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ABSTRACT  

We investigate the problem of automated video classification by 
analysing the low-level audio-visual signal patterns along the 
time course in a holistic manner. Five popular TV broadcast 
genre are studied including sports, cartoon, news, commercial 
and music. A novel statistically based approach is proposed 
comprising two important ingredients designed for implicit 
semantic content characterisation and class identities modelling. 
First, a spatial-temporal audio-visual “super” feature vector is 
computed, capturing crucial clip-level video structure 
information inherent in a video genre. Second, the feature vector 
is further processed using Principal Component Analysis to 
reduce the spatial-temporal redundancy while exploiting the 
correlations between feature elements, which give rise to a 
compact representation for effective probabilistic modelling of 
each video genre. Extensive experiments are conducted 
assessing various aspects of the approach and their influence on 
the overall system performance.   

1. INTRODUCTION  

Automated video genre classification from an input video stream 
is becoming of increased significance in multimedia information 
processing. With the advent of digital TV broadcasts of several 
hundred channels and the availability of large digital video 
libraries, there are compelling needs for the provision of such a 
solution to help end users search, choose or verify a desired 
programme based on the semantic content thereof. On the one 
hand, such a solution, when provided as a real-time component 
in a set-top box or car radio, can be used to automatically select 
a desired broadcast programme for a user. On the other hand, as 
part of a video indexing and retrieval system it can automatically 
classify an incoming video file according to its content, thus 
providing some of the desired metadata information and 
enabling fast video browsing and retrieval.  

Conventional approaches for video classification tend to 
adopt a step-by-step heuristic strategy [3][5]. They usually 
proceed by first extracting certain low-level visual and/or audio 
features, from which analysis is made to build the so-called 
intermediate-level signatures, style attributes etc that are likely 
to be specific to certain video class. Finally the class label is 
hypothesised and verified using a precompiled knowledge-based 
heuristic rules or some learning methods. In the same fashion but 
with more insight into the knowledge of a film making, Truong 
et al. [12] analysed a set of computational features derived from 
cinematic editing effects, motion and colours in videos. 
Experiments show that the trends of these features for different 
genre are distinctive, and good for video classification.  

Based on the observation that most TV programs focus on 
human activities and human face is of primary interest, yet 
another recent approach [2] tried to extract face trajectories and 
track text appeared on the screen. The changes in these tracked 
“objects” are then modelled using statistical/dynamic models 
with a view to differentiating individual video genre identities.  

Recently, a statistically based video genre modelling 
approach has been introduced [9], focusing on direct analysis of 
the relationship between the probabilistic distribution of low-
level features and the associated genre identity. The Gaussian 
Mixture Model (GMM) was used to model the class-based 
probabilistic distribution of audio and/or visual feature vectors in 
a high-dimensional feature space. These features are computed 
directly from successive short segments of audio and/or visual 
signals of a video sequence, accounting for, e.g. 46 ms audio 
information or 640 ms visual information [8][9] albeit in a 
simplified representation, respectively. No explicit or sensible 
temporal information of the video stream at a segmental level is 
incorporated except that the acoustic feature used has built into it 
some short-term transitional changes. The assumption that the 
successive feature vectors from the source video sequence are 
largely independent of each other is only a simplification in 
most cases. Besides, a problem with the GMM used in this 
manner is the “curse of dimensionality”, as it demands a large 
amount of training data to handle data in a very high 
dimensional space beyond a few tens. 

Meanwhile, subspace data analysis methods have been used 
widely in image processing [11][4], and recently in the area of 
content-based video indexing and retrieval [10]. Sahouria and 
Zakhor [10] used PCA to reduce the dimensionality of features 
(colour histograms, motion vectors) of video frames for the 
purpose of detecting scene changes and characterising an entire 
sport video by motion activities, respectively. 

In this paper we propose to combine the strength of the 
statistically based signal modelling approach and the effective 
redundancy reduction capability of PCA for the purpose of video 
classification. In section 2, the computation of spatial-temporal 
audio-visual features inherent in a video class is described. In 
section 3, the system modules for video content modelling and 
classification are discussed, which is followed in Section 4 with 
extensive experiments on aspects of the system performance and 
results of five TV broadcast genre classifications. The paper 
concludes in Section 5.   

2. FEATURE EXTRACTION  

In this section we outline our method how to acquire compact 
spatial-temporal feature vectors that potentially encapsulate the 
generic semantic content of a video.  



2.1. Low-level audio/visual features 

For the video domain under study there is a rich set of 
descriptors that we can exploit for content / semantics 
characterisation. The feature vectors can assume either a visual 
mode or an acoustic (audio) mode, or indeed the combined 
audio-visual mode. Figure 1 shows the process involved to 
compute a spatial-temporal audio-visual “super” feature vector. 
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Figure 1: The computation of “super” feature vectors and 
subsequent condensation via PCA. 

