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ABSTRACT 

Motion estimation (ME) and motion compensation (MC) using 
variable block size, fractional search, and multiple reference 
frames (MRFs) help the recent video coding standard H.264 to 
improve the coding performance significantly over the other 
contemporary coding standards. The concept of MRF achieves 
better coding performance in the cases of repetitive motion, 
uncovered background, non-integer pixel displacement, lighting 
change, etc. The requirement of index codes of the reference 
frames, computational time in ME&MC, and memory buffer for 
pre-coded frames limits the number of reference frames used in 
practical applications. In typical video sequence, the previous 
frame is used as a reference frame with 68~92% of cases. In this 
paper, we propose a new video coding method using a reference 
frame (i.e., the most common frame in scene (McFIS)) generated 
by the Gaussian mixture based dynamic background modelling. 
The McFIS is not only more effective in terms of rate-distortion 
and computational time performance compared to the MRFs but 
also error resilient transmission channel. The experimental results 
show that the proposed coding scheme outperforms the H.264 
standard video coding with five reference frames by at least 0.5 dB 
and reduced 60% of computation time. 
 

Index Terms—Video coding, uncovered background, light 
change, repetitive motion, H.264, motion estimation, multiple 
sprites, sprite, MRF, and multiple reference frames. 

1. INTRODUCTION 

The H.264 advanced video coding standard improves rate-
distortion performance significantly compared to its predecessors 
and competitors by introducing a number of innovative ideas in 
Intra- and Inter-frame coding [1]. Major performance improvement 
is taken place by means of motion estimation (ME) and motion 
compensation (MC) using variable block sizes, sub-pixel search, 
and multiple reference frames (MRFs) [2]. Many conditions 
demonstrate that MRFs facilitate better predictions than a system 
using just one reference frame, for video with repetitive motion, 
uncovered background, non-integer pixel displacement, lighting 
change, etc. The requirement of index codes (to identify the 
reference frame), computational time in ME & MC (which 
increases linearly with the number of reference frames), and 
memory buffer size (to store decoded frames in both encoder and 
decoder) limits the number of reference frames used in practical 
applications. The optimal number of MRFs depends on the content 
of the video sequences. Typically the number of reference frames 
varies from one to five. If the cycle of repetitive motion, exposing 
uncovered background, non-integer pixel displacement, or lighting 
change exceeds the number of reference frames used in the MRF 
coding system, we will not get any coding improvement and a lot 

of computation time is wasted. Moreover, the existing MRF system 
also experiences disaster in image quality if any frame is missing 
during transmission. 

A number of techniques including [3]-[6] are found in 
literature to reduce computational time associated with MRFs 
without jeopardizing image quality. Huang et al. [3] searched 
either the previous or every reference frame based upon the result 
of the intra prediction and ME from the previous frame. This 
approach can reduces 76-96% of computational complexity by 
avoiding searching for unnecessary reference frames. Moreover, 
this approach is orthogonal to conventional fast block matching 
algorithms, and they can be easily combined to achieve further 
efficient implementations. Shen et al. [4] proposed an adaptive and 
fast MRF selection algorithm based on the hypothesis that 
homogeneous areas of video sequences probably belong to the 
same video object, move together as well, and thus have the same 
optimal reference frame. Simulation results show that this 
algorithm can deduct 56~74% of computation time in ME. Kuo et 
al. [5] proposed a fast MRF selection algorithm based on the initial 
search results using 8×8-pixel block. Hachicha et al. [6] used 
Markov Random Fields algorithm relying on robust moving pixel 
segmentation. This approach saved 35% of coding time by 
reducing the number of reference frames at three instead of five 
without jeopardizing image quality. 

Most of the fast MRF selection algorithms including the 
above mentioned techniques used one reference frame (in the best 
case) when their assumptions on the correlation of the MRF 
selection procedure are satisfied or five reference frames (in the 
worse case) when their assumptions are completely failed. But it is 
obvious that in terms of rate-distortion performance, their 
techniques could not outperform the H.264 with five reference 
frames which is considered as optimal [1]. Moreover, their 
techniques also suffer disaster in image quality if any frame is 
missing during transmission. Uncovered background can also be 
efficiently encoded using sprite/ multiple-sprite coding through 
computationally expensive object segmentation. Most of the real 
time video coding applications could not tolerate inaccurate 
video/object segmentations and expensive computational 
complexity incurred by the above mentioned algorithms. 

