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Video Compression With Dense Motion Fields
Soo-Chul Han and Christine I. Podilchuk, Member, IEEE

Abstract—We propose a motion-compensated video coding
system employing dense motion fields. The dense motion field
is calculated at the transmitter, and the motion information is
efficiently encoded and transmitted along with the residual frame.
The motion estimation is performed by existing techniques in the
literature, while we focus on the coding of the motion field and the
displaced frame difference (DFD) frame. The dense motion field
formulation leads to several novel and distinct advantages. The
motion field is encoded in a lossy manner to make the motion rate
manageable. The more accurate and precise motion description
allows us to predict where the DFD energy will be significant, thus
leading to a more efficient DFD encoder compared to applying
traditional still-image coding techniques. Furthermore, the
dense motion field framework allows us to refine and tailor the
motion estimation process such that the resulting DFD frame is
easier to encode. Simulations demonstrate superior performance
against standard block-based coders, with greater advantages for
sequences with more complex motion.

Index Terms—Markov random field, motion compensation, mo-
tion field, video compression.

I. INTRODUCTION

RESEARCH in digital video compression has received
considerable attention over the last decade and has led to

several international standards. Most, if not all, video coding
schemes utilize motion compensation as a means of reducing
the temporal redundancy between neighboring frames, and it
has been widely established that motion compensated predic-
tion (MCP) improves the overall performance of video coding.
Many have investigated a wide variety of motion estimation
and compensation techniques in the hopes of improving coding
efficiency, computational complexity, scalability, and/or other
factors.

Among the many techniques introduced, the block-based mo-
tion estimation and compensation method has proven to be the
most popular due to its simplicity and minimal overhead infor-
mation. Indeed, improvement and refinement of the block-based
scheme has been a focal point of research and development in
the video compression community. However, there are several
inherent deficiencies with the block-based schemes, some of
which have been well publicized, and some which have not.
First, the block-based model fails to capture the true motion in
natural video. A number of researchers have pointed out this
problem, proposing alternative solutions such as variable-size
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block motion [1] and arbitrarily-shaped parametric motion rep-
resentations [2].

Another intrinsic problem with existing motion-compensated
predictive coders that is just beginning to draw attention is
the coding of the residual frame or displaced frame difference
(DFD). Typically, the DFD frame is encoded by applying trans-
form coding techniques such as the discrete cosine transform
(DCT), which theoretically and by design work well on still
images. However, such methods are quite inefficient on the
DFD frame, which consists predominantly of high-frequency
data. This is especially objectionable when one considers that
a good majority of the overall rate is spent on coding the DFD
frame in most applications of existing block-based coders.

Finally, few have studied the issue of relating the motion esti-
mation process and the DFD coding process. In most cases, the
motion estimation and compensation is performed,and thenthe
DFD coding is done. In other words, the motion estimation is
performed without explicit regard as to how the resulting DFD
frame will be encoded. For example, in the popular block-based
predictive video coders, the motion estimation is performed to
minimize a prediction error criterion such as the mean-square
error (MSE). Thus the motion estimation is merely trying to
get a best prediction in the mean-square sense, not taking into
account how the subsequent error frame will be encoded nor
whether it can be encoded efficiently. It would be beneficial
to somehow tailor the motion estimation such that the ensuing
DFD coding process is taken into account.

More recently, several authors have introduced forward
motion-compensated video coders (i.e., the motion information
is calculated at the encoder and transmitted) employing a
densemotion field [3]–[6]. However, they had limited success
in achieving good overall video coding performance, mainly
because they could not code the motion field down to the truly
densest level. All of them concentrate more on the process of
modeling and estimating the motion field itself, while relatively
simple and conventional schemes are used in the motion and
DFD coding. In [3], a dense motion field together with a
segmentation of the motion is found by Markov random field
(MRF) modeling. The dense motion is then represented by
fitting a parametric model to each region. No overall coding
results were given. In [4], a variation of Horn and Schunk’s
optical flow field [7] is applied to video coding with some
success. However, the proposed scheme have trouble going
down to the densest (pixel) level, and the resulting DFD is
encoded by intra-frame techniques. The authors in [5] also use
optical flow fields and apply morphology to reduce the dense
motion to a manageable scale. In [6], a dense motion field
based on Konrad and Dubois’ MRF formulation [8] is used.
Again, the motion rate becomes inhibitive to encode when
going down to the densest level.