Audio features: Various audio-based features, on a short-
term (tens of milliseconds) or clip (seconds) scale, have been 
suggested for video content analysis, either in an audio only or 
in a joint audio-visual mode [5][7]. In the current work we set to 
use only the short-term spectrum of audio signals - the 14 Mel-
frequency cepstrum coefficient (MFCC) features. It is important 
to note that unlike the work e.g. in [9] we made no efforts in 
computing short-term dynamic features, or characterising a 
meaningful longer time variations at this stage. However, it will 
soon be clear that the concatenation of these raw features over a 
defined transitional window along the time course to generate a 
very high-dimensional “super” feature vector and the subsequent 
PCA analysis applied have captured properly the desired 
dynamic properties in a concise manner.  

Visual features: We set to use the MPEG-7 compliant low-
level content descriptors [6] on colour and textures as part of the 
visual content description feature, which include Scalable 
Colour (16), Colour Layout (12) and Homogenous Texture (32). 
Also, the mean and standard deviation (2 parameters) computed 
from the magnitudes of MPEG video motion vectors are added. 
This gives rise to a 62-dimensional feature vector in describing 
the imaging content for each video frame.  

Audio-visual features: Either the visual or audio features 
discussed above can be used alone for video content analysis and 
classification, though it is more beneficial to use them in 
conjunction, taking advantage of the complementary and richer 
expressive and discriminating power of the combined audio-
visual feature. As the visual and audio signals are captured at 
different rate, e.g., 25 fps for visual signal in a PAL video, and 
22.5kHz for audio signal, to synchronise the audio/visual 
features, a transitional window with a length, e.g., 1000

t
T ms, 

is adopted. All the audio/visual features falling within this 
transitional window are alternatively concatenated, resulting in a 
“super” temporal feature vector characterising each one second 
long video clip. It is important to note that, as well as 
synchronising the audio/visual information; the transitional 
window also captures the short-term and clip-level dynamic 

information of the video, which is more important to embedding 
the semantics of the content. 

2.2. Analysing audio-visual feature using PCA 

One problem with the concatenated “super” feature vector over 
the transitional window is its very high dimensionality. It 
reaches 2138 following the figures given above (62x25 for 
visual and 14x42 for audio). Apparently it is not feasible to 
perform any computation and analysis within such a high 
dimensional space. Furthermore, there exists considerable 
amount of spatial redundancy in the feature vector, e.g. 
correlation between different audio/visual features, as well as the 
temporal redundancy exhibited in adjacent audio/video frames.  

To obtain a compact and low-dimensional representation of 
the super feature vector, we need to explore valid subspace. For 
such purpose PCA is performed on a training database, which 
includes the video data of all classes to be identified. Given N d-
dimensional “super” feature vectors },,2,1,{ Niix , the mean 

vector and covariance matrix are given, respectively, by 
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Figure 2: The learning of class-based identity models.  

3. VIDEO MODELLING AND CLASSIFICATION  

3.1. The genre-based identity modelling 

The schematic diagram of the video class-identities learning 
module is shown in Figure 2. The input sequence of training 
samples (“super” feature vectors) computed over a transitional 
window 

t
T is first subject to a PCA projection to extract the 

low-dimensional “compact” feature vectors. The statistical 
distribution of these feature vectors for each intended genre is 
then modelled using an appropriate modelling technique. 
In the current studies we choose to use the GMM, the probability 
of a feature vector y belonging to a pre-defined video class is 

expressed as
M

j
jPjpp

1
)()|()( yy , where M is the number of 

mixture components, P(j) is the prior of the jth component, and 
p(y|j) is the Gaussian density function of the jth mixture 
component.  

The Expectation-Maximisation (EM) algorithm can be 
adopted to estimate the parameters of a GMM, which iterates 
between E-step and M-step until no significant improvement for 



the overall likelihood of the all the training data. A good 
reference of the training algorithm can be found in [1].  

3.2. The temporal video classification module 

Figure 3 shows the diagram of the video genre classification 
module. A test video stream first undergoes the same “super” 
feature vector extraction process to produce a sequence of 
spatial-temporal audio-visual feature vectors. The sequence of 
features within a pre-defined decision window 

d
T is projected 

successively onto the PCA space, resulting in the compact 
feature vectors. This sequence of PCA vectors is subsequently 
fed to the class-based models learned before; the class model 
that matches the sequence best in terms of a metric is declared to 
be the class label of the current test video stream falling within 
the decision window. The choice of an appropriate similarity 
measure depends on the class-based identities models adopted. 
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Figure 3: The temporal video genre classification module 

As shown in Figure 3, one important parameter of the 
module is the decision window length

d
T , which defines the 

elapsed time when an answer is required of the genre of the 
video programme being queried. More discussions on the impact 
of this on system performance will be given in experiments 
Section 4.2.   

