
 Open access Journal Article DOI:10.1109/TIP.2014.2344294

Video compressive sensing using Gaussian mixture models. — Source link

Jianbo Yang, Xin Yuan, Xuejun Liao, Patrick Llull ...+3 more authors

Institutions: Duke University

Published on: 30 Jul 2014 - IEEE Transactions on Image Processing (IEEE)

Topics: Video camera and Mixture model

Related papers:

 Compressed sensing

 Coded aperture compressive temporal imaging

 Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information

 P2C2: Programmable pixel compressive camera for high speed imaging

 Low-Cost Compressive Sensing for Color Video and Depth

Share this paper:

View more about this paper here: https://typeset.io/papers/video-compressive-sensing-using-gaussian-mixture-models-
4sedskfs9z

https://typeset.io/
https://www.doi.org/10.1109/TIP.2014.2344294
https://typeset.io/papers/video-compressive-sensing-using-gaussian-mixture-models-4sedskfs9z
https://typeset.io/authors/jianbo-yang-1djb1114so
https://typeset.io/authors/xin-yuan-3qb40c14ft
https://typeset.io/authors/xuejun-liao-2meoef2zrz
https://typeset.io/authors/patrick-llull-2m6t8k7pih
https://typeset.io/institutions/duke-university-2i50v772
https://typeset.io/journals/ieee-transactions-on-image-processing-2awu425s
https://typeset.io/topics/video-camera-dobi9w66
https://typeset.io/topics/mixture-model-23vzt5yw
https://typeset.io/papers/compressed-sensing-3z461x7qos
https://typeset.io/papers/coded-aperture-compressive-temporal-imaging-1oe7ani75o
https://typeset.io/papers/robust-uncertainty-principles-exact-signal-reconstruction-32lo4m4643
https://typeset.io/papers/p2c2-programmable-pixel-compressive-camera-for-high-speed-3tqlp4ugv1
https://typeset.io/papers/low-cost-compressive-sensing-for-color-video-and-depth-1d3vxb20r5
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/video-compressive-sensing-using-gaussian-mixture-models-4sedskfs9z
https://twitter.com/intent/tweet?text=Video%20compressive%20sensing%20using%20Gaussian%20mixture%20models.&url=https://typeset.io/papers/video-compressive-sensing-using-gaussian-mixture-models-4sedskfs9z
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/video-compressive-sensing-using-gaussian-mixture-models-4sedskfs9z
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/video-compressive-sensing-using-gaussian-mixture-models-4sedskfs9z
https://typeset.io/papers/video-compressive-sensing-using-gaussian-mixture-models-4sedskfs9z

1

Video Compressive Sensing Using

Gaussian Mixture Models
Jianbo Yang, Xin Yuan, Xuejun Liao, Patrick Llull, David J. Brady, Guillermo Sapiro and Lawrence Carin

Abstract—A Gaussian mixture model (GMM) based algorithm
is proposed for video reconstruction from temporally-compressed
video measurements. The GMM is used to model spatio-temporal
video patches, and the reconstruction can be efficiently computed
based on analytic expressions. The GMM-based inversion method
benefits from online adaptive learning and parallel computation.
We demonstrate the efficacy of the proposed inversion method
with videos reconstructed from simulated compressive video
measurements, and from a real compressive video camera. We
also use the GMM as a tool to investigate adaptive video
compressive sensing, i.e., adaptive rate of temporal compression.

Index Terms—Compressive sensing, Gaussian mixture model,
online learning, coded aperture compressive temporal imaging
(CACTI), blind compressive sensing, dictionary learning, union-
of-subspace model

I. INTRODUCTION

High-speed video cameras play an important role in cap-

turing fast motion, of interest in many applications, from

science to athletics. However, measuring high-speed video

often presents a challenge to camera design. So motivated,

compressive sensing (CS) [1, 2] has recently been employed

to capture the information in high-frame-rate video using low-

frame-rate compressive measurements [3, 4, 5].

In this paper we develop a Gaussian mixture model (GMM)

based inversion method for video measured with a CS camera,

of the type considered in [3, 4, 5]. The inversion is proba-

bilistic, providing a posterior distribution for the reconstructed

video. Compared with other probabilistic algorithms [6, 7],

the proposed method is computationally attractive, as it yields

analytic CS inversion and is readily amenable to parallel com-

putation. Moreover, on account of the temporal-dependence

properties of video data, we proposed an online learning

algorithm to update the GMM parameters as the reconstruction

proceeds, so that the need of training data is minimized. In

addition to considering CS video reconstruction, we address

an important issue in compressive sensing, i.e., measurement

adaptivity. Specifically, we propose a method to adapt the

temporal compression rate based upon the complexity of the

scene.

A. Previous Work

Significant progress in video CS has been made with a

single-pixel camera [8, 9, 10, 11], based on representing a

video in the Fourier domain [12] or the wavelet domain [13].

The authors are with Electrical & Computer Engineering Department, Duke
University, Durham, NC 27708-0291.

More recent video CS cameras [3, 4, 14] began to incorporate

temporal compression into the systems, employing the tech-

nique of coded exposure photography [15, 16, 17, 18]. In par-

ticular, [3] introduced the per-pixel programmable compressive

camera (P2C2) and used an optical flow-based algorithm for

reconstruction. The idea was developed further in [4], where

a dictionary-based inversion algorithm is used to improve

reconstruction and staggered per-pixel electronic shutters are

used to facilitate implementation by today’s Complementary

Metal Oxide Semiconductor (CMOS) technology. Built upon

the concept of [3, 4], the coded aperture compressive tempo-

ral imaging (CACTI) camera introduced in [5, 19] features

a mechanically-translated coding element, which modulates

high-speed motion at low power and cost.

