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Video coding with dynamic background
Manoranjan Paul1*, Weisi Lin2*, Chiew Tong Lau2 and Bu-Sung Lee2

Abstract

Motion estimation (ME) and motion compensation (MC) using variable block size, sub-pixel search, and multiple

reference frames (MRFs) are the major reasons for improved coding performance of the H.264 video coding

standard over other contemporary coding standards. The concept of MRFs is suitable for repetitive motion,

uncovered background, non-integer pixel displacement, lighting change, etc. The requirement of index codes of

the reference frames, computational time in ME & MC, and memory buffer for coded frames limits the number of

reference frames used in practical applications. In typical video sequences, the previous frame is used as a reference

frame with 68–92% of cases. In this article, we propose a new video coding method using a reference frame

[i.e., the most common frame in scene (McFIS)] generated by dynamic background modeling. McFIS is more

effective in terms of rate-distortion and computational time performance compared to the MRFs techniques. It has

also inherent capability of scene change detection (SCD) for adaptive group of picture (GOP) size determination. As

a result, we integrate SCD (for GOP determination) with reference frame generation. The experimental results show

that the proposed coding scheme outperforms the H.264 video coding with five reference frames and the two

relevant state-of-the-art algorithms by 0.5–2.0 dB with less computational time.

Keywords: Motion estimation, Video coding, H.264, Multiple reference frame, Scene change detection, Adaptive

GOP, Uncovered background, Motion compensation

1. Introduction
The H.264/AVC video coding standard improves rate-

distortion performance significantly compared to its

predecessors and competitors by introducing a number of

innovative ideas in Intra- and Inter-frame coding [1-3].

Major performance improvement is taken place by means

of motion estimation (ME) and motion compensation

(MC) using variable block size, sub-pixel search, and

multiple reference frames (MRFs) [3-8]. It has been

demonstrated that MRFs facilitate better predictions than

using just one reference frame, for video with repetitive

motion, uncovered background, non-integer pixel dis-

placement, lighting change, etc. Moreover, better error-

resilient coding can be obtained using MRFs [9] where

Zheng and Chau showed that referencing some macro-

blocks of the current frame from the furthest reference

frame improves error resilience. The requirement of index

codes (to identify the particular reference frame used),

computational time in ME & MC (which increases almost

linearly with the number of reference frames), and

memory buffer size (to store decoded frames in both en-

coder and decoder) limits the number of reference frames

used in practical applications. The optimal number of

MRFs depends on the content of the video sequences.

Typically, the number of reference frames varies from one

to five. If the cycle of repetitive motion, exposing uncov-

ered background, non-integer pixel displacement, or

lighting change exceeds the number of reference frames

used in MRFs coding system, there will be not any im-

provement and therefore, the related computation (mainly

that of ME) and bits for index codes are wasted. Moreover,

the existing MRFs-based system experiences disaster in

decoded picture quality if any frame is lost during

transmission.

To tackle with the major problem of MRFs, a number of

techniques [5-8,10] have been developed for reducing the

computation associated with. Huang et al. [5] searched ei-

ther the previous or every reference frame based upon the

result of the intra prediction and ME from the previous

frame. This approach can reduce 76–96% of computa-

tional complexity by avoiding unnecessary search for

reference frames. Moreover, this approach is orthogonal
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to conventional fast block matching algorithms, and they

can easily be combined to achieve further efficient imple-

mentation. Shen et al. [6] proposed an adaptive and fast

MRF selection algorithm based on the hypothesis that

homogeneous areas of video sequences probably belong

to the same video object, move together as well, and thus

have the same optimal reference frame. Simulation results

show that this algorithm deducts 56–74% of computation

time in ME. Kuo et al. [7] proposed a fast MRF selection

algorithm based on the initial search results using 8 × 8-

pixel block. Hachicha et al. [8] used Markov Random

Fields algorithm relying on robust moving pixel segmenta-

tion, and saved 35% of coding time by reducing the num-

ber of reference frames to three instead of five without

image quality loss. Saponara et al. [10] added a low com-

plexity context-aware controller to a basic ME engine to

avoid unnecessary computations and memory accesses

while keeping unaltered coding efficiency for a wide range

of applications.

Most of the fast MRFs selection algorithms including

the above-mentioned techniques used one reference

frame (in the best case) when their assumptions on the

correlation of the MRFs selection procedure are satisfied

or five reference frames (in the worse case) when their

assumptions completely fail. But it is obvious that in

terms of rate-distortion performance, these techniques

cannot outperform the H.264 with five reference frames

which is considered as optimal [1]. Moreover, they also

suffer image quality degradation if any frame is missing

during transmission.

In H.264, a group of picture (GOP) comprises one

Intra (I-) frame with subsequent predicted (P-) and/or

bi-directional (B-) frames. Typical size of a GOP is 30 in

the American NTSC television standard and 25 in the

European PAL standard. With regular interval (i.e., at

the beginning of a GOP) an I-frame is inserted for error

propagation prevention, backward/forward play, indexing,

etc. We have observed that I-frame requires two to three

times more bits compared to the inter (i.e., P or B)-frame

for the same image quality. Figure 1 shows frame-level bits

and PSNR performance using the H.264 for I-frame and

P-frame with Paris video sequence. The figure demon-

strates that I-frame requires around three times (3.03

and 2.88 times when quantization parameter QP = 30

and QP = 20, respectively) more bits compared to that

of P-frame. In general, if a sequence does not contain

any scene changes or extremely high motion activity

compared to the previous frames, insertion of I-frames

reduces the coding performance. Therefore, we need to

insert optimal I-frames based on the adaptive GOP

(AGOP) determination and scene change detection

(SCD) algorithms.

A number of algorithms [4,11-14] are proposed in the

literature for AGOP and SCD. Dimou et al. [11] used

dynamic threshold based on the mean and standard

deviation of the previous frames for SCD. Their reported

Figure 1 Frame level bits (a) and PSNRs (b) by I-frame and P-frame using the H.264 standard using two QPs for Paris video sequence.
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accuracy is 94% on average. Alfonso et al. [12] used ME

& MC to find the SCD. To avoid repetitive scene

change, they imposed lower limit of scene change as

four frames. The success rate of this method is 96% with

7.5–15% more compression and 0.2-dB quality loss.

