
VIDEO CODING WITH SPATIO-TEMPORAL TEXTURE SYNTHESIS

Chunbo Zhu1∗, Xiaoyan Sun2, Feng Wu2, and Houqiang Li1

1University of Science and Technology of China, Hefei, 230027, China
2Microsoft Research Asia, Beijing, 100080, China

∗ This work has been done when the author was with Microsoft Research Asia.

ABSTRACT

This paper presents a video coding scheme in which some
texture regions are selectively removed at the encoder and
recovered by synthesis at the decoder. We present region
removal utilizing conventional block-based motion
information rather than global motion field. Removed
regions including their motion information are not coded at
the encoder. We propose spatio-temporal patch-searching in
texture synthesis at the decoder to recover the removed
regions. Our approach is not content based and is flexible
and generic to be implemented. The scheme has been
integrated into H.264/AVC and achieves up to 38.8% bitrate
saving at similar visual quality levels compared with
H.264/AVC.

1. INTRODUCTION

It is well accepted that motion compensation, intra
prediction and transform are employed in video coding to
exploit spatio-temporal redundancy based on the mean
squared error (MSE) criterion. But the types of redundancies
exploited by current video coding schemes are rather limited
since they mainly focus on pixel-wise redundancy rather
than perceptual redundancy. It is exemplified by the
inefficiency of coding texture regions with many details, e.g.
water and grass. However, texture synthesis [1] and
image/video inpainting [2] have shown their effectiveness
on dealing with these regions.

Recently, technologies in texture synthesis and image
inpainting have shown remarkable progresses and have been
developed for different purposes such as error concealment
[3] and object removal [4]. In fact, advancements in texture
synthesis are leading to promising efforts to exploit visual
redundancy. It has been reported that improvement is
achieved by employing texture synthesis in compression
even though in a straight-forward fashion [3]. A content-
based video compression scheme is also presented in [5] in
which texture synthesis and analysis are utilized based on a
global motion model. Moreover, since original video
sequences are always available at encoder side, it is

reasonable to assume that some assistant information can be
extracted to empower texture synthesis as well as inpainting.
Such kind of image compression method is developed in [6]
in which edge-based inpainting approach is proposed to
reduce the redundancy in structure regions.

In this paper, we focus on texture regions and aim to
benefit from texture synthesis to improve current
mainstream coding schemes, e.g. H.264/AVC. The basis of
our approach is that some texture regions can be well
synthesized from their spatio-temporal neighboring samples
without visible quality loss. Therefore, they can be
selectively removed during encoding.

The contribution of this paper lies in twofold. First, we
propose region removal (also called exemplar selection in
this paper) utilizing conventional block-based motion
information rather than global motion field. Second, spatio-
temporal texture synthesis algorithm is presented for region
recovery in which spatial and temporal smoothness are
simultaneously considered. Moreover, our approach is not
content based and is developed at non-overlapped block
level. It is flexible and generic to be implemented into
standard-compliant video coding schemes.

The rest of this paper is organized as follows. In Section
2, the framework of our scheme is presented. In Section 3
and Section 4, we will describe the encoder and decoder
algorithms in detail. In Section 5, experimental results are
shown. We will conclude this paper in Section 6.

2. FRAMEWORK OF OUR PROPOSED SCHEME

In our proposed scheme, I-pictures and P-pictures, called
key pictures, are coded with H.264/AVC (H.264 for short).
B-pictures are candidates for partial texture synthesis. Each
B-picture is divided into non-overlapped 8x8 blocks. Some
of the blocks are removable at the encoder and can be well
recovered at the decoder. Other blocks are called exemplars
and will be utilized to synthesize the removed blocks at the
decoder.

