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Abstract
Availability is one of the primary goals of smart networks, especially, if the network is under heavy video streaming traffic.

In this paper, we propose a deep learning based methodology to enhance availability of video streaming systems by

developing a prediction model for video streaming quality, required power consumption, and required bandwidth based on

video codec parameters. The H.264/AVC codec, which is one of the most popular codecs used in video steaming and

conferencing communications, is chosen as a case study in this paper. We model the predicted consumed power, the

predicted perceived video quality, and the predicted required bandwidth for the video codec based on video resolution and

quantization parameters. We train, validate, and test the developed models through extensive experiments using several

video contents. Results show that an accurate model can be built for the needed purpose and the video streaming quality,

required power consumption, and required bandwidth can be predicted accurately which can be utilized to enhance network

availability in a cooperative environment.

Keywords Video communication � Video streaming � Perceptual video quality modeling � Encoding power consumption

modeling � Video communication systems � Machine learning � Deep learning � Artificial neural networks

1 Introduction

Video streaming has become increasingly more popular,

especially after the recent COVID-19 epidemic, due to the

rising needs for distance learning, working from home,

business and government virtual meetings, and one-to-one

video calling. Moreover, video surveillance systems are

mostly relying on digital communication nowadays and

this communication may share other communication types

as what happen in home networks. Video data generally

consumes extremely high network and servers bandwidth.

This situation become worst when multiple parties, who

share the same network, need to use video communication

at the same time, which may over-saturate the network and

may cause interruption in the communication over the

network. Moreover, some devices are battery powered

which introduces the need for power management to

guarantee the longest availability of the video streaming

systems. System availability is very important for smart

networks services and one of the three main goals of cyber

security [1, 2]. To prevent these problems, next generation
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networks and smart video sources that may utilize machine

learning are required [3–5].

Video compression is generally incorporated with video

streaming to reduce the required streaming transmission

bandwidth. Video compression relies on similarity (spacial

and temporal) in video frames and it only codes the dif-

ferences within a frame (spatial) and/or between consecu-

tive frames (temporal). This encoding process consumes

the most energy compared to all other phases of trans-

missions, such as capturing, wired or wireless transmission,

decoding, up-scaling, and displaying [6–8]. Video com-

pression can ideally provide any needed output video

playback rate. One of the most popular encoders in video

communication is H.264, which employs many features for

more efficient compression and better flexibility [9, 10]. In

this paper, we present H.264 as a case study.

An adaptive video communication system can achieve

network availability by adapting user video transmission

rate [11] . Many things should be done for such systems to

work correctly. One thing is to measure network conges-

tion (network capacity) which help in specifying the pos-

sible rate of the video stream that is being transmitted.

Another thing is to force the video compressor to produce

the suitable video rate to guarantee smooth video trans-

mission and playback. Device energy consummation

should be also taken into consideration and should be

reduced to maximize the overall system availability espe-

cially if some devices are battery powered. This can be

considered as a control problem with two inputs: current

device energy level and network congestion level, and one

output which is the video transmission rate. Video trans-

mission rate can be then fed to the video compressor to

compress the video with the needed rate. If all video

sources apply this optimization continuously, system

availability is guaranteed. We can look at the problem from

a different perspective in which we want to predict the

availability of the streaming system. In this perspective, the

input would be some encoder parameters and the output

would be the power needed for the encoding process beside

the resulting rate of the video stream. In this study, we are

interested in the later perspective and we build the pre-

diction system using deep learning. In previous studies

[11–14], researchers tried to provide solutions for adaptive

video streaming. But most solutions were only limited to

specific types of networks or they did not take into con-

sideration all related system’s parameters. To be more

specific, only few studies [6, 7, 15] tried to model the

impact of video encoders related parameters on the power

consumption and the resulting bit-rate of the encoder. And

according to our knowledge, none of the studies used deep

learning in the modeling process.