Matsuoka et al. [13] proposed a combined SCD and

AGOP method based on fixed thresholds generated

from the accumulated difference of luminance pixel

components. They used the number of the intensive

pixels (NIP) to investigate the frame characteristics. A

pixel of a frame is considered as an intensive one if the

luminance pixel difference between the adjacent frames

is bigger than 100. If NIP exceeds a pre-defined thresh-

old between two frames, then insert an I-frame at that

position assuming the occurrence of SCD; otherwise

they restricted GOP size to either 8 or 32 based on the

NIP and another threshold. Song et al. [14] proposed

another SCD method based on [13] focusing on the

hierarchical B-picture structure.

Ding and Yang [4] also combined AGOP and SCD for

better coding efficiency based on different video content

variations (VCVs), which can be extracted from tem-

poral deviation between two consecutive frames. The

VCVs are measured using the sum of absolute motion

vectors (SAMV) and the sum of absolute transformed

differences (SATD) with 4 × 4-pixel blocks. For AGOP,

this method used SAMV with the previously processed

frames in a GOP to determine one of the pre-defined

GOP sizes among {16, 32, 64, 128, and 256}. They

determined the SCD if the ratio of SATD of tth frame

and (t – 1)th frame is greater than 1.7, and inserted an

I-frame if SCD occurs. This method ensured 98% accuracy

of SCD with 0.63-dB image quality improvement.

The above-mentioned AGOP and/or SCD techniques

require comparison between the current frame and a

number of previous frames for better rate-distortion per-

formance. We believe that a joint AGOP and SCD tech-

nique can be developed using only one appropriate frame

containing enough scene information for computationally

efficient and better rate-distortion performance. In this

article, we generate a most common frame in scene

(McFIS), for SCD and AGOP, and finally as an effective

reference frame for better rate-distortion performance in

coding.

Moreover, due to the limited number of reference

frames (the maximum is five in practical implementa-

tions), uncovered background may not be encoded effi-

ciently using the existing techniques. Some algorithms

[15-18] determined and exploited uncovered background

using pre- and/or post-processing and computationally

expensive video segmentation for coding. Uncovered

background can also efficiently be encoded using sprite

coding through object segmentation. Most of the video

coding applications could not tolerate inaccurate video/

object segmentations and expensive computational com-

plexity incurred by segmentation algorithms. Ding et al.

[18] used a background-frame for video coding. The

background frame is made up of blocks which keep un-

changed (based on the zero motion vector) in a certain

number of continuous frames. Due to the dependency

on block-based motion vectors and lack of adaptability

in multi-modal backgrounds for dynamic environment,

this background frame could not perform well.

Recently, dynamic background modeling (DBM) [19-21]

using Gaussian mixture model (GMM) has been intro-

duced for robust and real-time object detection from the

so-called dynamic environment where ground-truth back-

ground (GTB) is impossible. Moreover, static background

model does not remain valid due to illumination variation

over time, intentional or unintentional camera displace-

ment, shadow/reflection of foreground objects, and intrin-

sic background motions (e.g., waving tree leaves, etc.) [21].

Object can be detected more accurately by subtracting

background frame (generated from the background

model) from the current frame. In this article, we have

incorporated DBM into the video coding to improve the

SCD for AGOP, coding performance, and error conceal-

ment. First we generate an McFIS from the pre-decoded

frames using DBM, and then use it as second reference

frame (first reference frame is the immediate previous

frame). The same McFIS generation is used at the encoder

and decoder so that we do not need to send background

model to the decoder.

Using McFIS as a reference frame we have the follow-

ing advantages compared to the existing methods based

on MRFs and SCD for AGOP:

� Only one McFIS is used instead of a number of

reference frames so the overheads of index codes are

reduced.

� An McFIS enables the possibility of capturing a

whole cycle of repetitive motion, exposing

uncovered background, non-integer pixel

displacement, or lighting change.

� The new frame referencing scheme is designed with

clearer purpose: the immediate previous frame is

meant for moving areas, and the McFIS is meant for

background regions.

� Since an McFIS is generated from the already

decoded frames, intrinsically it has better

error recovery capacity for error-prone

channel transmission as the McFIS model

has already contained pixel intensity history of

the frames.

� A simple mechanism for AGOP and SCD

determination is possible using McFIS as it is the

most common frame in that scene. Thus, any

mechanism for SCD and AGOP determination by
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comparing difference between McFIS and the

current frame is more effective. In fact, the SCD

(therefore AGOP) is integrated with reference frame

generation.

� Less computation in ME & MC is required using

McFIS compared to the multiple frames (true for

the comparison with more than two reference

frames).

� A better error-resilient coding can be obtained due

to the referencing some macroblocks of the current

frame from the furthest reference frame (i.e., McFIS)

as described in [9].

� Due to the direct referencing from the long-term

reference frame (i.e., McFIS) less variable (i.e., more

consistent) bit rate and PSNR [22] can be

obtained so that GOP-boundary artifacts would

be reduced [23].

� The main contributions of the proposed technique are

� A new background modeling technique has been

proposed using decoded frames for coding gain.

� A new skip mode is defined using newly developed

dynamic background frame.

� A new SCD technique is derived using McFIS.

� Comprehensive analysis and simulation results [on

computational time, SCD, amount of referencing

based on dynamic background (i.e., McFIS), and

rate-distortion performance] are provided to

understand the effectiveness of McFIS in video

coding.

The rest of the article is organized as follows. Section

“GMM-based DBM” describes the existing DBM and

their limitations for processing using distorted video

frames. Section “Proposed video coding algorithm” pro-

posed McFIS-based method. The overall experimental

set up and results for the proposed scheme are pre-

sented in Section “Overall experimental results”, while

Section “Conclusions” concludes the article.