Recently dynamic background modelling (DBM) [7]-[9] 
using Gaussian Mixture Model (GMM) is introduced for robust 
object detection from so called dynamic environment where 
ground-truth background is impossible due to the practical reasons 
such as a busy train station, airport, etc.  Moreover, static 
background model does not remain valid due to illumination 
variations over time, intentional or unintentional camera 
displacement, shadow/reflection of foreground objects, and 
intrinsic background motions (e.g. waving tree leaves etc) [9]. 
Object can be detected more accurately by subtracting background 
frame (generated from the background model) from the current 



 

frame. In this paper, we have incorporated DBM into the video 
coding architecture to improve the coding performance through 
ME&MC using McFIS as a second reference frame. First we 
generate McFIS from the pre-decoded frames using DBM, and 
then use it as a second reference frame (first reference frame is the 
immediate previous frame). The same McFIS generation technique 
is used at the encoder and decoder so that we don’t need to send 
background model to the decoder. When scene change is detected 
for a video sequence we only reset the DBM model (hence 
McFIS), otherwise we continue updating the McFIS.  Using McFIS 
as a reference frame we have the following advantages compared 
to the existing methods based on MRFs, adaptive GOP (AGOP), 
scene change detection (SCD), and background coding:  
• Only one McFIS is used instead of a number of reference 

frames as it can capture a whole cycle of repetitive motion, 
exposing uncovered background, light changes, etc. 

• Since a McFIS is generated from the history of already 
decoded frames, intrinsically it has better error recovery 
capacity as the McFIS has already contained pixel intensity 
history of the frames. 

• Any simple mechanism for SCD&AGOP determination by 
comparing difference between McFIS and the current frame 
will be more effective. 

• Less computation time in ME&MC is required using McFIS 
compared to the three or more reference frames.   

The rest of the paper is organized as follows: Section 2 describes 
proposed coding system. Section 3 analyses the computational 
time. Section 4 demonstrates the experimental set up and results. 
Section 5 concludes the paper. 

2. PROPOSED CODING SYSTEM  

The McFIS is generated using DBM based on the GMM [7]-[9]. 
Obviously traditional DBM (tDBM) would be different from our 
customized DBM (cDBM) as the tDBM primarily focuses on 
object detection, whereas the cDBM focuses on rate-distortion 
optimization when McFIS is used as an extra reference frame for 
encoding uncovered background, repetitive motion, etc. Moreover, 
the tDBM has used original video frames to construct background 
frame (BF), whereas the proposed cDBM will use decoded frames, 
which are quantized at different levels based on the available bit-
rate, to generate McFIS. It is also used for SCD. If the SCD occurs 
then we have to reset McFIS, otherwise we will update current 
McFIS using the recent decoded frame. The subsequence 
subsections will describe McFIS generation, SCD, and the 
architecture of the proposed scheme. 

2.1 McFIS generation 
To get the best performance in object detection, the tDBM is 
performed at pixel level, i.e., each pixel of a scene is modeled 
independently by a mixture of K (normally three models are used) 
Gaussian distributions [7]-[9]. Each Gaussian model represents the 
intensity distribution of one of the different environment 
components e.g., moving objects, static background, shadow, 
illumination/cloud changes, etc. observed by the pixel in frames. If 
we assume that k-th Gaussian representing a pixel intensity is ηk 
with mean μk, variance 2

kσ , and weight wk such that 1=∑ kw for 

all k. The Gaussians are always ordered based on the σ/w in 
descending order assuming that the top Gaussian will provide most 
stable background [9]. The system starts with an empty set of 
models and then for every new observation Xt at the current time t, 
it is first matched against the existing models in order to find one 

(say the kth) such that |Xt – µk| ≤ 2.5σk. If such a model exists, its 
associated parameters are updated. Otherwise, a new Gaussian is 
introduced with µ = Xt, arbitrarily highσ, and arbitrarily low ω by 
evicting ηK if it exists. From the above mentioned models, 
background and foreground are determined using different 
techniques. Stauffer et al. [7] and Lee et al. [8] used two different 
kinds of user-defined thresholds based on the background and 
foreground ratio, whereas, Haque et al. [9] used classical 
background subtraction method which identifies an object if the 
value of the current intensity differs from the recent value of the 
best background model by a well-studied threshold to avoid delay 
response of the above two models. 

  As we have mentioned earlier, due to the quantization the 
original pixel intensity and decoded pixel intensity may vary. This 
variation may effect in McFIS generation, and ultimately in coding 
performance. To minimize this effect we have modified current 
pixel intensity in the decoded frame using the average value of the 
neighboring pixel intensities. Let tD be the t-th decoded frame to 

generate (t+1)-th McFIS. For a given pixel position (x, y) in tD , 

we modified ),( yxDt as ),(' yxD t : 
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Unlike the tDBM, we have used tD ' instead of tD to update 
the model. In our experiment we have used τ = 0.5 and Tp = 3. We 
have observed that generation of background image i.e., McFIS 
using recent value sometimes does not work properly. It is due to 
the pixel intensity fluctuation causes by the course quantization. To 
minimize this variation we have used same (i.e., τ) weighting 
factor between mean and recent value. 