1057–7149/01$10.00 © 2001 IEEE
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In this paper, we propose an overall video coding system that
employs dense motion fields. While we obtain the dense mo-
tion field using the well-known MRF formulation of [8], [6], we
concentrate mainly on the problem of coding the motion and the
subsequent DFD frame. Since a dense motion field takes up a
much greater percentage of the overall rate, it is imperative to
have a more efficient motion field encoder to show improved
performance over traditional block-based coders. Likewise, a
more accurate motion field should help us in modeling and en-
coding the motion-compensated residual frame. To our knowl-
edge, there has been little or no work done in these contexts.

Since it is impractical to transmit one unique motion vector
for every single pixel in an image, a variable-depth motion field
is found from the original motion field (the motion encoding is
thus lossy) [9]. This is followed by an efficient context-based
entropy coding of the motion vector values [10], where the con-
text is determined by both the magnitude and shape of the mo-
tion field in the spatio-temporal neighborhood. This allows us
to obtain an accurate and detailed motion representation with a
reasonable rate.

Our greatest gain in coding performance is in the modeling
and coding of the DFD or residual frame, where we introduce
two novel and distinct features. First, we take advantage of the
dense motion information to model and encode the DFD frame.
The dense motion field is a much more accurate representation
of the true motion, and is available at the decoder in the forward
motion-compensated framework. This information will help
us predict where the significant DFD energy will be located
(motion boundaries and uncovered regions). Although there
has been recent work to better model and code the DFD data
[11]–[14], all of them are within the block-based framework,
and thus do not explicitly use the motion information as we
do. Secondly, in the areas where the DFD energy is significant,
we will go back and refine the motion field estimate itself
with a new criterion to force the DFD values to be spatially
smooth, thus making the DFD frame easier to encode although
the overall MSE typically used for motion estimation actually
increases. This idea of tailoring the motion estimation criteria
to make the residual frame easier to encode has received little
attention. In [15], the authors achieve limited success using an
alternative block matching criterion which better models the
subsequent DCT coding of the residual.

The outline of the paper is as follows. In Section II, the MRF-
based motion estimation that we use is briefly reviewed. We
especially highlight the part that will be modified and refined
later in Section V as part of the DFD encoding process. Sec-
tion III explains the motion encoding scheme, which consists of
finding the variable-depth motion field and context-based en-
tropy coding. The DFD encoding is detailed in Section IV, fol-
lowed by the motion refinement stage in Section V. Simulation
results comparing our performance against that of a block-based
coder are given in Section VI. Finally, conclusions are drawn in
Section VII.

II. DENSEMOTION FIELD ESTIMATION

Although a number of dense motion field and optical flow
estimation techniques are available [16], we use the multiscale
motion estimation from [6] which was designed explicitly for

coding purposes. The algorithm in [6] is a modified version
of Konrad and Dubois’ original motion estimator [8] based on
Markov random fields (MRF). Namely, an extra scale dimen-
sion is added to the formulation such that the motion field is rep-
resented at multiple scales in a coarse-to-fine manner. The mo-
tion at a coarse level represents theaveragemotion of the cor-
responding pixels at the finer level. The finest scale represents
the dense (one motion vector for each pixel) level. The motion
vectors are found by Markov Random Field (MRF) formulation
on the four-dimensional lattice (spatio-temporalscale) with
local (in all four dimensions) smoothness constraints. Although
we refer the reader to [6], [8], [16] for most of the details, it is
worthwhile to note the likelihood function to be

(1)

where
normalizing constant;
current frame;
motion vector field;
pixel on the four-dimensional image grid;
set of all pixels.

This model represents the likelihood that the motion vectors
minimize the displaced frame difference. In Section V, we will
introduce a modification to this function that will improve the
DFD coding efficiency.

III. M OTION FIELD ENCODING

The full multiscale motion field results in a motion vector
at each pixel at all scales. Even though there is much redun-
dancy due to static regions and the smoothness constraint im-
posed during the motion estimation, the rate to code such a full
motion field is overwhelming when trying to incorporate it into
a motion-compensated video coder. We thus implement alossy
encoding of the motion information to reduce the bit-rate. This
involves two stages, the pruning of the motion field (this is the
lossy part), followed by a lossless entropy coder. We use the
generalized BFOS algorithm [17] for the pruning. Similar algo-
rithms were used in [18] for variable-sized block matching and
in [19] for hierarchical motion fields.