The focus of this paper is on new video reconstruction

algorithms. A number of inversion algorithms have been

developed for video CS in the past few years. Wakin et al. [13]

used a 3D wavelet based inversion algorithm to achieve video

CS for single-pixel cameras. A more sophisticated method

was developed in [20], where the evolution of a scene is

modeled by a linear dynamical system (LDS) and the LDS’s

parameters are estimated from the compressive measurements.

Park and Wakin [21, 22] developed a coarse-to-fine algorithm

which alternates between temporal motion estimation and

spatial frame reconstruction in the wavelet-domain. In [23]

an algorithm for estimating optical flow between images was

described, and it was used for video reconstruction in [3].

Besides [3], Mun and Fowler [24] used optical flow to estimate

the motion field of the video frames, and the estimation is

performed alongside reconstruction of the video frames.

Other popular algorithms for video CS have been based on

total variation (TV) [14, 25] and dictionary learning [4, 14].

TV methods assume that the gradient of each video frame is

sparse and attempts to minimize the ℓp norm of the gradient

frames summed over all time steps. Dictionary-based methods

represent each video patch as a sparse linear expansion in

the dictionary elements. The dictionary is often learned offline

from training video and the sparse coefficients of a video patch

can be achieved by sparse-coding algorithms. The video inver-

sion algorithm proposed in this paper is based on a Gaussian

mixture model of spatiotemporal patches, and its connection

to dictionary-based algorithms is presented in Section III-C.

B. Gaussian Mixture Model

The GMM is used widely in various learning tasks, includ-

ing classification and segmentation [26, 27], as well as image

denoising, inpainting and deblurring [28, 29]. Recent work has

2

demonstrated that the GMM is also a powerful tool for image

reconstruction in still-image CS [28, 30].

In this paper we extend the GMM to compressive video.

Specifically, when performing CS inversion, the video’s pixel

volume is divided into a set of space-time patches. All pixels

within a patch are assumed drawn (at once) from a GMM. The

covariance matrix of each mixture component defines a linear

subspace (like in principal component analysis), and therefore

the GMM representation is closely related to the union-of-

subspace model [31, 32, 33]. Within the GMM construction,

each patch of data is effectively assumed drawn from one of

the subspaces, from among the union of subspaces. The pos-

terior distribution for the underlying data associated with the

compressive measurement of the patch is shown here to also

be an (updated) GMM; thus, the estimated video is a weighted

average across multiple of the subspaces in the union. The con-

nection of the GMM to a union of subspaces links the proposed

approach to dictionary-learning-based CS inversion [4]. The

advantage of using the GMM over dictionary-learning-based

approaches is, as demonstrated below, that the CS inversion

is analytic (the posterior distribution on the underlying patch

pixels is represented by an updated GMM, with analytic

parameter update).

In previous dictionary learning [4] and GMM-based CS

inversion [30], it was assumed that the dictionary/GMM was

learned offline. This assumes that one has access to an

appropriate set of training data. To address this limitation, we

propose an online-updated GMM algorithm, that adapts the

GMM parameters as the reconstruction proceeds. We demon-

strate that online updates of the underlying GMM mitigates

the need for training data, as after sufficient data are observed

the data under test drives the GMM, not prior training data.

C. Measurement Adaptivity

Studies have shown that improved CS performance can be

achieved when projection/measurement matrices are designed

to adapt to the underlying signal of interest [34, 35]. All of

this previous work has been developed for CS measurement

of a single image. After exhaustive study of this matter, we

found that within the constraints imposed by the form of

the compressive video cameras discussed above (e.g., positive

codes), there is only modest gain accrued in trying to optimize

the coding mask, relative to just employing random design.

Variations of the methods in [34, 35] were examined in

detail, and this was determined to not be a fruitful research

direction (for video reconstruction under realistic hardware

design constraints).

However, a second opportunity for adaptivity concerns the

details of the designed video CS cameras considered in [3,

4, 5]. In each of these cameras, the high-speed video frames

are coded with a mask, and then the coded frames over time

window ∆t are summed to constitute a single measurement.

The appropriate value for ∆t may vary depending on what is

happening in the scene, and therefore there is an opportunity

for adaptivity. We consider such adaptivity in the context of

the framework proposed here.

t

Modulated

image

Original

video

Hadamard

product

Shifting

mask

= = = =

Frame 1 Frame 2 Frame 3 Frame T

+ + +

+ + +

=

=

Conventional capture

CACTI coded capture

 One integration period

1 2 3 4... 1 2 3 4... 1 2 3 4...

Fig. 1. Illustration of the coding mechanisms within the CACTI hardware

system. The first row depicts T original video frames; the second row denotes

the mask with which each frame is multiplied (black is zero, white is one).

In CACTI, the same code is shifted to constitute a series of frame-dependent

codes. Note that the positions of columns 1,2,3,4... of the mask are translated

in one integration period. Finally, the T frames are summed to constitute one

measurement, as shown at the right-bottom.

D. Paper Organization

The remainder of the paper is organized as follows. Section

II introduces the CACTI compressive video camera that we

will use to motivate our simulated experiments, and it will also

be a source of real data. GMM-based CS inversion for video

is developed in Section III. Section IV considers adapting ∆t

based on the inferred complexity of the scene under test. An

extensive set of experimental results are presented in Section

V, and Section VI provides conclusions and suggestions for

future work.

II. CODED APERTURE COMPRESSIVE TEMPORAL

IMAGING (CACTI)

The CACTI measurement framework is summarized in Fig.