2. GMM-based DBM
GMM-based DBM [19-21] has been proved effective for

object detection from the dynamic environment. The

DBM is performed at pixel level, i.e., each pixel of a

scene is modeled independently by a mixture of K (nor-

mally at most three models are used in the existing tech-

niques [19-21]) Gaussian distributions. Each Gaussian

model represents the intensity distribution of one of the

different environment components, e.g., moving objects,

waiving trees, static background, etc., observed with the

pixel in frames. If we assume that kth Gaussian at time t

representing a pixel intensity is ηk,t with mean μk,t, vari-

ance σk,t
2 , and weight wk,t such that

X

∀k

wk;t ¼ 1 . The

learning parameter α is used to balance the contribution

between the current and past values of parameters such

as weight, variance, mean, etc. Obviously, 1/α defines

the time constant which determines the speed at which

the distribution’s parameters change. Contribution of the

current change of pixel in the model is minimal and tail-

ing effect of the previous object/background can be vis-

ible if we use very low α (e.g., 0.001). For the real-time

processing and integrating SCD in the proposed algo-

rithm, we need faster learning rate. The system starts

with an empty set of models. The fixed initial para-

meters are suggested in [21] as follows: maximum num-

ber of model for a pixel is 3, learning rate is 0.1, weight

is 0.001, and variance is 900. The Gaussians are always

ordered based on the w/σ in descending order assuming

that the top Gaussian will provide most stable back-

ground [21].

After initialization, for every new observation Xt at the

current time t, it is first matched against the existing

models in order to find one (say the kth model) such

that |Xt − μk,t| ≤ 2.5σk,t. If such a model exists, its asso-

ciated parameters are updated as follows [19] where α < 1

is the learning rate

μk;t ¼ 1� αð Þμk;t�1 þ αXt ; ð1Þ

σ
2
k;t ¼ 1� αð Þσ2k;t�1

þ α Xt � μk;t

� �T

Xt � μk;t

� �

; ð2Þ

ωk;t ¼ 1� αð Þωk;t�1 þ α; ð3aÞ

and the weights of the remaining Gaussians are updated as

ωk;t ¼ 1� αð Þωk;t�1: ð3bÞ

After this approximation, the weights are renorma-

lized. If such a model does not exist, a new Gaussian is

introduced with μ = Xt, arbitrarily high σ, and arbitrarily

low ω by evicting ηK if it exists.

From the above-mentioned models, background and

foreground are determined using different techniques.

Stauffer and Grimson [19] used a user-defined threshold

based on the background and foreground ratios. A pre-

defined threshold does not perform well in object/back-

ground detection because the ratio of background and

foreground varies from video-to-video. Lee [20] used

two parameters (instead of a threshold used in [19]) of a

sigmoid function by modeling the posterior probability

of a Gaussian to be background. This method also

depends on the proportion by which a pixel is going to

be observed as background. Moreover, the generated

background has delay response due to using the

weighted mean of all the background models [21]. To

avoid mean effect (mean is considered as an artificially
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generated value and sometimes far from the original

value) and delay response, Haque et al. [21] used a par-

ameter called recentVal, m to store recent pixel intensity

value when a pixel satisfies a model in the Gaussian mix-

ture. They used classical background subtraction

method which identifies an object if the value of the

current intensity differs from the recentVal, m of the best

background model by a well-studied threshold. This

method reduces not only delay response, but also learn-

ing rates, which are sometimes desirable criteria for real-

time object detection.

The existing GMM-based DBM (using pixel intensity

from the original videos, i.e., lossless video) with its asso-

ciated background generation (using recent value, m of

the pixel intensity) performs well for robust object de-

tection scheme. However, in the video coding applica-

tions, the above-mentioned strategy for DBM does not

perform well as we need to model using distorted (i.e.,

decoded using quantization) video frames for better

compression. Thus, the above-mentioned approach for

background generation using recent value (i.e., distorted

recent value) also loses its meaning.

3. Proposed video coding algorithm

The primary purpose of the existing background model-

ing is to detect object, however, in the video coding

applications, the primary purpose is to compress video

data without degrading image quality. Thus, straightfor-

ward application of the existing background modeling is

not effective for compression. In the proposed method,

we have proposed a new technique for background mod-

eling as well as incorporated an SCD scheme based on

the newly generated background frame for coding per-

formance gain.

An McFIS is generated using real-time DBM based on

the GMM [19-21]. Obviously, traditional DBM (tDBM)

would be different from our proposed DBM (pDBM) as

the tDBM primarily focuses on object detection, whereas

the pDBM focuses on rate-distortion optimization when

an McFIS is used as an extra reference frame for encod-

ing uncovered background, repetitive motion, non-

integer pixel displacement, light change, etc. Moreover,

the tDBM has used original video frames (i.e., lossless)

to construct background frame, whereas the pDBM will

use decoded frames (i.e., lossy), which are quantized at

different levels based on the available bit rate. The

McFIS is also used for SCD toward AGOP for efficient

video coding. The subsequence subsections will describe

McFIS generation, AGOP determination through SCD,

and the proposed coding scheme.

3.1. Generation of McFIS

Figure 2 shows the original and decoded pixel intensities

for Frame 1 to Frame 100 as O(row, column) and D1

(row, column), respectively, of three different diagonally

positioned pixels (where row and column are counted

from the top-left). For example, in original or un-

distorted frames (i.e., 1 to 100 frames), O(36, 44) indi-

cates a pixel position at row 36 and column 44 and the

pixel intensities are 104 at Frame 1, 102 at Frame 23,

and 115 at Frame 90. In decoded frames (i.e., after cod-

ing and decoding) D1(36, 44) indicates the same pixel

position (as O(36, 44)) and the decoded pixel intensities

are 114 at Frame 1, 101 at Frame 23, and 115 at Frame

90. These data are collected from the first 100 frames of

Hall Monitor video sequence when encoded using the

proposed coding technique (described later) with the

state of the art tDBM [21] method at QP = 40. The solid

lines and dotted lines of the figure represent original and

decoded pixel intensities, respectively. From the figure,

one can easily observe that decoded pixel intensities dif-

fer from the corresponding original pixel intensities. It is

due to the quantization and block-based ME & MC used

in the coding system. This pixel intensity discrepancy

increases with the quantization, and especially is a severe

problem at low bit rates. Note that according to Equations

(1) to (3), all (t – 1) previous decoded frames are (some-

how) used to generate a tth McFIS unless there is a scene

change. Obviously, the contribution of the older frames

diminishes with the time (depends on the learning param-

eter α). If there is scene change, then all parameters are re-

set and modeling starts again.