Fig. 1 shows the framework of our scheme. The input of
the encoder is a group of pictures (GOP) which consists of a
pair of key pictures and several B-pictures. 8x8 blocks of all
B-pictures are categorized into structural ones and textural
ones. Structural blocks (denoted by Str.) are regarded as

1121-4244-1017-7/07/$25.00 ©2007 IEEE ICME 2007

exemplars and are coded with H.264 encoder. Textural
blocks (denoted by Tex.) are input into the Exemplar
Selection module. At the same time, 8x8-block motion
threading [7] is performed on original B-pictures. The
threads which consist of motion-aligned textural blocks are
treated as 3-D exemplar candidates and are selectively
preserved. Remaining blocks are totally removed. At the
decoder side, key pictures and exemplars in B-pictures are
reconstructed by H.264 decoder. Then partially
reconstructed B-pictures are recovered by the Texture
Synthesis module. After texture synthesis, completed
pictures including key pictures are stored in the Picture
Buffer so that they can be used to recover other pictures.

Block
Categorization

Motion
Threading

Exemplar
Selection

Key pictures

B pictures Motion
info.

Tex.

Str.

Preserved blocks

Removed blocks

Removing Masks Assistant
Encoder

H.264
Encoder

Input
GOP

H.264
Decoder

Assistant
Decoder

Texture
Synthesis

Key pictures

B pictures

Picture
Buffer

Removing Masks

Output

Encoder side

Decoder side

Output
bitstream

Input
bitstream

Fig. 1. Framework of our proposed scheme.

Note that, in our coding scheme, B-pictures are bi-

directionally predicted from the nearest pair of key pictures
which are coded and reconstructed with MSE criterion in
H.264. In the following two sections, we will explain our
encoder and decoder designs in detail.

3. ENCODER DESIGN

It is generally accepted that pure textures can be
satisfactorily generated even given a small sample. With this
knowledge, synthesis-based image compression
technologies have been developed to exploit visual
redundancy and have shown encouraging results [6]. In such
image compression schemes, how to select removable
regions and useful samples is significant to successful
synthesis. This selection problem is also important and even
more difficult for video applications, because temporal
aliasing is typically much stronger than spatial aliasing in
video sequences of dynamic scenes. The core of our encoder
algorithm is the selection process which demands both
spatial and temporal consistency. In the following of this
section, we will explain how to select removable blocks and
exemplars based on block categorization and motion
information.

3.1. Block categorization

In our scheme, all B-pictures are input to the Block
Categorization module shown in Fig. 1. A simple edge
detector is used to detect edges in this module. The blocks
which contain edge pixels are categorized into structural
blocks. Remaining blocks are textural blocks. The textural
blocks which are adjacent to structural blocks are called
necessary textural exemplars and must be preserved and
coded, because they contain the information of transition
between different texture regions. Remaining textural blocks
are called additional textural blocks, from which the
removable blocks will be selected.

3.2. Motion threading

To avoid possible temporal inconsistencies of the
synthesized result, we have considered motion estimation in
selecting exemplars at the encoder side. We treat temporally
sequential blocks on a motion trajectory as a candidate 3-D
exemplar. In this way, the exemplar selection can be
performed on a more global level to help synthesis keep
spatial and temporal consistency.

We perform block-based backward motion estimation on
original pictures in the Motion Threading module. Motion
threading algorithm which was proposed in [7] is utilized so
that additional textural blocks can be aligned in directions of
different motion threads. In this step, we use conventional
block-based motion estimation same as H.264/AVC with
integer-pixel accuracy. Afterwards, motion threads in
texture regions are pruned so that different threads will not
overlap each other or fall into structure regions. Fig. 2
shows an example of motion threads within a GOP.

Fig. 2. An example of motion threads in one GOP. Shaded blocks
indicate removed ones. Arrows indicate connection and direction

within motion threads.

3.3. Exemplar selection

When motion threading is completed, all the threads are
treated as 3-D exemplar candidates for exemplar selection.
We arrange the average spatio-temporal variation (STV for
short) of all the motion threads in descending order and
choose those threads with higher variation according to a
pre-defined ratio. The chosen blocks are preserved as
exemplars and will then be coded with H.264 encoder. The
remaining ones are totally removed and will be recovered at
the decoder.