1, and it is this system to which all experiments below are

applied. The proposed modeling and inversion framework

may also be applied to data collected by related compressive

video cameras [3, 4]. The distinction between CACTI and the

cameras in [3, 4] is manifested in how the coding process

(middle row of Figure 1) is implemented. In [3, 4] a Liquid-

Crystal-on-Silicon (LCoS) device is employed to achieve per-

pixel modulation, which affords greater coding flexibility

than the proposed approach, but at greater implementation

complexity. In CACTI, a single binary code is employed; this

code is mechanically shifted via a pizeoelectronic translator.

The single binary code to be shifted is designed by randomly

drawing 1/0 values at every pixel value, with a 0.5 probability

of a 1. The 0.5 probability was found to give best perfor-

mance. In numerical experiments, we considered the case

for which each of the codes on the second row of Figure

1 were drawn uniformly at random (not translating a single

mask), to examine the performance degradation manifested

by requiring the translation of the same shifted code (as

actually implemented in CACTI). In those experiments, it

was found that the CACTI design yielded almost as good

CS recovery performance as the totally random design (each

frame coded with a uniquely drawn random code). Therefore,

the CACTI design manifests significant ease and simplicity of

implementation, with minimal degradation in performance.

3

To explain the measurement process mathematically, con-

sider a two-dimensional datacube, with one spatial dimension,

s, and time t. In the actual camera the datacube is three-

dimensional, with two spatial dimensions. Let x(s, t) represent

the continuous space-time datacube that we wish to measure.

The function T (s) represents the fixed binary code, which

is a function of space dimension s; the spatial translation of

the code is characterized by the function s̃(t). The discrete

measurement at space-time point (s̄, t̄) is represented as

g(s̄, t̄) =

∫∫

x(s, t)T [s−s̃(t)]rect

(
s− s̄

∆s

)

rect

(
t− t̄

∆t

)

dsdt,

where rect[(s− s̄)/∆s] is a rectangular window function that

has unit amplitude over spatial support ∆s centered at s̄,

and it is zero elsewhere (and similarly for the temporal rect

function). In this setup the spatial coding rate on the mask

T (s) could be different from that of the sampling system,

denoted by ∆s. In the actual CACTI camera we consider

below, the size of the pixels in the code T (s) are the same

as ∆s, and CS decompression is performed on the scale of

∆s. This implies that there is no spatial compression in the

system, with compression manifested in time, as detailed next.

The goal is to perform approximate recovery of x(s, t) for

t ∈ [t̄ −∆t/2, t̄ +∆t/2], based upon measuring g(s̄, t̄). The

recovered x(s, t) is discretized in space and time. The spatial

sampling rate is ∆s, with the discrete spatial samples centered

at all spatial measurement points s̄. Concerning the temporal

sampling rate of the recovered data cube, consider x(s, nδt)
for δt = ∆t/T , and n = 1, . . . , T ; these correspond to the

underlying datacube at T discrete points in time. When we

convert the inversion problem into a linear matrix, the question

concerns choice of T , which defines the number of frames

to be estimated from a single compressive measurement that

integrates over time ∆t.

Recall that the mask/code in CACTI is moving continuously

as a function of time, as dictated by s̃(t). Therefore, we must

choose T large enough such that the mask is approximately

fixed in space over time period δt (to justify our conversion to

a matrix equation, as discussed next). On the other hand, if T is

made too large, the number of unknowns to be recovered may

become excessive. To clarify these points, we next express the

inversion problem explicitly in matrix form; for that we move

to the actual three-dimensional datacube of interest.

Let X ∈ R
Nx×Ny×T represent the underlying discretized

datacube to be recovered; the spatial sampling rate, that

defines Nx and Ny , is specified by the hardware sampling

rate ∆s. As discussed above, T is a parameter that may be set,

which impacts the accuracy of the approximate linear-equation

representation of the system. Toward that linear equation, let

Y ∈ R
Nx×Ny represent the two-dimensional discrete CACTI

measurement, corresponding to one measurement window ∆t.

The relationship between the pixels of X and those of Y is

specified as

Yi,j = [Ai,j,1 Ai,j,2 · · · Ai,j,T] [Xi,j,1,Xi,j,2, . . . ,Xi,j,T]
′

(1)

where ′ denotes the transpose of a vector, Yi,j is component

(i, j) of Y and Xi,j,n is associated with the same spatial pixels

(i, j), and temporal bin n. The components Ai,j,n ∈ {0, 1}, as

dictated by the binary mask, and it is assumed that the mask

is approximately fixed in space over time period δt = ∆t/T ,

as discussed above. Therefore, within the approximations

specified, each pixel in Y constitutes a weighted sum of the

corresponding pixels in the T frames of X, where the weights

are binary.

Anticipating the inversion algorithm to be considered in the

next section, we partition Y into a set of patches, where each

square patch is composed of P 2 contiguous pixels. We may

consider all possible overlapping patches, and let ym represent

the mth patch. For each m, we may write ym = Φmxm where

ym ∈ R
P 2

, xm ∈ R
P 2T , and Φm ∈ {0, 1}P

2
×P 2T , where the

pixels in two-dimensional (ym) and three-dimensional (xm)

settings have been “vectorized.”

For each m, the objective is to recover xm based upon the

measured ym. Since the dimension of the item to be inferred

is much larger than that of the associated measurement, this

inversion is ill-posed unless constraints or prior knowledge is

imposed with respect to xm. This is done in the context of a

Gaussian mixture model (GMM).

III. GAUSSIAN MIXTURE MODEL FOR VIDEO

RECONSTRUCTION

A. GMM-Based Inversion

Consider a total of M two-dimensional measurement patch-

es {ym}m=1,M , each of which has an associated three-

dimensional space-time signal xm that we wish to recover.