This paper contributes to the Video communication

systems’ availability by modeling the relationship between

the systems’ availability related parameters and the video

encoders’ parameters. In specific, we study the relationship

between (the video streaming related power consumption,

perceptual video quality at the destination, and the required

communication bandwidth) and the video encoder resolu-

tion and quantization parameters. We study and analyze the

predictability of the video communication related power

consumption, perceptual video quality at the destination,

and the required communication bandwidth based on the

encoder resolution and quantization parameters using deep

learning algorithms. All data needed have been collected in

a lab environment as described in Sect. 3. The developed

deep learning models are based on more than 1, 000 dif-

ferent experiments of video encoding and simultaneously

measuring consumed power. The perceptual video quality

and required bandwidth are measured at the end of the

encoding process. The developed models can be used to

assess the impacts of various video encoding parameters,

and thus can help in the dynamic control of various source

settings, including but not limited to resolution and quan-

tization, to achieve the optimal power consumption,

bandwidth, video quality, and computer vision accuracy in

robotics [11–14]. Although we consider the popular H.264

standard, this study can help in deriving models for other

encoders, such as High Efficiency Video Encoding (HEVC)

and VP9, by following the same procedure. The results

show that the proposed models are very accurate in pre-

dicting the video communication related power consump-

tion, perceptual video quality at the destination, and the

required communication bandwidth based on the encoder

resolution and quantization parameters.

The rest of the paper is organized as follows. Section 2

discusses background information and related work. Sec-

tion 3 develops various models and discusses the experi-

mental setups and modeling methodology. Section 4

presents the validation results and provides an overall

analysis. Finally, conclusions are drawn in the last section.

2 Background information and related work

A video is a sequence of frames (images) captured at a rate

equal or faster than the eye perception (frame rate). Con-

secutive frames are usually very similar to each other and

the similarity is called temporal redundancy. Each frame

consists of number of pixels and the number of pixels in a

frame is known as frame spatial resolution. Higher-reso-

lution indicates higher clarity. A video file in the original

format (storing all pixel information) would be tremendous

in size, which requires very high bandwidth and storage.

Encoding techniques compress these large video files into

much smaller files that could be transmitted without

noticeable loss or delay. This, along with the availability of
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high-speed communication networks facilitated video

communication as a new means of communication.

The most popular video encoder nowadays is H.264,

which implement both spatial and temporal compression.

H.264 has high computational complexity, mainly due to

its motion estimation, complex prediction, and rate dis-

tortion optimization [7, 10, 15–17].

The video encoding process can generally be divided

into the following three high-level stages: Intra- and Inter-

Prediction (Estimation) Stage, Transformation, Quantiza-

tion and Their Inverse Stage, and Entropy Coding Stage. In

the estimation stage, both intra-prediction and inter-pre-

diction are used to reduce the spatial and temporal redun-

dancies in the video, respectively [7, 17, 18]. Streaming

video quality depends on video encoding process and the

amount of bandwidth required for it to be viewed properly.

Video data contains spatial and temporal redundancy.

Similarities can thus be encoded by just considering dif-

ferences within a frame (spatial), and/or between frames

(temporal). Intra-prediction utilizes spatial correlation in

each frame to reduce the amount of data necessary to

represent the image.

Some of the common forms of video communication are

video calling and video conferencing. Video conferencing

technology has enabled us to seamlessly connect face-to-

face with people all over the world. Video conferencing

technology has revolutionized education and schools by

bringing the best learning opportunities from around the

world to classrooms and homes. Video Communication

process is shown in Fig. 1,

Power consumption, bandwidth requirements, and video

quality are major concerns in video communication sys-

tems especially in smart systems that utilize mobile devices

and wireless communications. In this paper, we develop

deep learning-based predictive models for power con-

sumption, required video bandwidth, and perceived video

quality in a typical video communication system. The

model capture the impacts of various video encoding

parameters, and thus can assists in the dynamic control of

various camera/sensor settings to achieve the optimal

power consumption, bandwidth, and video quality.

3 Building the model and experimental
setups

Since 2012, Deep Learning (DL) has witnessed great suc-

cess in computer vision and other disciplines such as

speech recognition, natural language processing and mod-

eling [19] . The success of DL is based on the recent

availability of big data, high computational power, and the

utilization of the powerful Artificial Neural Network

(ANN) algorithms. A popular example of Deep Learning

networks is the feed-forward Deep Network or Multi-Layer

perceptron (MLP).