A. Pruning of Motion Field

Ideally, we would like to represent the motion on a coarse
basis in static and smooth regions, and on a finer level in regions
of complex motion and motion boundaries. We achieve this rep-
resentation in a rate-distortion sense by observing the tree struc-
ture of the multiscale motion field and applying a pruning algo-
rithm. The full tree is constructed from the full multiscale mo-
tion field, where each node of the tree represents a point on the
multiscale grid. The tree is initially populated at each node by
the rate and distortion values. The rate is estimated by the ze-
roth-order entropy, while the distortion at a node is taken to be
the motion-compensated prediction error when using the motion
vector associated with that node. The full tree is then pruned in
a rate-distortion sense via the generalized BFOS algorithm until
a desired rate or distortion constraint is met (see Fig. 1). Thus,
areas with relatively static or smooth motion will be pruned to
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Fig. 1. Multiscale motion field: (a) full motion field and (b) pruned field.

Fig. 2. “U-shaped scanning” of pruned motion field.

the coarsest scale, while fine motion vectors will be kept for
regions that need them in order to improve the motion-compen-
sated prediction. The generalized BFOS algorithm ensures that
we achieve the best segmentation in a rate-distortion sense. This
segmentation information is encoded as a quad-tree map and
transmitted as part of the motion rate.

B. Encoding the Pruned Motion Field

Once the pruned motion field is found, we gain further com-
pression by differentially encoding the motion vector compo-
nents. Since the map information is transmitted, only the mo-
tion vectors corresponding to the leaf nodes of the pruned tree
need to be encoded. The leaves are traversed in a “U-shaped
scan order” to take full advantage of the spatial correlation (see
Fig. 2), although a more elaborate traversal path could be used
[20]. The prediction at a given leaf node is taken to be the me-
dian of the adjacent “causal” neighbors.

We also take advantage of the fact that the map information
gives an indication of the spatial smoothness of the motion vec-
tors. For instance, in Fig. 2, we expect the prediction of point
to be relatively good, while point might be harder to predict
from its neighbors since we can expect motion discontinuity.
This is done by classifying the prediction into different classes
based on the magnitude of the prediction as well as the geometry
surrounding that point. The magnitude of the prediction,, is
compared against a thresholdfor significance, while the test
for geometry is based on whether all of the adjacent neighbors
from which the prediction is taken from are of the same scale.
For example, the point in Fig. 2 doesnot have all neighbors
of the same scale (we call this mixed scale), while pointdoes
(thus, uniform scale). This results in the following five classes:

1) all neighbor values are 0 and of uniform scale;
2) , uniform scale;
3) , uniform scale;
4) , mixed scale;
5) , mixed scale.

Fig. 3. DFD prediction and encoding strategy.

Fig. 4. DFD mask generator.

A separate adaptive arithmetic coder is then used to encode
the motion vectors for each class. The main motivation for sep-
arating the data into the different classes is to model the condi-
tional probability of symbols based on their surrounding neigh-
borhood. A similar idea was used in encoding block-based mo-
tion vectors in [10], where only the magnitude of the motion in
the causal neighborhood is considered in determining the con-
text. With our multiscale approach, we observed significant im-
provements by additionally incorporating the geometrical infor-
mation into the context classification, typically around 10% re-
duction in bit-rate in our experiments. Notice that no side infor-
mation is needed (i.e., this is a backward scheme) since the con-
text is uniquely determined from the “causal” neighbors and the
transmitted map information which is available at the decoder.

IV. ENCODING THE DFD FRAME

The basic idea of the DFD encoding scheme is to utilize the
dense motion field in predicting where the DFD energy will be
significant, and only coding the DFD values in these regions.
The overall scheme is given in Fig. 3. First, the motion com-
pensator builds a prediction of the current frame using the pre-
vious reconstructed frame and the dense motion field. We use
the encodedmotion vectors (using the algorithm developed in
Section III) so that the exact process can be duplicated at the
decoder. The DFD mask generator and the selective coder uses
this information in finding and encoding the significant DFD
energy.

A. DFD Mask Generator

The DFD mask generator uses both the motion information
(the encoded motion field) and the spatial information (the pre-
dicted frame), as shown in Fig. 4. In other words, we expect the
DFD energy to be significant around both motion-based discon-
tinuities as well as intensity-based edges. The generator outputs
a binary mask indicating where pixels with significant DFD en-
ergy are located.

The motion discontinuities are found initially by applying
the Sobel operator to the horizontal and vertical components of



1608 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 11, NOVEMBER 2001

Fig. 5. Mask expansion: (a) Diverging motion, (b) concurrent motion, and
(c) converging motion.

the motion field. We then possibly expand, or “thicken” these
boundaries depending on the directions and magnitudes of the
motion vectors at the edges. There are three types of motion dis-
continuities that we must differentiate, as illustrated in Fig. 5. In
the case of diverging motion [Fig. 5(a)], the two objects at the
boundaries are moving away from each other. Since we are pre-
dicting the current frame from the previous one, this is where
we expect to find uncovered regions. Thus, the mask is grown
in both directions normal to the boundary, with the thickness
determined by the magnitude of the motion vector in theop-
positedirection. In the case when the two objects are moving
in the same direction but at different magnitude [Fig. 5(b)], the
mask is grown only in the direction opposite the larger of the
two motion vectors. Finally, when two objects are converging,
as in Fig. 5(c), we do not expand the mask any further.