4. EXPERIMENTAL STUDIES  

We have applied the approach described above to the problem of 
video genre classification. Five popular TV broadcast genres are 
considered including sports, cartoon, news, commercial, and 
music. There is a total of 1 hour of recordings per genre, which 
are continuous sequences of typically 5 minutes each, a little less 
for commercials and music genre. For the experiments the data 
is split into 0.5 hour for test and train, respectively. Note that the 
recordings are not validated, labelled or edited in any manner 
other than to confirm that they do belong to the said genre for 
the interval of recording. This means that sub-sequences can 
contain material that could well be classified as other genre, e.g. 
a football sub-sequence within a news sequence. This is less 
favourable to our assessment results but reflects the real-world 
application scenarios.  

4.1. The dimension of the PCA vectors 

By projecting a concatenated “super” feature vector onto the 
pre-trained PCA space, we obtain a compact PCA feature vector. 
It is then important to know how many principal components 
that is proper for the compact feature in order to represent the 
essential structure information for video classification. 

We experiment with P the dimension of the PCA vectors, 
from 10 to 100 at an increment of 10. The classification 
accuracy on the testing data set is shown in Figure 5, using a 

different decision window length 10
d

T , 20, 30 and 40 

seconds. It is interesting to note that the performance shows only 
a marginal improvement with the increase of the PCA 
dimension. In other words, good classification accuracy can be 
achieved with a considerably low dimension of PCA vectors. 

4.2. The decision window length 
d

T 

It has been shown that, by using the transitional window, the 
dynamic variations of a video can be captured up to seconds in 
time. It is noted that, by acquiring the transitional features, we 
intend to formulate a minimal representation of the semantic 
video content, though it is not possible to obtain a perfect 
discriminatory feature vector for video classification at this 
level. Thus judging by the likelihood of a GMM w.r.t. individual 
transitional feature vectors, a segment of a cartoon video may 
look like a music video. However, if we leave the classifiers to 
cover for a relatively longer time, they would be more likely to 
make a right decision. In fact this is the significance of the 
decision window. We have experimented over the whole test 
data set with the decision window length ranging from 2 to 40 
seconds at 2 seconds interval. The results given in Figure 5 show 
a constant increase in classification accuracy with a longer 
decision window length. An average correct rate of about 86.5% 
is achieved at 40

d
T  seconds. 

 

Figure 4: The impact of the dimension of the PCA vectors on 
overall genre classification accuracy with the choice of different 
decision window length. 

 

Figure 5: The impact of the decision window length 
d

T  (in 

second) on overall video genre classification performance.  



4.3. Model complexity 

The model complexity of a GMM, or the number of mixture 
Gaussian components, is an important factor for a model’s 
learning and generalisation capability. We examine the 
performance of video classification over the whole test data set 
with different choices of component number (from M=1 to 19 
with an increment of 2). The results are shown in Figure 6. It can 
be observed that an approximately constant accuracy is achieved 
when the number of components is above 3. This demonstrates 
that, for the video genre classification problem of this scale (5 
genres), a considerably small number of mixture components, 
for example, 3 to 10, can be sufficient for a satisfactory 
performance. 

 

Figure 6: The impact of GMM complexity on the classification 
performance under different

d
T . 

4.4. Classification results on individual genres 

Finally, to demonstrate the inter-dependence among semantic 
contents belonging to these five video genres, we compute the 
confusion matrix of the classification results. Table 1 shows one 
of the matrices, given that 230

t
T ms, M=9, P=100, and 

40
d

T seconds. It is interesting to note that the sports genre has 

the best classification results and least confusion with others 
owing to its specific characteristics. 17.1% of the cartoon videos 
have been misclassified as commercial, which reflects the 
similarity between the two genres. Another important reason is 
that some commercial videos were collected from cartoon 
channels, which advertise children’s toys, food etc using 
animated production. As expected, 15.8% of the music videos 
have been misclassified as commercials since there is usually 
music background in commercial videos, and visual scenes are 
experiencing dynamic changes. 

Table 1: The confusion matrix for the five video genres 

Genre Sports Cart. News Com. Music 
Sports 96.7 0.0 3.3 0.0 0.0 
Cart. 0.0 79.5 0.0 17.1  3.4 
News 0.0 4.6 87.5 4.5 3.4 
Com. 0.0 6.8 3.5 89.7 0.0 
Music 0.0 0.0 2.6 15.8 81.6 

 

5. CONCLUSION  

We have presented in this paper a novel approach to automatic 
video content categorisation at the highest semantic level. Three 

key contributions have been made. First, to integrate audio-
visual features for content description in an effortless and natural 
concatenation; Second, to embed proper temporal dynamics 
within a transitional window to obtain a segment level “super” 
feature vector; Third, to apply PCA to remove the spatial-
temporal redundancy in the low-level audio-visual descriptors, 
deriving an effective compact feature vector. The use of 
statistical models to learn the properties of a video genre from 
these feature vectors is then becoming a standard practice. A 
video database of non-edited TV broadcast programme 
containing five popular genres namely sports, cartoon, news, 
commercial, and music are tested. An average correct 
classification rate of 86.5% has been achieved, given a 40 
seconds decision window. Future work will be devoted to 
studying an even large collection of video database, 
investigating open-set video genre verification, and semantic 
event detection for particular genres e.g. sports.  
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