Each of the inversions are performed independently, and there-

fore there is significant opportunity for parallel acceleration.

The final estimate of any pixel in X is its average from all

recovered patches in which it resides. Each measurement may

be expressed as

ym = Φmxm + ǫm, ∀ m = 1, · · · ,M, (2)

where we now consider measurement noise, and/or model

mismatch error ǫm ∈ R
P 2

.

In the analysis that follows, we assume that the GMM rep-

resentation for xm corresponds to a P 2T -dimensional signal,

where we recall that T temporal frames are recovered for each

CS measurements. We may alternatively assume xm ∈ R
P 2T0 ,

where T0 = nT , for n > 1. In this case multiple temporal CS

measurements are employed to recover the underlying xm.

We assume xm is drawn from a GMM, as

xm ∼
K∑

k=1

λkN (xm|µk,Σk), (3)

where µk, Σk, and λk are the mean, covariance matrix, and

weight of the kth Gaussian component, respectively (λk > 0
and

∑K

k=1
λk = 1). These parameters can be estimated

by the expectation-maximization (EM) [36] algorithm, based

on training video patches. One may also employ more-

sophisticated approaches, such as nonparametric Bayesian

models [30, 37], to estimate the GMM parameters, from

which an appropriate number of mixture components K can

be inferred. Here we simply set K, and the EM algorithm

4

is employed. The GMM in (3) constitutes our prior for the

underlying xm.

Concerning the measurement model, it is assumed that

ǫm ∼ N (ǫm|0,R), where R is a P 2×P 2 covariance matrix,

and therefore

ym|xm ∼ N (ym|Φmxm,R), (4)

Applying Bayes’ rule results in the posterior

p(xm|ym) =

K∑

k=1

λ̃mkN (xm|µ̃mk, Σ̃mk), (5)

with

λ̃mk =
λkN (ym|Φmµk,R+ΦmΣkΦ

T
m)

∑K

l=1
λlN (ym|Φmµl,R+ΦmΣlΦ

T
m)

, (6)

Σ̃mk = (ΦT
mR−1Φm +Σ−1

k)−1,

µ̃mk = Σ̃mk(Φ
T
mR−1ym +Σ−1

k µk), (7)

which is also a GMM [30]. The analytic inversion expression

(5) results in efficient reconstruction of every patch.

The posterior distribution on xm is of interest for charac-

terizing confidence in the inversion. We often are interested in

reporting a single estimate of the underlying signal, and for

this we may employ the conditional expectation:

E(xm|ym) =

∫

xmp(xm|ym)dxm =
K∑

k=1

λ̃mkµ̃mk

def
= x̃m.

(8)

We term this implementation of the above framework offline

GMM-based inversion, as all patches use the same offline-

learned GMM parameters for the prior (which assumes ap-

propriate training videos).

B. Online-Updated GMM for Video Reconstruction

Though the GMM-based inversion based on an offline-

learned GMM effectively reconstructs CS-measured video, this

implementation does not explicitly exploit temporal depen-

dence among patches, and it assumes appropriate training

data D0 (analogous to previous dictionary-learning based

inversion, in which the dictionary was learned offline [4]).

The inversion algorithm recovers video in patches, and the

temporal length of each patch is T0, recalling that T0 is a

multiple of T . Let D0 represent the patches in the training

data, and Dl represents the recovered patches with support

within time window (l−1)T0 < t ≤ lT0, for l = 1, . . . , L−1.

Based on {D0,D1, . . . ,DL−1}, we wish to update the GMM

prior, for use when performing inversion of CS-measured

patches within the time window (L−1)T0 < t ≤ LT0. Clearly

the amount of data grows with increasing L, and therefore

we wish to prune the data used for GMM learning, with an

emphasis on the most recent data.

Assume that ML represents the total number of video

patches we wish to train the GMM with. We may define

πl ∈ (0, 1) with
∑L−1

l=0
πl = 1, and sample [πlML] patches

from Dl, uniformly at random, where [·] represents the nearest

integer. By making πl < πl+1, the model emphasizes more

Algorithm 1 The GMM-based Reconstruction Algorithm

Input: Measurements Y, projection matrix Φ and integra-

tion window T .

Output: The reconstructed video X.

1. Initialize the GMM parameters by running EM algorithm

based on training data D0. Let T0 = nT , and n is an integer

set by user.

2. Let l = 1.

repeat

3. Reconstruct video patches in Dl with support within

time window (l−1)T0 < t < lT0, based on the inversion

formula (5).

4. Update the GMM parameters according to the proce-

dure in Section III.B (only for the online-updated GMM

method).

5. Convert video patches in Dl into a video clip and put

this video clip into the corresponding position in X.

until All measurements are used, i.e., l = L.

recent data over later data, and eventually the original training

data D0 becomes irrelevant.

The parameters {πl} are here defined by setting ξl = (l+1)κ

and πl = ξl/
∑L−1

l′=0
ξl′ , where κ ∈ [0,∞] controls the decay

rate of influence on the adapted GMM. A similar strategy has

been used in online latent Dirichlet allocation (LDA) [38] and

online beta process factor analyzer (BPFA) [39].

There are many ways in which such adaptivity may be

performed, and by which the sets {D0,D1, . . . ,DL−1} may

be defined. For example, a given batch of data Dl may

consider patches within time windows that are larger than T0.

Further, rather than adapting the GMM continuously, which

may be expensive, the GMM may be updated after periodically

specified intervals. As validated in the numerical experiments,

the online-updated GMM method can mitigate the need for

training data, as after sufficient data are observed, the data

under test drives the GMM, not the prior training data.

The sketch of the proposed GMM-based CS reconstruction

algorithm is shown in Algorithm 1.