2.2 Scene change detection (SCD) and AGOP   
Recently Ding et al. [2] combined AGOP and SCD for better 
coding efficiency based on the motion vectors and the sum of 
absolute transformed differences (SATD) using 4×4 pixels block. 
This method ensured 98% accuracy of SCD with 0.63dB image 
quality improvement. Most of existing methods used some metrics 
computed using already processed frames and the current frames. 
The McFIS is the most similar frame comprising stable portion of 
the scene (mainly background) compared to the individual frame in 
a scene. Thus the SCD is determined by a simple metric computed 
using the McFIS and the current frame. For SCD using McFIS, we 
randomly select 50% of the pixel position of a frame and find sum 
of absolute difference (SAD) between McFIS and the current 
frame. If the SAD for the current frame is greater than that of the 
previous frame by 1.7, then we consider SCD occurs and insert an 
I-frame, otherwise we continue inter-coding (no other AGOP). 
This would be effective compared to the existing algorithms as the 
McFIS is equivalent to a group of already processed frames. 
Moreover, a scene change means the change of background of a 
video sequence. As the McFIS has the history of the scene we 
don’t need a rigorous process (like Ding’s algorithm) for SCD.  

2.3 Architecture of the proposed coding system 
Fig 1 shows the architecture of the proposed coding system. The 
H.264 encoder and decoder are employed in the proposed system 



 

with only exception that McFIS is used as the second reference 
frame instead of using immediately previous five reference frames. 
Thus the proposed system has two reference frames i.e., immediate 
previous frame and McFIS. Based on the rate-distortion 
Lagrangian optimization, final reference frame is selected for each 
block. 

As the proposed McFIS would be a good choice of a 
reference frame especially for smooth areas, and true background 
and uncovered background areas compared to the other 4 reference 
frames, we have introduced a new skip macroblock (MB) 
definition as follows, with the standard definition.      

Let ),( yxCk  and ),( yxRk  denote the kth MB of the current 
frame and corresponding McFIS of a video sequence, respectively 
with frame size W pixels × H lines where 0 ≤ x, y ≤ 15 and 

16160 HWk ×<≤ . The moving region ),( yxM k  of the kth 
MB in the current frame is obtained as: 
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where B is a 3×3 unit matrix for the morphological closing 
operation • , which is applied to reduce noise. If 
∑ < 2/),( QPyxM k , a MB is skipped. By this new definition of 
skip MBs, the proposed coding technique classified more MBs as a 
skip MB, which is the one of the reasons for getting the less bits 
compared to the other existing methods. Moreover, this does not 
jeopardise image quality as the McFIS is a good reference frame 
for smooth and background areas. Note that under this definition if 
any MB is classified as a skip MB, we don’t process any other 
modes to speed up the encoding system.  

3. COMPUTATIONAL COMPLEXITY 

Let ζ, d, δ, and λ be the MBs in a frame, total motion search points, 
total number of operations in each point, and the average number 
of modes per MB per reference frame for ME respectively. For ME 
the H.264 requires 2Ndδλζ  operations for N×N-pixel MB as each 
search points requires δ operations (for simplification we don’t 
distinguish different operations). After ME we need operations for 
bits stream generation and so on. But these depend on the 
combination of DCT coefficients and variable length code tables. 
The researchers already claimed that ME, irrespective of a scene’s 
complexity, typically comprises more than 60% of the processing 
overhead required to encode an inter picture with a software codec 
using the DCT, when full search is used. From this fact it can be 
well argued that the H.264 requires 235.8 Ndδλζ operations for 
encoding of a frame using five reference frames. 

Obviously the proposed technique will take some extra 
operations to generate McFIS and interpolate McFIS for encoding 
each frame using fractional ME. To analyze this, we divided the 
whole process into five sub-processes such as model 

upgrading/creation, model deleting, normalizing, filtering, and 
background generating. Those take 66, 6, 6, 8, and 4 operations per 
pixel respectively. We also need 15 operations per pixel for 
fractional ME and 6 operations for SCD in SAD calculations and 
randomly selected 50% of pixels. Thus, in total we need 

22 10834.3 NNd ζδλζ +  operations using the proposed approach 
with immediate previous frame and McFIS as two reference frames 
Ding’s algorithm needs extra ME and SATD calculations. 
Although this extra ME sometimes (on average 20% of cases) can 
be used if inter frame coding is decided through SCD and AGOP, 
it is considered an over head at the 80% of cases. Thus Ding’s 
algorithm takes 222 108.034.3 NNdNd ζδζδλζ ++ operations 
using two reference frames 

 By ignoring smaller term of operations, we can theoretically 
predict that around 60% of computations saving can be possible 
using any of the proposed and Ding’s algorithms against five 
MRFs. For more specific, we can also predict using the smaller 
parts of the operations that the proposed algorithm is slightly better 
than the Ding’s algorithm. Fig 2(a) demonstrates that the proposed 
and Ding’s algorithms reduce 61% and 58% on average 
respectively. This result confirms our theoretical prediction.   