These models use multiple layers, one input layer that

represents the input independent vector, one or more hid-

den layers, and one output layer that represent the output

dependent vector. Nodes in each layer are linked to all

nodes in the next layer. These links hold the intermediate

weights. The weight on each link defines how a first layer

influences the second layer and so on. During the training

process, the weights are updated in each iteration in order

to obtain the lowest error in the output. Gradient descent

back-propagation is often used as the learning algorithm to

minimize the output error. Calculating the optimal weights

is the main issue of deep learning and machine learning

training process. Nonlinearities are represented in the

neural network by activation functions in each node such as

ReLu and Softmax [20].

In this paper, a deep learning approach, mainly super-

vised learning of artificial neural networks, is proposed to

Fig. 1 The process of video

communication
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develop prediction models for video encoding quality and

required resources based on input encoder parameters.

Regression by artificial neural networks is chosen for its

high accuracy in prediction based on labeled data.

Figure 2 shows the deep learning process we followed

in this paper. Raw video sequences are collected and

encoded using different resolutions and quantization

parameters. During and after encoding, each encoded video

sequence is labeled by the required power, required

bandwidth, and the resulted quality of the sequence. After

that, the sequences were divided into training and testing

subsets. A deep neural network model is then developed

and trained on the training subset of the sequences. Upon

completing the training, the trained model is tested on the

unseen test subset of the sequences to predict the video

encoding power consumption, the required bandwidth, and

the perceptual video quality for these videos. The predicted

data is then compared with the actual data to mature the

model accuracy.

We encoded sequences by changing both the resolution

and the quantization parameter and we measure encoding

power consumption, resulting bit-rate, and the perceived

video quality. The utilized sequences are the popular

Akiyo, Silent, SignIrene, and Deadline video sequences

downloaded from VIPs Lab1. More information about these

sequences are listed in Table 1. We use these sequences

because they are available in raw (uncompressed) format.

We change the resolution by down-scaling each video

sequence from the original size of (352 9 240) down to

10% of that or (35 9 24) (specifically, we consider the

original itself 100% and (90%, 80%, ..., and 10% of the

original size). For each of these sizes, we also produce

different video quality levels using the quantization

parameter (from 1 to 30) of the encoder.

We measure the power consumption while encoding as

explained in [8] and then we find the bit-rate of the encoded

video from the encoded video file size. We use the decoded

video frames to measure the perceived video quality

compared to the original video frames. As a metric for

perceived video quality, we utilize Structural SIMilarity

Index (SSIM) [21] between decoded and the original

frames.

We prepare a table that contains two input columns: a

combination of the percentage of downsizing the frames

(1.0, 0.9, 0.8, ....., 0.2, 0.1) and the quantization parameter

(1,2,3,...., 29,30), and three output columns: the power

consumption, the bit-rate, and the SSIM quality. Fig-

ure 3a–c plots the collected data.

Figure 3a, b, and c represent the impact of varying the

video encoding parameters (quantization parameter and

spatial resolution) on the encoder power consumption,

required video transmission bandwidth, and encoded video

quality respectively. By combining the use of the quanti-

zation parameter and frame size in pixels, in H.264

encoding, the required bandwidth can be reduced to as low

as one percent of the bandwidth at the highest setting and

the encoder power consumption can be decreased to as low

as 1/25 of the power consumption with full resolution at

quantization parameter of 1. Also, we can see from the

figures that determining the output combination of power

consumption, bitrate, and SSIM for a specific combination

Fig. 2 Illustration of the deep

learning process

Table 1 Properties of the

standard dataset used in the

training

Video segment Time duration (s) Frame size in pixels Number of frames

Akiyo 10 352 9 240 (CIF) 300

Silent 10 352 9 240 (CIF) 300

SignIrene 18 352 9 240 (CIF) 540

Deadline 45.8 352 9 240 (CIF) 1374

1 https://see.xidian.edu.cn/vipsl/index.html.
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(a) encoder power consumption (b) required video transmission bandwidth
(Bitrate)

(c) encoded video quality (SSIM)

Fig. 3 Impact of varying quantization parameter and spatial resolution

Fig. 4 The ANN model code
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of resolution and quantization parameters is not an easy

task and requires a sophisticated prediction algorithm.