We have also observed that there is pixel intensity

similarity among neighboring pixels. This relationship is

also observed by the other researchers, and thus, pre-/

post-filtering techniques were introduced by exploiting

neighboring pixels to reduce pixel intensity discrepancy

in decoded frames due to the quantization and/or

block-based ME & MC [24,25]. We have also exploited

neighboring pixel intensities to the pDBM. Let Dt and

Mt–1 be the tth decoded frame and (t – 1)th McFIS,

Figure 2 Pixel intensities in the original frames, O(row, column)

and decoded frames, D1(row, column), for the first 100 frames

of Hall Monitor video sequence where decoded pixel intensities

(from Frame 1 to Frame 100) D1 is reconstructed by the H.264

video coding standard using McFIS generated by the tDBM at

quantization parameter QP = 40.
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respectively, to generate tth McFIS, Mt. For a given pixel

position (x,y) in Dt, we modify Dt(x, y) as D
'
t(x, y)

D
0

t x; yð Þ ¼
τDt x; yð Þ þ 1� τð Þ�Dt x; yð Þ

if Dt x; yð Þ � �Dt x; yð Þj j < Tp

Dt x; yð Þ; otherwise

8

<

:

ð4Þ

where τ and Tp are the weighting factor and threshold,

respectively. �Dt x; yð Þ is defined as follows

�Dt x; yð Þ ¼ 1=4
X

1

i¼0

X

1

j¼0

Dt xþ i; yþ jð Þ: ð5Þ

Note that all existing DBM algorithms [19-21] use ori-

ginal pixel intensities for their dynamic modeling,

whereas, the proposed technique uses decoded pixel in-

tensities (but modified using Equation (5)). In our ex-

periment, we have used τ = 0.5 and Tp = 3. This

minimizes the trailing effect (i.e., some portion of objects

remains in background) of moving objects in the McFIS

generation using a small threshold Tp. Note that we have

only used right and bottom neighboring pixels for the

possible modification of McFIS in the proposed scheme.

We do not considered left and upper neighboring pixels

to restrict the number of pixels to make the McFIS

smooth. If we consider more neighboring pixels, it may

make the McFIS more blur and eventually the recon-

structed image. However, selection of neighboring pixels

is still an open question to be investigated in the future

for efficient coding performance.

We have observed that generation of background

image, i.e., McFIS using recentVal sometimes does not

work properly. It is due to the pixel intensity fluctuation

causes by the course quantization. To minimize this

variation, we have used same (i.e., τ) weighting factor

between the mean and recentVal, m to get McFIS (i.e.,

background) pixel intensity m', i.e., m' = τμ + (1 − τ)m

where μ and m are the mean pixel intensity and recent

pixel intensity (i.e., recentVal), respectively, of the back-

ground model selected for McFIS generation as defined

in GMM-based DBM.

Figure 3 shows original (i.e., O), decoded (i.e., D1

denotes tDBM and D2 denotes pDBM) pixel intensities of

three diagonal pixel positions for Hall Monitor video se-

quence at QP = 40. The figure clearly shows that proposed

pDBM provides closer pixel intensities to the original

compared to that of tDBM. Closer pixel intensity approxi-

mation enables better quality of background generation.

We call the resultant frame by pDBM as the McFIS

because pDBM preserves the most stable pixel intensity

for a pixel over the time; this is the frame which has the

most similarity with the other frames within the corre-

sponding scene. We also believe that a properly gener-

ated McFIS can replace the I-frame (the first frame of a

GOP or a scene) for better coding performance under a

given bit budget.

Figure 4 shows subjective comparison of different

McFISes generated by the tDBM, pDBM, and motion

vector-based [18] techniques with encoding Hall Monitor

video sequence at QP = 40. Figure 4a shows the original

45th frame, and Figure 4b,c shows McFISes using tDBM

and pDBM. In the figure, at the man’s position there is

debris in Figure 4b whereas in Figure 4c it is less obvious.

For clear visualization we have also included two images

(see Figure 4e,f) using difference between GTB and the

McFISes generated by the tDBM and the pDBM, respect-

ively. We have multiplied the absolute different by 10 for

clear view. The area enclosed by a circle in the Figure 4e

is the most distinctive area between two McFISes. We also

found that the absolute different matrix between GTB and

the McFIS generated by tDBM has maximum 135 and

average 5.3 values, whereas the counterpart generated by

the McFIS by pDBM has 125 and 4.8. All the above-

mentioned evidences indicate that the proposed pDBM

generates more accurate background compared to the

tDBM, and this leads to efficient encoding of uncovered

background regions. We have also created background

frame shown in Figure 4d using motion vector-based

technique [18]. This background does not capture uncov-

ered background (i.e., no background at the man’s position

(black regions) due to the non-zero motion vectors for

those regions). Thus, this background frame is not suitable

for efficient coding compared to the background gener-

ated using DBM.

We have also generated the McFIS using the first 25

original (undistorted) frames of a scene, and then

encoded it as an Intra-frame with finer quantization.

The rate-distortion performance is improved signifi-

cantly when we have used the McFIS as a second refer-

ence frame for encoding the rest of the inter-frames of

Figure 3 Pixel intensities in original frames O(row, column),

decoded frames D1(row, column), and decoded frames D2(row,

column) using first 100 frames of Hall Monitor video sequence;

the decoded frame D1 and D2 are reconstructed by the H.264

video coding standard using McFIS generated by the tDBM and

pDBM, respectively, at quantization parameter, QP = 40.
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the scene [26]. However, there is little or no improve-

ment of the approach [26] for the video sequences with

frequent scene changes and camera motions because in

these cases a large number of McFISes need to be

encoded (thus increases bits requirements) to keep the

McFIS relevant for referencing to encode the inter-

frames. Note that the McFIS is not a displayable frame,

thus, whenever a scene change has been detected, an

extra high-quality frame (i.e., McFIS) needs to be

encoded for the scheme in [26] and results poor rate-

distortion performance. For example, for a video with

100 frames and 10 scene changes we need to encode 111

frames (extra 11 McFIS frames with high quality) for the

scheme in [26], whereas we need to encode 100 frames

for the proposed scheme. Currently, 25 frames are used

to generate an McFIS after SCD in the scheme in [26];

however, it is difficult to find the optimal number of

frames requirement for McFIS generation. Selection of

suitable quantization levels for McFIS coding at different

bit rates is also a difficult problem. Moreover, this ap-

proach [26] is not suitable if the application could not

tolerate any decoding delay or play back delay due to the

time requirement for generating McFIS with few frames

before actual coding. In the proposed approach, we have

Figure 4 Comparison of different McFISes using tDBM, pDBM, and [18] techniques. (a) Original 45th frame of Hall Monitor video sequence,

(b) McFIS using tDBM, (c) McFIS using pDBM, (d) background-frame using [18], (e) difference between (b) and GTB, and (f) difference between

(c) and GTB (both images multiplied by 10 for clear visualization) when encoded at QP = 40.
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overcome this shortcoming by dynamically updated the

McFIS with the recent encoded frame before encoding

the inter-frame.