C. Connections to Existing CS Inversion Methods

1) Dictionary Learning: Dictionary learning has achieved

success in image CS reconstruction [6, 40, 41] and has been

recently applied to invert compressive video measurements [4].

In these methods, an overcomplete dictionary W ∈ R
dx×I

(I > dx) is considered for representation of the signal

x ∈ R
dx , with a sparse vector of dictionary coefficients

f ∈ R
I , i.e., x = Wf + ǫ. The dictionary W is dataset-

specific, and its superiority over universal bases such as the

discrete cosine transform (DCT) and the wavelet transform

has been demonstrated in various image and video applica-

tions [4, 6, 28, 40, 41]. State-of-the-art dictionary learning

methods include K-SVD [40], method of optimal directions

(MOD) [42] and beta process factor analysis (BPFA) [6],

among others. Extending these dictionary learning approaches,

block-structured dictionary learning (BSDL) has recently been

considered. In BSDL, the signal is assumed to be drawn

5

from a union of a small number of disjoint subspaces. The

recent BSDL methods, such as Block BP [31], Block OMP

[32], group LASSO [43], block sparse dictionary optimization

(BSDO) [44] have yielded favorable results over standard

dictionary learning methods. It is worth noting that most

existing dictionary learning methods have high computational

cost, in particular when compared with the GMM learning

and reconstruction procedure. This computational problem is

exacerbated in BSDL, as the block structure of dictionaries

needs to be determined additionally [44].

We now illustrate that the GMM-based inversion method is

related to dictionary learning, BSDL in particular. Recall (8)

that the reconstruction x̃ yielded by the GMM-based inversion

method is expressed by x̃ =
∑K

k=1
λ̃kµ̃k. For convenience, we

rewrite the mode µ̃k as

µ̃k = Σ̃k(Φ
TR−1y +Σ−1

k
µk) (9)

= Ek Λ
1

2

k
[I +Λ

1

2

k
(ΦEk)

TR−1ΦEkΛ
1

2

k
]−1Λ

1

2

k
(ΦEk)

TR−1y
︸ ︷︷ ︸

def
= fk

+EkΛ
1

2

k
[I +Λ

1

2

k
(ΦEk)

TR−1ΦEkΛ
1

2

k
]−1Λ

−

1

2

k
ET

k µk
︸ ︷︷ ︸

def
= ηk

(10)

= Ekfk + ηk, (11)

in which the matrix inversion lemma and eigenvalue decom-

position Σk = EkΛkE
T
k are used.

When rewriting (11) as µ̃k−ηk = Ekfk, the residual of µ̃k

and ηk can be represented by a sparse representation fk on

the base Ek. Herein, Ek contains eigenvectors of covariance

matrix of the kth Gaussian component. According to (10),

the representationfk can also be written as fk = [Λ−1

k +
(ΦEk)

TR−1ΦEk]
−1(ΦEk)

TR−1y, and this implies that fk

is estimated by the weighted ℓ2-norm regularized regression,

fk = argmin
f

(
‖y −ΦEkf‖

2
2 + σ2f ′Λ−1

k f
)
, (12)

assuming R = σ2I, σ ∈ R. Since eigenvalues contained in

Λk are dominated by a few elements [45], the solution fk in

(12) is a sparse vector. It is easy to verify the sparsity of fk

in (10).

Based on the above analysis, the proposed GMM-based

inversion method resembles dictionary learning. After apply-

ing the derivation in (9) - (11) for all µ̃k, k = 1, . . . ,K,

the dictionary W can be set as a union of K bases, i.e.,
W = E1 ∪ · · · ∪ EK . However, rather than treat K bases

E1 . . .EK equally like BSDL, GMM-based inversion uses the

probabilistic weights λ1, . . . , λK to specify the importance of

the K bases. These weights are involved in the inversion pro-

cedure as indicated by λ̃1, . . . , λ̃K in (5). Note that λ1, . . . , λK

are generally not sparse, while λ̃1, . . . , λ̃K are often sparse.

This implies that a patch to be reconstructed can be drawn

from a probabilistic union of a few of K subspaces; each

subspace is spanned by the leading eigenvectors of the cor-

responding component’s covariance matrix. The GMM-based

inversion method simultaneously fulfills the following three

tasks: dictionary learning, determination of block structure,

and sparse signal representation. The associated computation

is very fast due to the analytic inversion in (5).

2) Piecewise Linear Estimator: Piecewise Linear Estima-

tors (PLE) [28, 46] constitute another recent GMM-based

inversion method used for still-image compressive sensing. By

dividing the image signal into a collection of P × P patches,

PLE also models the image patch to be reconstructed by a

GMM. Given the compressed measurement of each patch, the

image patch can be reconstructed based on a Wiener filter, that

also enjoys an analytic form.

Though the basic idea of PLE is similar to that of the

proposed method, there are the following important differences

between PLE and the proposed method: (i) PLE constrains that

the reconstructed patch is drawn from one of the K Gaussian

distributions. Equivalently, PLE assumes one-block sparsity

in BSDL. This hard assignment is different from our soft

assignment as shown in (8). In the experiments of video CS,

we observe that more than one Gaussian components often

contribute to reconstructing a video patch. (ii) PLE employs a

different initialization procedure, by exploiting the particular

properties of images. Specifically, as claimed in [28, 46], a

2D image patch often has certain patterns, such as dominant

spatial directions. Thus, in the initialization of PLE, K − 1
Gaussian components correspond to K − 1 angles that are

uniformly sampled from 0 to π. The PCA spaces of these K−1
components are learned based on the synthetic directional

image patches. The Kth Gaussian component employing the

DCT as the basis captures the isotropic image patterns. This

initialization strategy is not straightforward to extend to the

video case, as it is not clear how to define the dominant

direction for a 3D video patch, especially when T0 is large.