To build the ANN model, we use Keras on top of

TensorFlow and Python environment. Figure 4 shows the

code for the developed ANN model. Utilizing Keras/

TensorFlow, the code define the network to be sequential

and define the number of nodes in the input, the output and

the hidden layers. Adam optimizer is selected to minimize

the mean squared error (MSE)

between the actual and predicted values. The ‘‘Early-

stop’’ function is used to stop training automatically.

During training, the MSE is measured at end of each epoch

and if the loss is no longer decreasing by a value more than

min delta for patience consecutive epochs, the training

terminates.

With ‘‘Earlystop’’, the direction (weather to stop when

monitored quantity decreasing or increasing) is automati-

cally inferred from the name (type) of the monitored

quantity (loss should decrease and accuracy should

increase). Training is invoked by model.fit()) function. We

set the maximum number of epochs in the training process

to be 2000 if early stopping function did not work. The fit

function splits the training dataset randomly into 20% for

validation and 80% for training. Finally, we measure the

goodness of the fit by R2, where if R2 ¼ 1 indicates a

perfect fit.

Fig. 5 ANN model structure

Fig. 6 ANN model training monitoring

Fig. 7 Overall actual vs predicted for the testing dataset
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Figure 5 shows the neural network model, with inputs

being video resolution as a percentage of the original frame

size and the quantization parameter. The network has four

hidden layers and three output layers: video power con-

sumption, required bandwidth, and perceptual video qual-

ity (measured in SSIM).

4 Model validation results and analysis

Figure 6a shows the progress of the cost function (Vali-

dation loss) used in the training of the ANN model. In this

paper, we use Mean Squared Error (MSE) which is the

average (mean) loss over the entire training dataset of the

squared of the difference between the actual and the pre-

dicted values. From the figure, we can see that the MSE is

close to zero after training the model for 292 epochs.

Figure 6b shows the progress of the accuracy of the

model over the training and the validation data. The fig-

ure shows quick convergence of the training process

without showing any overfitting.

Figure 7 shows the overall relation between the actual

data and the predicted data from the neural network model.

Since the prediction has high accuracy, the relation is linear

with actual and predicted data are very close to each other.

To details the results shown in Figs. 7, 8 plots that actual

data and the predicted data for each point for each output in

the testing dataset. Since the prediction has high accuracy,

the values are very close to each other for all outputs.

To provide numerical values that represent the closeness

of the predicted data and the actual data plotted in the

previous figure, We calculated R2 for each output sepa-

rately and for all outputs together for both the training and

testing data. The results are shown in Table 2. As shown in

the table, R2 is close to 1 for both the training and the

testing data for all outputs.

Fig. 8 Actual vs predicted for each output in the testing dataset

Table 2 R2 results
Data R2

Power 0.989

BitRate 0.990

SSIM 0.981

Overall testing 0.987

Overall training 0.990
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5 Conclusions and future work

We have developed a deep learning-based power con-

sumption, required bandwidth, and SSIM quality prediction

model for a video communication system. The model can

help in the automatic control of various camera/sensor

parameters setting, including frame size and quantization,

to achieve the optimal outcomes in terms of video per-

ceived quality, encoding power consumption, and the

required bandwidth. By combining H.264 encoding quan-

tization parameter and frame size settings, the required

bandwidth can be reduced to as low as one percent of the

original requirements and the power consumption can be

lowered to as low as 1/25 of the full resolution at quanti-

zation parameter of 1. We notice that the neural network

model is very accurate. It achieves prediction with high

similarity to the original labeled data as measured by R

squared goodness of fit measure. In future work, we will

build a neural network model that predict the required

resolution and quantization parameter (output) based on the

encoding power consumption, required bandwidth, and the

video quality (input). We will also experiment with higher

resolution videos.
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