The average STV of a thread is defined as follows:

6

1 2
1 ()

1 [() | () () |]
j i

N

i j i
i B B

STV w B w E B E B
N μ

δ
= ∈

= + − (1)

113

Here N represents the length of a corresponding thread,
which consists of N blocks Bi (i=1…N). w1 and w2 in (1) are
positive weighting factors. μ6() indicates the spatio-temporal
6-neighboring (left, right, top, bottom, forward and
backward) blocks of each block. The functions į() and E()
are the variance and mean pixel value of a block.

Furthermore, because the variation is a local feature,
removing large-scale regions should be avoided. Thus, we
also check the connective degree of each block so that the
removed blocks do not constitute a large region.

The output of the exemplar selection process includes a
sequence of binary masks indicating which blocks are
removed. The masks are then losslessly coded in the
Assistant Encoder.

4. DECODER DESIGN

After decoding the binary masks which indicate the location
of removed blocks, the decoder utilizes a patch-wise method
to synthesize the removed texture regions. We borrow the
main idea of patch-wise image inpainting [4] and extend it
to our video coding application.

One direct approach to extend an image inpainting or
texture synthesis method to video is to process each frame
independently. But the temporal correlation among frames is
neglected. On the one hand, a better matching patch may be
found in temporally adjacent frames. On the other, to
process video frames as independent images may ruin the
temporal consistency and result in visible artifacts. For
video texture synthesis, one can extend 2-D patches to 3-D
volumes [8] but will introduce large amounts of data and
computing complexity. In our synthesis scheme, we jointly
utilize temporal and spatial reconstructed pixels to perform
the synthesis process with 2-D patches.

Forward ref. Current picture Backward ref.

Unknown region Target patch Searching range Source patch
Fig. 3. Patch-wise texture synthesis in our approach.

Unlike the removing process at the encoder, the Texture

Synthesis module at the decoder is designed for arbitrary-
shaped regions and is performed frame by frame. We choose
square patches as the fundamental elements while a
confidence map [4] is introduced to guide the order of

synthesis. As shown in Fig. 3, for each patch centered at a
marginal pixel of unknown regions (denoted by target patch),
we calculate the average confidence value of all pixels in
this patch. Then the patch with the highest confidence will
be synthesized first. Afterwards, a candidate patch which is
most similar to the target patch is searched out in a certain
spatio-temporal range centered at the target patch among the
current picture, forward reference picture and backward
reference picture.

The similarity between a candidate patch and a target
patch is measured by S defined as follows:

 '(,) (,)t c t cS SSD W W SSD W Wα= + ⋅ (2)
Where SSD() denotes the sum of squared difference of
known pixels between two patches. Wt and Wc represent the
target patch and the candidate patch. Wt’ represents the patch
which has the same location as the target patch in
corresponding reference frame. Į is a positive constant
which controls the tradeoff between spatial and temporal
smoothness. A patch that results in the least S will then be
chosen as a source patch, which is often found in a
temporally adjacent location. Then the source patch is
merged into the target patch [9], [10]. After one patch is
restored, the confidence map is updated. All the above
operations are iterated until no unknown pixel exists.

5. EXPERIMENTAL RESULTS

We have integrated the proposed coding scheme into the
H.264/AVC reference software JM10.2 [11] and have
compressed the video sequences “Container”, “Football”
and “Bridge_far”. In our experiments, we use YUV 4:2:0
sequence format under CIF resolution. All sequences are
tested with 30Hz frame rate. Only one intra frame is coded
for each sequence. The intra frame and all P-frames are key
frames and are coded with H.264 for both testing cases. B-
frames are periodically inserted between key frames and are
predicted from the nearest pair of key frames. 15 B-frames
are inserted in one GOP for “Container” and “Bridge_far”. 4
B-frames are inserted in one GOP for “Football”. Whole
sequences are coded. Besides, rate distortion optimization
(RDO) is turned on. CABAC is used for entropy coding.