PLE is also similar to BSDL in the sense that all K Gaussian

components are treated equally. If one writes the GMM prior

of PLE in the form (3), it leads to λ1 = λ2 = · · · = λK , which

is not the case for the proposed GMM-based inversion method.

(iii) In PLE, the GMM’s K components are separately tackled

in the procedures of initialization, parameters adaptation, and

inversion. By contrast, in the proposed GMM-based inversion

method, the K Gaussian components are always jointly in-

volved in these three procedures.

D. Computational Complexity

We analyze the computational complexity of the proposed

GMM-based inversion method. As the online GMM method

presented in Section III-B iterates over different time windows,

we focus on the computational complexity within one of

them. Also, we describe the computational complexity in

two different scenarios: standard computation and accelerated

computation.

1) Standard Computation: For convenience, we rewrite

parameters of (5) as below:

Σ̃k =Σk −ΣkΦ
T (R+ΦΣkΦ

T)−1

︸ ︷︷ ︸

def
=A

ΦΣk; (13)

µ̃k =ΣkΦ
T (R+ΦΣkΦ

T)−1

︸ ︷︷ ︸

=A

(y −Φµk) + µk. (14)

The proposed GMM-based inversion method includes two

parts: EM model learning and patch-based inversion. The EM

6

TABLE I
THE COMPUTATIONAL COSTS OF THE PROPOSED GMM-BASED INVERSION

METHOD FOR CASES OF STANDARD AND ACCELERATED COMPUTATION. K
IS THE NUMBER OF GMM COMPONENTS, ML IS THE NUMBER OF

SAMPLES USED IN EM TRAINING IN THE Lth TIME WINDOW.

Scenario 1:

Standard Computation

Patch-independent (for all patches in an integration window)

EM algorithm O(MLKd2x) [47])

Patch-dependent (for one patch)

Compute A O(Kd3y/3) [28]

Compute (13) and (14) without A O(Kdydx)
Compute (6) without A O(Kd2y)

Scenario 2:

Accelerated Computation

Patch-independent (for all patches in an integration window)

EM algorithm O(MLKd2x))

Eigendecomposition O(Kd3x)
Patch-dependent (for one patch)

Compute G O(Kh3
k
/3)

Compute (15) and (16) without G O(Khkdx)
Compute (6) without G O(Khkdy)

algorithm is called once for every T0 frames reconstruction.

Particularly, in offline learning, it is only called once for

the entire video reconstruction. For the part of patch-based

inversion, the analytic form exists as shown in (5), and the

main cost lies in matrix inversion for computing A in (6), (13)

and (14), whose computational cost is
d3

x

3
+ d2x ≈ d3

x

3
using

Cholesky factorization [48]. Here, we assume the dimensions

of y and x are dy and dx respectively. Note that the Φ

involved in matrix multiplication can be computed very fast,

since every column of Φ has at most only one nonzero element

as mentioned in Section II and detailed in [5]. A summary of

the computational costs for standard computation is listed in

Scenario 1 of Table I.

Note that when the covariance matrix R and projection

matrix Φ are translation-invariant with respect to patches, A

can be pre-computed and pre-stored. As a result, in “standard

computation” section of Table I, the first row in the “Patch-

dependent” part are moved to the “Patch-independent” part

and the total computational cost in the “Patch-dependent” part

reduces from O(Kd3y/3+Kd2y+Kdydx) to O(Kd2y+Kdydx),
which saves a lot of computation and memory.

2) Accelerated Computation: Using the derivation in (9),

we can rewrite Σ̃k and µ̃k as

Σ̃k = EkΛ
1

2

k
[I +Λ

1

2

k
(ΦEk)

TR−1ΦEkΛ
1

2

k
]−1

︸ ︷︷ ︸

def
= G

Λ
1

2

k
, (15)

µ̃k = EkΛ
1

2

k
[I +Λ

1

2

k
(ΦEk)

TR−1ΦEkΛ
1

2

k
]−1

︸ ︷︷ ︸

=G

Λ
1

2

k
(ΦEk)

TR−1y

+EkΛ
1

2

k
[I +Λ

1

2

k
(ΦEk)

TR−1ΦEkΛ
1

2

k
]−1

︸ ︷︷ ︸

=G

Λ
−

1

2

k
ET

k µk. (16)

For convenience, denote the number of significant nonzeros

eigenvalues in Λk by hk (hk ≪ dx, dy).

As before, we categorize the computations into the patch-

independent and patch-dependant parts. Besides the EM al-

gorithm, the patch-independent part also includes the eigen-

decomposition operation for all K Gaussian components,

Σk = EkΛkE
T
k , ∀k. In the patch-dependant part, though

computations in (6), (15) and (16) involve matrix inversion

G, the associated computational cost is significantly reduced

as hk (the number of significant eigenvalues in Λk) is much

smaller than dx and dy . A summary of the computational

costs for accelerated computation is listed in Scenario 2 of

Table I. Similar to standard computation, when R and Φ are

translation-invariant with respect to patches, G can be pre-

computed and pre-stored. Consequently, the total computation-

al cost in the “Patch-dependent” part in Scenario 2 reduces

from O(Kh3
k/3+Khkdx+Khkdy) to O(Khkdx+Khkdy).

IV. ADAPTIVE INTEGRATION WINDOW

With compressive video cameras of the type in [3, 4, 5], it is

relatively straightforward to adjust the integration window ∆t.