3.2. SCD and AGOP

As we mentioned in “Introduction” section that proper

insertion of I-frame makes rate-distortion performance

better. Most of the existing methods used some metrics

computed with already processed frames and the current

frames. The McFIS is the most similar frame comprising

stable portion of the scene (mainly background) compared

to the individual frame in a scene. Thus, the SCD is deter-

mined by a simple metric computed using the McFIS and

the current frame. This would be effective compared to the

existing algorithms as the McFIS is equivalent to a group of

already processed frames. According to the free dictionary

(http://www.thefreedictionary.com/scene), a scene is de-

fined as the place where an action or event occurs. Thus,

a scene change means the change of background or stable

portion (not the foreground or the objects) of a video se-

quence. Through background modeling McFIS captures

entire background of a scene (without moving objects)

(see Figure 4b,c), thus, for SCD, McFIS would be appro-

priate frame to compare with for scene change determin-

ation against the current frame. As the McFIS has the

history of the scene we do not need a rigorous process (like

Ding’s AGOP and SCD algorithm) to determine scene

change. Unlike the other existing algorithm, we do not

need any explicit algorithm for AGOP, and it can be

achieved as an integrated part of the McFIS process, as to

be described next.

For SCD using McFIS, we find the sum of absolute

difference (SAD) between the McFIS and the current

frame. If the SAD for the current frame is 1.7 greater

than that of the previous frame, then we consider SCD

occur and insert an I-frame, otherwise we continue

inter-coding. The threshold 1.7 is initially set by Ding

and Yang [4], we also find effective in our implementa-

tion. Due to dynamic nature of scene complexity and

variations in videos, SAD variations using McFIS against

a current frame are least compared to that of using the

immediate previous frame as McFIS does not contain

moving objects. Thus, McFIS would be better choice for

SCD compared to the immediate previous frame. We do

not need any ME (unlike Ding’s algorithm) for the

current frame before taking intra/inter-frame decision.

Obviously, we need computation to generate the McFIS,

but this can be paid off by avoiding ME time in AGOP

determination as for Ding’s algorithm. We do not need

to compute NIP for the pre-decoded frames (unlike

Matsuoka’s algorithm).

To see the effectiveness of the proposed technique, we

have created two mixed video sequences: Mixed A and

Mixed B of 700 frames comprising 11 different standard

video sequences (like in the existing algorithms [4,13]).

Mixed A and Mixed B video sequences comprise the first

50/100 frames of the specified QCIF and CIF videos, re-

spectively, as shown in Table 1. From the table, it is clear

that for both mixed sequences, total 10 scene changes

are occurred at 101, 151, 201, 251, 351, 401, 501, 551,

601, and 651 frames. We have compared our results

with two most recent and effective AGOP and SCD

algorithms [4,13] for efficient video coding.

Figure 5 shows the SCD results by the proposed,

Ding’s and Matsuoka’s methods using three QPs = {40,

28, and 20} for Mixed A video sequence. We have plot-

ted SAD ratio (see Figure 5a), SATD ratio (see

Figure 5b), and NIP (see Figure 5c) for the proposed,

Ding’s and Matsuoka’s algorithms, respectively. As we

mentioned earlier, for the proposed method an SCD

occurs if the SAD ratio is above 1.7 (i.e., the SAD for the

current frame is 70% greater than that of the previous).

For the Ding’s algorithm, an SCD occurs if the SATD ratio

is more than 1.7 [4]. For the Matsuoka’s algorithm, an

SCD occurs if the NIP is more than 1,000 [13] for QCIF

sequences. Thus, it is clear from the figure that for each of

the SCD positions (i.e., 101, 151, 201, 251, 351, 401, 501,

551, 601, and 651 frames), the proposed and Ding’s meth-

ods successfully detect all scene changes. On the other

hand, Matsuoka’s method successfully detects all scene

changes except at the 501 frame for QP = 40 and 28 due

to the similarity in background between salesman and

grandma video sequences.

Similar curves are also drawn in Figure 6 using Mixed

B video sequence. The figure shows that the proposed

and Ding’s algorithms successfully identify all SCD loca-

tions but Matsuoka’s algorithm detects 30, 30, and 29

extra locations for three cases, QPs = {40, 28, and 20},

respectively, being false SCD. The majority of the extra

SCDs occur from 551 to 600 frames due to the high-

motion Football sequence. Note that for CIF sequences,

Matsuoka’s algorithm identifies SCD if NIP > 4,000.

Table 1 Mixed video sequences for SCD and AGOP

Mixed A (QCIF) Mixed B (CIF) Frames Frames in mixed sequence

Akiyo Silent 100 1–100

Miss America Waterfall 50 101–150

Claire Coastguard 50 151–200

Car phone Paris 50 201–250

Hall Monitor Hall Monitor 100 251–350

News Container 50 351–400

Salesman Bridge far 100 401–500

Grandma Highway 50 501–550

Mother Football 50 551–600

Suzie Bridge close 50 601–650

Foreman Tennis 50 651–700
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Although the proposed scheme performs similarly

with Ding’s algorithm in SCD for the two sequences, it

outperforms when applied to actual coding due to the

AGOP differences. Table 2 shows total I-frame insertion

based on the SCD and AGOP using three methods for

Mixed A and Mixed B video sequences at three QPs =

{40, 28, and 20}. While the proposed method only

inserts ten I-frames at the SCD locations (based on the

SAD ratios) for all cases, Ding’s method sometimes

inserts extra I-frames (e.g., 11 I-frames for Mixed B

video at QP = 40) besides SCD locations for their AGOP

technique. This extra I-frame insertion does not help to

improve rate-distortion coding efficiency (later we will

show with rate-distortion performance) as there is no

SCD. Matsuoka’s algorithm inserts extra I-frames not

only for the AGOP (e.g., 21 I-frames for Mixed A or

Mixed B sequences at QP = 40), but also their false SCD

(e.g., 40 I-frames for Mixed B video sequence at QP = 40).