 

4. EXPERIMENTAL RESULTS 

Overall experimental results are performed using a number of 
CIF&QCIF standard video sequences. All sequences are encoded 
at 25 frames per second. Full-search fractional ME with ±15 as the 
search length is used. For comparison, we have selected Ding’s 
algorithms and the H.264 with fixed 32 GOP size using five 
reference frames. We have selected Ding’s algorithm as we have 
found that Ding’s algorithm is the best in terms of rate-distortion 
performance, SCD, and AGOP through the literature survey. For 
the completeness we have also selected the H.264 using fixed GOP 
and five reference frames. For the Ding’s algorithms we have used 
two references (i.e., the immediate and 2nd immediate previous 
frames as the references). For the proposed algorithm the 
immediate previous frame and the McFIS are used as references.   

Fig 2(b) shows the average percentages of reference using 
McFIS and 2nd frame for the proposed and Ding’s methods 
respectively. The figure demonstrates that 26% and 11% references 
are selected by the proposed and Ding’s algorithms respectively. 
This large number of referencing indicates rate-distortion 
improvement using McFIS as a reference frame over Ding’s 
method. Fig 3 shows reference mapping by the proposed scheme. 
A large number of areas (normal regions in Fig 3(b)) are 
referenced by the McFIS, which indicates the effectiveness of the 
McFIS for improving coding performance.      

(a) (b) 
Fig 1: Block diagram of the proposed encoder (a) and decoder (b) where 
both use McFIS, which is generated from the decoded frames. 

(a) (b) 
Fig 2: Computational time comparison between the proposed and Ding’s 
algorithms against the H.264 5 MRFs technique (a); and percentages of 
references comparison between Ding’s and the proposed algorithms (b). 



 

Fig 4 shows rate-
distortion performance 
using the proposed, 
Ding’s, and the H.264 
MRFs algorithms for two 
mixed video sequences 
(they are for SCD & 
AGOP as well) and other 
individual four sequences. 
Each mixed video 
sequence has 11 different 
videos with at least 50 

frames. Akiyo, Miss America, Claire, car phone, Hall Monitor, 
News, Salesman, Grand ma, Mother, Suzie, and Forman are used 
in the mixed QCIF. Silent, Waterfall, Coastguard, Paris, Hall 
Monitor, Bridge far, Highway, Football, Bridgeclose, and Tennis 
are used in the mixed CIF video. The figure confirms that the 
proposed method outperforms the state of the art method (Ding’s 
[2]) and the H.264 MRFs by 0.5~2.0 dB. It is mainly due to the 
large number of cases the McFIS is used as a reference frame for 
the background areas (see Fig 2(b) and Fig 3(b)). The proposed 
scheme also successfully inserts I-frame based on the SCD to 
improve coding efficiency.   

5. CONCLUSIONS  

In this paper, we proposed a new video coding technique using  
dynamic background frame (termed as a McFIS) as the second 
reference frame to improve coding efficiency for uncovered 
background, repetitive motion, non-integer motion displacement, 
light change, etc. Unlike the sprite/ multiple-sprite coding, the 
proposed McFIS is generated using real-time Gaussian mixture 
model. The proposed method used the McFIS’s inherent capability 
of scene change detection for adaptive GOP. The proposed video 
coding technique outperforms not only the state of the art 
algorithm but also the H.264 standard using fixed GOP and five 
reference frames, in terms of rate-distortion and computational 

requirement. The experimental results show that the proposed 
technique successfully detects scene change more accurately 
compared to the state of the art algorithm and outperforms it by at 
least by 0.5 dB with comparable computational time. The proposed 
algorithm also outperforms the H.264 with fixed GOP and 5 
reference frames by 0.5~2.0 dB, and saves 60% of computation 
time.   
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(a) 
 

(b) 
Fig 3: Referenced regions by the 
proposed method; (a) decoded 24th 
frame of Silent sequence, (b) black and 
other regions are referenced from the 
immediate previous frame and the 
McFIS respectively. 

  

  
Fig 4: Rate-distortion performance by the proposed, Ding’s and the H.264 with 5 MRFs algorithms for mixed and other 4 CIF& QCIF videos. 