Since by definition DFD energy represents failure in motion
compensation, one would expect the DFD error to be signif-
icant only in the vicinity of motion discontinuities. However,
experiments showed significant DFD error along many inten-
sity-based edges even within regions with smooth or little mo-
tion. We compensated for this fact by finding the intensity-based
edges using the current predicted frame (which is available at
the decoder), and adding these edges to the DFD mask. Since
the transmitted dense motion field is relatively accurate, we are
able to obtain the edges from the motion-compensated predicted
frame. The Canny edge detector [21] was used in detecting the
edges.

B. Selective Coder

Using the DFD mask, the selective coder in Fig. 3 only en-
codes the DFD values within this mask. We use a backward
context-based adaptive arithmetic encoder to fully utilize the
motion and residual information in the spatio-temporal neigh-
borhood [22]. Since only encoded information was used in ob-
taining the DFD mask, the decoder can generate the exact same
mask without additional information. The decoder then recon-
structs the DFD frame using this mask and the decoded DFD
values by traversing through the pixels in the mask in a pre-de-
termined order.

V. REFINEMENT OF MOTION FIELD WITH

DFD SMOOTHNESSCRITERION

The DFD generator described in the previous section was suc-
cessful in predicting most of the significant DFD energy. How-
ever, we found there was very little spatial correlation among
neighboring DFD values in the mask, making it very difficult to
efficiently encode them. We also observed that the motion vec-
tors in these regions were quite unstable and highly fluctuating.
This led us to believe that the motion vectors we found from our
original formulation [8], [6] were not necessarily the best ones
in terms of coding both the motion field and the DFD.

Based on these observations, we introduced a motion refine-
ment stage that greatly increased the DFD encoding efficiency
and the performance of the overall coding scheme. In short, in-
stead of merely trying to minimize the DFD error in the motion
estimation process, we added a constraint to make the DFD en-
ergyspatially smooth. In other words, we altered the motion es-
timation process so that the resulting DFD frame is easier to en-
code. Tailoring the motion estimate in order to obtain a smooth
DFD which can be encoded efficiently as opposed to the more
standard approach of generating a motion estimate that only
minimizes DFD energy is key to the improved compression re-
sults we are able to get in this framework. Although the idea of
tailoring the motion estimation such that the resulting DFD en-
coding is made easier seems natural, we found very little work
with this line-of-thought [15].

More specifically, we add a second constraint to the likeli-
hood function in the original Markov Random Field (MRF) for-
mulation of [8], [6].

(2)

Here, is a set of neighborhood pixels of. We used the
first-order neighborhood in our experiments. The first term on
the right-hand side of (2) is the conventional likelihood function
from (1) in Section II that attempts to minimize the DFD for all
pixels. However, we have added a second term in Equation (2)
that simultaneously attempts to smooth the DFD values between
neighboring pixels.

This can be best illustrated with an example in Fig. 6. With
the conventional likelihood function of (1), the motion vector for
the current pixel in Fig. 6 would be chosen such that the DFD
for that pixel is minimized. We can clearly see that this would be
suboptimal, and that a better candidate would be one that would
make the DFD value similar to its neighbors. In some sense,
we are deliberately attempting toworsenthe motion-compen-
sated prediction in terms of mean-square error, but the resulting
residual frame will be much easier to encode.

In our overall scheme, this refinement was only carried out for
the motion vectors within the DFD mask, making the increase
in computation minimal. The pruning and coding of the refined
motion field is performed as in Section III. As can be expected,
the actual prediction errorincreasedin terms of mean-square
error. However, this was more than offset by the fact that the re-
sulting DFD was much smoother, thus making the context-based
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Fig. 6. Refinement of motion vectors.

coder much more effective. We also found that the rate needed
to encode the refined motion vectors was similar to encoding
the unrefined motion vectors.

VI. EXPERIMENTAL RESULTS

Simulations were performed on two test sequences,manya
and Football, both at SIF resolution (352 240) and 30
frames/sec.Manya is a typical head-and-shoulders sequence
with limited movement, whileFootballhas much more complex
motion. We present in order results of the motion estimation,
motion vector encoding, and the DFD coding, followed by
overall video coding performance.