This algorithm sometimes even misses SCD (e.g., at QP =

40 and 28 for Mixed A video sequence, it detects only 9

cases whereas there are 10 cases of SCDs).

With the results from Figures 5, 6, and Table 2, we see

that the proposed approach using McFIS is more

Figure 5 SCD using three algorithms namely the proposed

method, Ding’s, and Matsuoka’s methods for Mixed video A

comprising 11 QCIF video sequences.

Figure 6 SCD using three algorithms namely the proposed

method, Ding’s, and Matsuoka’s methods for Mixed video B

comprising 11 CIF video sequences.

Table 2 Number of I-frames for mixed video A and B of

700 frames

Methods QPs Number of I-frames

Mixed video A Mixed video B

SCD AGOP SCD AGOP

Proposed algorithm 40 10 0 10 0

28 10 0 10 0

20 10 0 10 0

Ding’s algorithm 40 10 0 10 11

28 10 0 10 4

20 10 0 10 4

Matsuoka’s algorithm 40 9 21 40 21

28 9 21 40 21

20 10 21 39 21
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effective in SCD and AGOP, compared to the two recent

algorithms.

3.3. The proposed coding system

As we have mentioned earlier, the proposed pDBM is

incorporated into the encoder and decoder in the same

way to generate McFIS from the decoded frames so that

we do not need to encode an McFIS. This also provides

more error resilience in the frame/packet-loss situation as

the McFIS (i.e., instead of furthest reference frame) can be

used to restore the lost information at the decoder [9].

First, an McFIS is used as the second reference frame

in addition to the immediate previous frame. The H.264

encoder and decoder are employed in the proposed

scheme with the only difference being that an McFIS is

used as the second reference frame instead of five previ-

ous frames as reference frames. That is, the proposed

scheme has two reference frames: the immediate previ-

ous frame and McFIS, based on the rate-distortion La-

grangian optimization, the final reference frame is

selected from these two for each block.

As the proposed McFIS would be a better choice of a

reference frame especially for smooth areas, true back-

ground and uncovered background areas compared to

the other four previous frames, we have introduced a

new skip macroblock (MB) condition by comparing

current MB and its co-located MB in the McFIS. If the

difference between these two MBs is small then we con-

sider the current MB as skipped MB. The rationality of

the new skipped MB is that small changes between the

current MB and the co-located MB in the McFIS indi-

cate that the current MB is a part of a stable back-

ground, thus no need to encode (due to no motion and

small residual error) it rather than just simply copy it

from the McFIS.

Pattern-based video coding techniques [27,28] used a

definition for static MB (SMB) which is equivalent to

the skip MB, with a fixed threshold for various bitrates.

We have used same kind of definition but in dynamic

fashion, i.e., a function of QP to cope with different

bitrates. We have observed that for coarse quantization

we can use a large threshold and for fine quantization

we need to use a small threshold to maintain better

rate-distortion performance in the proposed algorithm.

Let Ck (x, y) and Rk (x, y) denote the kth MB of the

current frame (with frame size of W × H) and the corre-

sponding McFIS, respectively. The moving region Mk (x, y)

of the kth MB in the current frame is obtained as [27]:

Mk x; yð Þ ¼
1; if Ck x; yð Þ•Bð Þ � Rk x; yð Þ•Bð Þj j > 2;
0; otherwise

�

ð6Þ

where 0 ≤ x, y ≤ 15, 0 ≤ k < W/16 × H/16, and B is a

3 × 3 unit (i.e., containing only ‘1’) matrix for the

morphological closing operation (denoted by “•” in (6)),

Figure 7 Average computational time reduction of the

proposed, Ding’s, and Matsuoka’s algorithms against the H.264

5 MRFs using different standard video sequences.

Figure 8 Percentages of references of the McFIS (for proposed method) and second reference frame (for Ding’s and Matsuoka’s

algorithms) using Mixed A and Mixed B video sequences.
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which is applied to reduce noise. Wong et al. [27] chose

SMB if
P

Mk(x, y) < 8.

In the proposed scheme, an MB is skipped if
P

Mk

(x, y) < QP/2. By this new definition, the proposed

coding technique classified more MBs as SMBs. This does

not jeopardise image quality as the McFIS is a better refer-

ence frame. Note that if any MB is classified as an SMB,

we do not process any other modes to speed up the

encoding.

4. Overall experimental results

Overall experimental results are performed using 23

standard video sequences, comprising of 4CIF (720 ×

576), CIF (352 × 288), and QCIF (176 × 144) digital

video format. All sequences are encoded at 25 frames

per second. Full-search fractional ME with ±15 as the

search length and IPPP. . . format are used. We have

compared the proposed method with three relevant exist-

ing algorithms, namely Ding’s algorithm [4], Matsuoka’s

algorithm [13], and the H.264 fixed GOP (32 as the

GOP size for fixed GOP) using five reference frames,

in terms of rate-distortion and computational com-

plexity. We have found that Ding’s algorithm is the

best existing method in rate-distortion, SCD, and

AGOP performance, while Matsuoka’s algorithm is

the latest and simplest technique for SCD and AGOP.

For the complete comparison, we have also selected

the H.264 standard video coding using fixed GOP

and five reference frames. For Ding’s and Matsuoka’s

algorithms we have used two reference frames (the

immediate previous and the second immediate previous

frames). As mentioned earlier, the proposed algorithm

uses the immediate previous frame and the McFIS as the

two reference frames. We use H.264 with five reference

frames and fixed GOP to prove that the proposed scheme

outperforms the state-of-the-art method. We use Ding’s

and Matsuoka’s algorithms to prove that the proposed

scheme is better in terms of rate-distortion, computational

time, and SCD.