For a desired reconstruction fidelity, the maximum allowable

∆t is related to the complexity (e.g., velocity) in the associated

motion within the scene. For periods of time with minimal

temporal variation, ∆t may be made large, as there will not

be substantial blur manifested in summing many frames over

the window ∆t. However, when the motion within the scene

is substantial, it is desirable to make ∆t smaller. The value

of ∆t defines the degree of compression, and therefore it is

desirable to adapt ∆t based upon the complexity of the scene

under test (i.e., to make ∆t as large as possible, within a

desired reconstruction-quality constraint).

Recall that T frames are recovered within time window

∆t. We assume sampling rate δt between consecutive frames,

and therefore ∆t = Tδt. Within the CACTI system, δt is

only employed within the software-based inversion for the

underlying video, and therefore variable δt may be examined

within the context of inversion, given compressive video

measurements. The mask in CACTI moves continuously, and

therefore δt is set with the goal of making the mathematics

of the inversion accurate (the mask is approximately fixed in

space over time δt); by contrast, in [3, 4] δt is set by the

hardware. We here assume δt is fixed, and then by varying

the integration window ∆t we also change the number of

recovered frames, T = ∆t/δt, where T is assumed to be an

integer.

Using the video CS camera of interest, here CACTI, we may

constitute simulated compressive measurements, for variable

∆t. Since the true underlying video is known, we may

compute the quality of the reconstruction (e.g., peak signal

to noise ratio (PSNR)) as a function of ∆t. With a specified

desired reconstruction quality, for each training video example

we may specify the maximum associated ∆t. Simulated data

and associated reconstructions may be considered for many

types of scenes, and for each a range of ∆t are considered;

for each case the maximum ∆t is selected within the fidelity

criterion.

After this process, we have access to a set of video clips, of

variable length ∆t, and compressive measurements over that

window yielded the specified reconstruction fidelity. We would

like to use this training data to design a means by which given

compressive video, we may assign the appropriate compressive

7

integration window ∆t. Toward that end, we extract features

from these video clips, and learn a mapping between the

features and the associated appropriate compressive measure-

ment window ∆t. Once such a function is so learned, one

may compute feature vectors “on the fly” based upon recent

recovered video (after CS inversion), and map this feature

vector to an associated updated integration window ∆t.

We estimate the degree of motion within each video clip

using the block-matching method, which has been employed

in a variety of video codes ranging from MPEG1/H.261 to

MPEG4/H.263 [49, 50]; the corresponding hardware has been

well developed, and hence it may be done quickly in practice.

Within each video clip we compute the maximum velocity

within the scene. We then employ a standard Support Vector

Machine (SVM) [51, 52] to map this feature (velocity) to ∆t.

To simplify the analysis, we consider a library of Q possible

values for ∆t, and the SVM does a multi-class mapping from

the maximum velocity to the associated ∆t within the Q-

dimensional library. The use of a finite library of values of ∆t

is expected to simplify practical implementation, and it also

simplifies inversion, as GMM signal models are only required

for this finite set of Q integration windows ∆t.

Within the experiments, the maximum velocity is computed

based on the previous time window of length ∆t, and this

is then used to define the ∆t in the next time window of

compressive measurements. Of course, in practice, the rate at

which ∆t is adjusted is defined by hardware considerations,

and the speed with which a method like the SVM can define

an update for ∆t.

In the above procedure, we define ∆t in terms of the

maximum velocity anywhere in the video clip. However, in

many situations, the moving objects within the scene are

localized. This suggest that the value of ∆t may vary as a

function of spatial subregion within the scene. This can be

done in principle, but it complicates camera implementation,

and therefore it is not considered here. Another way is to

directly estimate the maximum of velocity from the mea-

surements instead of from the reconstructed video clips [53].

Though motion information may not be well maintained in the

measurements, the online adaptivity of ∆t becomes feasible.

V. EXPERIMENTAL RESULTS

We demonstrate the proposed reconstruction method on

a variety of scenes and present results in comparison

with current leading reconstruction methods. All associ-

ated videos in the experiments can be accessed at

http://people.duke.edu/˜jy118/CACTI GMM.htm.

A. Experimental Settings

For the proposed GMM-based inversion method, each coded

measurement of size Nx ×Ny is partitioned into a collection

of overlapping patches of size P × P , by horizontally and

vertically sliding a P ×P block for v pixels, v ∈ [1, 2 · · · , P].
Accordingly, the number of patches ranges from (Nx − P +
1)× (Ny − P + 1) to (Nx/P)× (Ny/P) as v changes from

1 to P . To balance simplicity and accuracy, we set v = P/2
and P = 8 throughout all experiments.

Regarding the measurement model, covariance matrix R

for Gaussian distribution p(ǫ) = N (ǫ|0,R) is assumed to

be a scaled identity matrix R = σ2I with σ = 10−3. In

the GMM, the number of components K is simply fixed to

20 (although in practice fewer than K components could be

used). To avoid the singularity of the covariance matrices, we

add a υ to the diagonal of every covariance matrix to ensure

that the covariance matrices are positive definite. Following the

strategy presented in [54] (Chapter 9), we initialize the GMM

in the EM algorithm as follows: we first adopt the k-means

algorithm to cluster the training data, and then use the means

of the clusters to initialize {µk}, the sample covariances of

the clusters to initialize {Σk} and the fractions of the training

patches assigned to the respective clusters to initialize {πk}.

To balance efficiency and effectiveness of the EM algorithm,

the number of training patches is set in the range of 20,000 to

100,000 depending on the dimension of signals. In the online-

updated GMM algorithm, the decay-rate parameter κ is set to

2.

