paper, we presented a first attempt to introduce the

concept of adversarial learning in solving the video capturing

problem. We believe that this concept has potential to sig-

nificantly improve the quality of the captions, which is due

to its ability to better control the capture generation process.

This control is in this case done by the discriminator module,

acting as an adversary to the caption generation module.

In addition to making the fundamental adversarial learning

framework based on the GAN paradigm suitable for dealing

with discrete generator outputs, with our novel realization of

the discriminator, we further improved the control mechanism.

This was achieved by making the input into the discriminator

multimodal. In this way, the sentences coming out of the

generator were not only validated for grammatical correctness,

but also for their relevance to the video content. The potential

of our LSTM-GAN framework to improve the quality and

diversity of captions was also demonstrated experimentally,

through an elaborate experimental study involving multiple

baseline approaches, four popular datasets, and two widely

used evaluation metrics. We believe that the performance

of LSTM-GAN could further be improved by relying on

Reinforcement Learning. Reinforcement Learning has proven

effective for tasks similar to video captioning, like for instance

dialog generation [20].
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