4.1. Computational complexity

The ME, irrespective of a scene’s complexity, typically

comprises more than 60% of the processing overhead

required to inter-encode a frame with a software codec

using the DCT [29], when full search is used. Obviously,

ME computational time is also varied with the number of

reference frames, precision of ME, etc. A comprehensive

performance and complexity analysis on a tool-by-tool

basis is provided in [30]. The proposed technique takes

some extra operations to generate McFIS and interpolate

McFIS for encoding each frame. Ding’s algorithm needs

extra ME and SATD calculations for SCD and AGOP.

Matsuoka’s algorithm has only extra computation for NIP

and sum of total NIP for 32 frame calculations. But it is

very difficult to analyze theoretical computational com-

plexity of each algorithm because of too many parameters

and coding conditions. Thus, we have compared their

computational performance based on the empirical data.

Note that the proposed technique needs extra time in the

encoder and decoder compared to the other relevant tech-

niques due to the background modeling. The background

modeling time is fixed and does not depend on the search

length. The experimental result shows that extra 2% of

encoding time is needed when we encode 100 frames with

15 search length.

Figure 7 shows experimental results of computation re-

duction of the proposed, Ding’s, and Matsuoka’s algo-

rithms against the H.264 with five references frames,

Figure 9 Frame level information. (a) Luminance PSNR, (b) Bits

per frame, and (c) Percentage of references using McFIS/second

previous frame for 100 frames in News video sequence with the

proposed, Ding’s, Matsuoka’s, and the H.264 (fixed GOP and five

reference frames) algorithms.
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using a number of video sequences (Mixed A, Mixed B,

Silent, Hall Monitor, Salesman, News, Paris, and Susie)

over different QPs, i.e., 40, 36, 32, 28, 24, and 20. This

figure confirms that the proposed, Ding’s, and Matsuoka’s

algorithms reduce 61, 58, and 60% on average, respect-

ively. Thus, we can conclude that the proposed scheme is

comparable with (in fact, slightly better than) the two

state-of-art methods in complexity while it can save 61%

of computational time on average compared to the H.264

with five reference frames. Actually, we have observed that

the proposed technique generates more skip modes (due

to the new definition of skip mode) compared to the exist-

ing methods. For example, for Paris video sequence, the

proposed technique generates 2/3 times more skip modes

compared to Ding’s algorithm at high bit rates. As we

mentioned at the end of Proposed video coding algorithm

that if any MB is classified as a skip mode, we do not

process any other modes to speed up the encoding. That’s

why we get better coding time compared to the other

schemes. The skip mode mainly comes from the McFIS

references (see Figure 8, McFIS references are higher).

4.2. Performance comparisons in other perspectives

Figure 8 shows the average percentages of using the

McFIS as the reference frame for the proposed method

and the second previous frame for the other two meth-

ods, with Mixed A and Mixed B video sequences. The

figure demonstrates that the proposed method has 26%

of the cases using McFIS on average whereas the other

two have only about 11% of cases using the immediate

(a) 24th frame of Silent video (b) 95th frame of Paris video 

(c) References by Ding’s (d) References by Ding’s 

(e) References by the proposed (f) References by the proposed 

Figure 10 Rate-distortion performance by the proposed, Ding’s, Matsuoka’s, and the H.264 standard video coding (with fixed GOP and

five reference frames) algorithms using Mixed A (comprising 700 frames of 11 various QCIF standard video sequences), Mixed B

(comprising 700 frames of 11 various CIF standard video sequences), and other four QCIF, two CIF, and one 4CIF video sequences with

at least 300 frames from each.
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second previous frame on average. The significantly lar-

ger referencing frequency indicates rate-distortion im-

provement using McFIS as a reference frame against

using the second previous frame. Moreover, a better

error-resilient coding can be obtained due to the large

number of referencing from the McFIS as described by

Zheng and Chau [9]. They showed that referencing some

macroblocks of the current frame from the furthest

reference frame improves error resilience. Instead of

using the furthest reference frame, if we use McFIS as

the reference frame, we can achieve better error-resilient

coding using Zheng and Chau’s approach.

For detailed understanding we have provided frame

level data for News video sequence. Figure 9 shows

detailed data using luminance PSNR (Y-PSNR), bits per

frame, and percentage of references using McFIS/second

previous frame by the proposed, Ding’s, Matsuoka’s, and

the H.264 (with fixed GOP and five reference frames)

algorithms, respectively. Figure 9a demonstrates that the

proposed algorithm is the best to produce higher PSNR

compared to the other three algorithms. It is due to the

use of McFIS. The standard H.264 (with fixed GOP

and five reference frames) produces the worst PSNR.

Between the other two algorithms, Ding’s algorithm

(a) (b) 0.151bpp, 36.16dB 

(c) 0.164bpp, 35.24dB (d) 0.170bpp, 35.18dB 

(e) 0.173bpp, 35.12dB 

Figure 11 Frame level reference maps by the proposed Ding’ method for Silent and Paris video sequences. (a, b) Two decoded 24th

frame of Silent and 95th frame of Paris videos, (c, d) reference maps by the Ding’s algorithm, and (e, f) reference maps by the proposed

algorithm where black and other regions are referenced from the immediate previous frame and the McFIS (for the proposed)/second frame

(for the Ding’s), respectively.
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performs better compared to Matsuoka’s algorithm. This

is due to the relatively less I-frame insertion in the

Ding’s algorithm compared to the Matsuoka’s algorithm.

Both algorithms insert I-frame at the beginning of a

GOP (GOP size being 8 or 32 in Matsuoka’s algorithm

and 16, 32, 64, 128, or 256 in Ding’s algorithm, all based

on the AGOP) and at the SCD locations. For the pro-

posed method, we have only inserted an I-frame if SCD

occurs.

Figure 9b,c shows frame-level bits and percentage of

references (the second previous frame for Matsuoka’s

and Ding’s algorithms, McFIS for the proposed algo-

rithm, and second to fifth previous frames for the

H.264). Fewer bits per frame are needed for the

proposed method, while the highest bits per frame are

used for the standard H.264. Since the reference frame is

always selected from the candidate frame pool to achieve

the best performance for any encoder, the higher refer-

encing rate for one particular frame means better for

coding and more effective for the associated index codes.