Fig. 4 shows the reconstructed GOP of the sequence
“Football”. Compared with the reconstruction of
H.264/AVC, our approach has a similar visual quality level.
Fig. 5 shows bitrate savings of our approach for all testing
sequences under different quantization parameters (QP).
Noticeable bitrate savings of our scheme can be seen in this
figure, up to 38.8% for sequence “Bridge_far”. Note that,
coded bitrates of binary masks have been included in the
overall bitrates for our approach, although they are
negligible.

114

 (a)

 (b)

 (c)
Fig. 4. Four B-pictures in one GOP of sequence “Football”: (a) original frames with removing masks (shaded blocks indicate motion-

aligned removed ones), (b) reconstructions of our scheme with QP=18, (c) reconstructions of H.264/AVC with QP=18.

Fig. 5. Bitrate saving vs. QP curves.

6. CONCLUDING REMARKS

We present a video coding scheme based on spatio-temporal
texture synthesis. The encoder removes visually
unimportant blocks according to block categorization and
block-based motion estimation. Remaining parts of video
sequences are coded with H.264/AVC. The decoder
recovers the removed blocks with patch-wise spatio-
temporal texture synthesis. Inspired by image/video
inpainting technologies, we introduced new patch-matching
and filling-in algorithms to keep spatial and temporal
consistency of video sequences.

ACKNOWLEDGEMENTS

This work is supported by NSFC General Program under
contract No. 60672161, 863 Program under contract No.
2006AA01Z317, and NSFC Key Program under contract
No. 60632040. Also, we would like to thank Dong Liu for
his contributions and useful advices on this work.

REFERENCES

[1] A.A. Efros, and T.K. Leung, “Texture synthesis by non-
parametric sampling,” in Proceedings of International Conference
on Computer Vision, pp. 1033-1038, 1999.
[2] M. Bertalmio, A.L. Bertozzi, and G. Sapiro, “Navier-stokes,
fluid dynamics, and image and video inpainting,” in Proceedings
of International Conference on Computer Vision and Pattern
Recongnition, vol. 1, pp. 355-362, Hawaii, 2001.
[3] S.D. Rane, G. Sapiro, and M. Bertalmio, “Structure and
texture filling-in of missing image blocks in wireless transmission
and compression applications,” IEEE Trans. Image Processing,
vol.12, no. 3, pp. 296-303, Mar. 2003.
[4] A. Criminisi, P. Perez, and K. Toyama, “Region filling and
object removal by exemplar-based image inpainting,” IEEE
Transactions on Image Processing, Vol. 13, no. 9, Sept. 2004.
[5] P. Ndjiki-Nya, T. Hinz, A. Smolic and T. Wiegand, “A generic
and automatic content-based approach for improved H.264/MPEG-
AVC video coding,” IEEE International Conference on Image
Processing, vol. 2, pp. 874-877, Sept. 2005.
[6] C. Wang, X. Sun, F. Wu, and H. Xiong, “Image compression
with structure-aware inpainting,” in Proc. International Symposium
on Circuits and Systems 2006, pp. 1816-1819.
[7] L. Luo, F. Wu, S.P. Li, Z.X. Xiong, and Z.Q. Zhuang,
“Advanced motion threading for 3D wavelet video coding,” Signal
Processing: Image Communication, Vol. 19, Issue 7, pp. 601-616,
Aug. 2004.
[8] Y. Wexler, E. Shechtman, and M. Irani, “Space-time video
completion,” in Proc. Computer Vision and Pattern Recognition,
vol. 1, pp. 120-127, Jun. 2004.
[9] V. Kwatra, A.A. Schödl, I. Essa, G. Turk, and A. Bobick,
“Graphcut textures: image and video texture synthesis using graph
cuts,” in Proc. ACM SIGGRAPH 2003, pp. 277-286.
[10] P. Pérez, M. Ganganet, and A. Blake, “Poisson image editing,”
in Proc. ACM SIGGRAPH 2003, pp. 313-318.
[11] The H.264/AVC Joint Model, version 10.2.

115