A. Motion Estimation and Encoding

The MRF-based motion estimation as outlined in Section II
was carried out using deterministic relaxation [23] to make the
complexity manageable. The trade-off between the likelihood
function and the smoothness constraint was empirically found
by experiment. The estimation between two frames took about
20 minutes on an UltraSparc-1 machine. Fig. 8 shows the hor-
izontal and vertical components of the motion field between
frame 3 and frame 4 ofFootball (Fig. 7). Here, the magnitudes
were scaled for display purposes, with the darker shade repre-
senting negative motion, and the lighter color representing pos-
itive motion. We feel this method is better in conveying our mo-
tion field results more accurately, as opposed to the “arrows”
illustrations commonly used which can only describe the mo-
tion in a general sense.

This motion field was coded (the pruning makes this alossy
motion vector encoder) using the procedure described in Sec-
tion III, and the coded motion field is shown in Fig. 9. The
resulting rate to encode this particular motion field, with the
lossy step followed by the context-based arithmetic coder, was
5590 bits. The rate of the original uncoded motion vector field
of Fig. 8 was 18 856 bits, using lossless differential arithmetic
coding. For comparison, Fig. 10 shows the analogous motion
field when using fixed-size (16 16) block matching. The stan-
dard lossless encoding (spatial differencing followed by entropy
coding) of this motion field took 1790 bits.

We can see from Figs. 8 and 9 that the proposed motion vector
encoder does a good job of retaining most of the details of the
original dense motion field while at the same time reducing the

(a)

(b)

Fig. 7. Frames (a) 3 and (b) 4 ofFootball.

(a)

(b)

Fig. 8. Dense motion vector field (18856 bits).
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(a)

(b)

Fig. 9. Encoded dense motion vector field (5590 bits).

(a)

(b)

Fig. 10. Block-based motion vector field (1790 bits).

(a)

(b)

Fig. 11. (a) DFD values in significant mask and (b) remaining DFD values
outside mask.

bit-rate by a factor of more than 3 to 1. Also, comparing Figs. 9
and 10, the dense motion field formulation followed by lossy
coding results in motion vectors that are much more accurate
and true to the real motion as compared with results of the block-
based approach.

B. DFD Encoding

Using the encoded motion field and the predicted current
frame, the DFD encoding stage amounts to finding the DFD
mask and coding the DFD values inside the mask. Fig. 11 il-
lustrates this for the same frame ofFootball. Typically, the sig-
nificant DFD values occupied less that 8% of the entire frame
while capturing over 95% of the total DFD energy. Finally, to
increase the spatial correlation among the DFD values inside the
mask, the motion field was refined as described in Section V and
re-encoded. This lead to a 20–30% reduction in DFD coding rate
while the increase in motion vector rate was minimal.

C. Overall Coding Results

We compared our overall coding results against a coder with
motion vectors found by fixed-size block matching (half-pel ac-
curacy) and encoded using standard entropy coding, followed
by 8 8 DCT coding of the residual. For both cases, a group of
pictures (GOP) of 15 was used, with an initialframe (encoded
by a wavelet coder) followed by 14 frames.

Fig. 12 shows PSNR plot comparing the two methods, while
Tables I and II summarize the average PSNR and the relative



HAN AND PODILCHUK: VIDEO COMPRESSION WITH DENSE MOTION FIELDS 1611

(a)

(b)

Fig. 12. PSNR comparison.

TABLE I
PSNR RESULTS FORFOOTBALLAT 1.2 Mbps

TABLE II
PSNR RESULTS FORMANYAAT 124 kbps

motion vector rates. We can see the superiority of our proposed
video coder employing the dense motion field, especially for
Football, which has relatively large and complex motion. The
advantage is more dramatic as the number of consecutive
frames grows, where the dense motion field continues to provide
accurate prediction. Furthermore, note that the motion vector in-
formation takes up a much larger percentage of the overall rate
(denoted by MV% in Tables I and II), especially forFootball.

VII. CONCLUSIONS

We have introduced a forward motion-compensated video
coding scheme employing dense motion fields as an alternative
to the popular block-based methods. The high-quality dense mo-
tion field is found by existing techniques, while we concentrate
on the coding of the motion information and the motion-com-
pensated residual. The motion field is encoded in a lossy fashion
such that the fine motion information is retained only where it
is beneficial in the rate-distortion sense. The motion informa-
tion is then used to improve the residual frame coding by pre-
dicting where the significant DFD energy will be located. Fur-
thermore, the motion field itself is refined in these regions such
that the DFD is smoother and thus easier to encode. We feel this
last step is an important ingredient in the overall framework and
can be regarded as a step toward bridging the motion estimation
process and the DFD coding process.
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