With the higher referencing rate of McFIS in Figure 9c,

the proposed method outperforms the other three meth-

ods in terms of compression (lower bits per frame) and

image quality (higher PSNR) (see Figure 9a,b). This

means if we keep bit rates constant, PSNR would be

even higher for the proposed method, as will be demon-

strated in Figure 10. The percentage of references using

McFIS diminishes with the time (see Figure 9c). In News

sequence, there is a dancing behind the readers, as we

know that McFIS only captures the background, and

thus, the percentage of the McFIS referencing for the

object area (due to dancing) diminishes with the time of

background modeling. The other reason is that when we

select a mode (whether from the first reference or the

second reference), we prefer McFIS if the cost functions

for both are the same.

Due to the direct referencing from the long-term

reference frame (i.e., McFIS) less variable (i.e., more con-

sistent) bit rate and PSNR [22] can be obtained by the

proposed approach. Figure 9a,b shows the evidence of

better bits and PSNR consistency by the proposed

method compared to the other relevant methods. This is

a desirable property for better perceptual quality [31].

The proposed adaptive GOP determination based on the

SCD provides longer GOP compared to that of relevant

algorithms. This also provides pleasant perceptual video

quality [31] by reducing GOP-boundary artifacts [23].

Figure 11 shows reference mapping using Silent and

Paris video sequences by the proposed scheme and

Ding’s algorithm. A scattered referencing takes place

using Ding’s algorithm for the immediate previous and

second previous frames. For the proposed method,

moving object areas (black regions in Figure 11e,f ) are

referenced using the immediate previous frame whereas

background regions are referenced using McFIS (normal

area in Figure 11e,f). A large number of areas (normal

regions in Figure 11e,f ) are referenced by the McFIS, and

this indicates the effectiveness of the McFIS for improving

coding performance (as discussed above for Figure 9).

Figure 12 shows decoded frames for subjective viewing

tests by the proposed, Ding’s, Matsuoka’s, and H.264

(with fixed GOP and five reference frames) algorithms at

QP = 32. The 38th frame of News sequence is shown as

an example. They are encoded using 0.151, 0.164, 0.170,

and 0.173 bits per pixel (bpp) and resulting in 36.16,

35.24, 35.18, and 35.12 dB in Y-PSNR, respectively.

From the viewing tests with ten people, the decoded

video by the proposed scheme is with the best sub-

jective quality. It is due to the fact that the proposed

method spends relatively more bits at the moving areas

and fewer bits for the smooth/background areas com-

pared to the other methods. Thus, the quality of the mov-

ing areas (i.e., area comprising objects) is better in the

proposed method.

The proposed technique with SCD encodes the first

frame and the frames at the point of SCD as the I-

frames. Thus, for a video sequence with no/small camera

motion, the proposed scheme may have fewer numbers

of I-frames; on the other hand, for a video with high

camera motion, it may have higher number of I-frames

compared to H.264. Figure 13 shows rate-distortion per-

formance of the proposed scheme with SCD (i.e., flexible

GOP) and fixed GOP size against the scheme in [26]

and the H.264 with two reference frames using Tennis

video sequence. We have selected Tennis sequence as it

has camera motions and scene change. The figure con-

firms the superiority of the proposed scheme with SCD

and fixed GOP over the algorithm in [26] and the H.264

with two reference frames. The figure also demonstrates

Figure 12 Decoded 38th frame of News video sequence: (a)

original frame, (b) the proposed, (c) Ding’s, (d) Matsuoka’s, and

(e) the H.264 (with fixed GOP and five reference frames)

algorithms at QP = 32.
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that a significant portion of coding gain is coming using

McFIS as a second reference frame.

For the overall evaluation of the proposed scheme,

Figure 10 shows the rate-distortion curves using the pro-

posed (with SCD), Ding’s, Matsuoka’s, and the H.264

(with fixed GOP and 5 reference frames) algorithms for

2 mixed (each consisting of 11 CIF/QCIF videos) and 7

individual (4 QCIF, 2 CIF, and 1 4CIF) video sequences.

The results from the figure confirm that the proposed

scheme outperforms the H.264 as well as other two rele-

vant state-of-the-art algorithms by 0.5–2.0 dB. The per-

formance improvement by the proposed scheme is

relatively high for Salesman, Silent, and Hall Monitor

video sequences compared to the other sequences. This

is due to the relatively larger background areas in these

three cases, and hence a larger number of references are

selected from the McFIS. On the other hand, the per-

formance improvement by the proposed scheme is rela-

tively lower for the Tennis and Mixed B video sequences

due to the less number of reference MBs coming from

the McFIS for camera movement.

5. Conclusions

In this article, the issue of effective, dynamic I-frame

insertion, and reference frame (termed as the McFIS)

generation in video coding has been tackled simultan-

eously with a Gaussian mixture-based model for dy-

namic background. To be more specific, the proposed

method used the generated McFIS’s inherent capability

of SCD and adaptive GOP determination for integrated

decision for efficient video coding. The McFIS is gener-

ated using real-time GMM. We have used dynamic

Figure 13 Rate-distortion performance of the proposed scheme with SCD, proposed scheme with fixed GOP, H.264 with two reference

frame (H.264 2Ref), and Algorithm used in [26] using Tennis video sequence.
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background (i.e., McFIS) as the second reference frame

for efficient encoding of background. In essence, the

new scheme allows moving object areas being referenced

with the immediate previous frame while background

regions are being referenced with McFIS.

We have proposed a DBM using decoded or distorted

frames instead of original frames. This allows wider

scope of use with DBM because raw video feeds (with-

out any lossy compression) are usually not available and

noise/error is inevitable especially in the case of wireless

transmission.

By foreground and background referencing, we can

improve rate-distortion performance in the uncovered

background region which is almost impossible by the

traditional multiple reference schemes. The proposed

scheme effectively reduces computational complexity by

limiting the reference frames into only two without sac-

rificing rate-distortion performance (actually it improves

compared to the relevant existing algorithms). By intro-

ducing McFIS as a reference frame, we can avoid the

complication of selecting long-term reference frame.

The proposed video coding technique outperforms the

existing relevant schemes, in terms of rate-distortion and

computational requirement. The experimental results

show that the proposed technique detects scene changes

more effectively compared to the two state-of-the-art

algorithms, and outperforms them by 0.5–2.0 dB PSNR

for coding quality. The proposed technique outperforms

the H.264 with fixed GOP and five reference frames by

0.8–2.0 dB in PNSR and around 60% of reduced computa-

tional time.
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