For synthetic data, we use PSNR and SSIM [55] to evaluate

the quality of every reconstructed frame, and finally the

average values over all video frames is taken as the evaluation

metric for video reconstruction. Mean square error (MSE)

has also been used in evaluation, and it reflects nearly same

patterns as PSNR in our experiments. Hence, the results on

MSE are not reported. For real data, where ground truth is

not available, the (subjective) visual quality is used to evaluate

reconstruction.

B. Comparison with Other Methods

The proposed GMM-based inversion methods are compared

with the following leading reconstruction methods:

• Generalized Alternating Projection (GAP) [56]1. GAP is

a generalized alternating projection method that solves the

minimization problem:

min
f

‖f‖
ℓ
Gβ
2,1

, s.t. HWf = vec(Y), (17)

where ‖f‖
ℓ
Gβ
2,1

=
∑s

k=1
βk

√
∑

i∈Gk
f2
i , vec(·) vector-

izes a matrix inside (), H is CACTI-specified pro-

jection matrix expressed as H
def
= [H1 H2 · · · HT] with

Ht
def
= diag[A1,1,t A2,1,t · · · ANx,Ny,t], t = 1, . . . , T, and W

is the domain transform matrix that is imposed on the video

signal X to achieve the sparse representation by f , i.e.,
X = Wf . In (17), f is partitioned into s non-overlapping

groups {G1,G2, . . . ,Gs}, and each group Gk is associated with

a constant weight βk, k = 1, . . . , s. In the experiments, DCT

and wavelet transform are used to yield sparse representation

for X, and the default settings on βk,Gk, ∀k are employed.

• Two-step iterative shrinkage/thresholding (TwIST) [57]2.

TwIST solves the unconstrained optimization problem:

min
X

‖vec(Y)−Hvec(X)‖2 + τΩ(X) (18)

1The source code of GAP is available upon request.
2The source code of TwIST can be downloaded from

http://www.lx.it.pt/˜bioucas/code.htm .

http://people.duke.edu/~jy118/CACTI_GMM.htm
http://people.duke.edu/~jy118/CACTI_GMM.htm
http://www.lx.it.pt/~bioucas/code.htm
xuejunliao
Cross-Out

xuejunliao
Cross-Out

xuejunliao
Cross-Out

8

Fig. 2. Example frames of the unrelated offline training videos used in the proposed GMM-based inversion method and KSVD-OMP method.

where Ω(X) is the regularizer and τ is the parameter to
balance the ℓ2-loss term and the regularizer term. Following
previous CS inversion applied to still images and hyperspectral
images [58], the generalized 2D total variation (TV) is used
as the regularizer:

Ω(X) =
∑

n

∑

i,j

{

(Xi+1,j,n −Xi,j,n)
2 + (Xi,j+1,n −Xi,j,n)

2 }
1

2 .

The results of TwIST reported here represent the best among

the different settings of τ in the range of [10−4, 1].
In addition, we have also consider the 3D TV,

Ω(X) =
∑

i,j,n

{

(Xi+1,j,n −Xi,j,n)
2 + (Xi,j+1,n −Xi,j,n)

2

+(Xi,j,n+1 −Xi,j,n)
2 }

1

2 ,

as a regularizer for TwIST, and included it in the experiments.

However, TwIST with the 3D TV performs slightly worse than

its 2D counterpart, and therefore are not reported here.

• KSVD and orthogonal matching pursuit (KSVD-OMP)

[40, 59]3. The state-of-the-art over-complete dictionary learn-

ing method KSVD [40] with the sparse signal estimation

method OMP [59] is used as the third baseline. This method

has been widely used various CS applications, like still image

CS [6], hyperspectral image CS [58]4, and video CS [4]. As

mentioned in Section III-C, KSVD learns the over-complete

dictionary W from the video patches obtained from the

training videos, and OMP obtains the sparse representation

f for signal x. The size of a video patch is 8 × 8 × T .

For the sake of fair comparison, KSVD uses the same train-

ing videos as the proposed GMM method. The number of

dictionary elements is tuned among the six possible values

within {128, 256, 512, 1000, 3000, 5000}, and the best results

are shown in the experiments.

C. Results on Synthetic Data: Unrelated Training Data

We first present results on synthetic data. Following the

coding mechanisms in CACTI, each frame of video to be

reconstructed is encoded with a shifted binary mask, that is

simulated by a random binary matrix with elements drawn

from a Bernoulli distribution with parameter 0.5. The mea-

surement is constituted by summing T such coded frames.

Note that in these simulations the mask is exactly fixed for

each of these T time points, while in the real camera this

is an approximation. A zero-mean white noise with standard

3The source code of KSVD-OMP can be downloaded from
http://www.cs.technion.ac.il/˜ronrubin/software.html

4In [6, 58], KSVD-OMP serves as the baseline for their proposed CS
inversion algorithm.

10 20 30 40 50 60 70 80 90
19

19.5

20

20.5

21

21.5

22

22.5

23

Frames
P

S
N

R
 (

d
B

)

GMM-online (PSNR = 21.88)

GMM-offline (PSNR = 20.89)

GAP (PSNR = 21.64)

TwIST (PSNR = 20.14)

KSVD-OMP (PSNR = 19.89)

Fig. 3. PSNR comparison of the offline and online GMM, TwIST [57], GAP
[56] and KSVD-OMP [40, 59] for the traffic dataset (T = 8). The PSNR
values in the bracket in the upper-right corner are the average PSNR over all
96 frames. The corresponding reconstructed frames are displayed in Fig. 5.

10 20 30 40 50 60 70 80 90
0.55

0.6

0.65

0.7

0.75

0.8

Frames

S
S

IM

GMM-online (SSIM = 0.7391)

GMM-offline (SSIM = 0.7068)

GAP (SSIM = 0.7051)

TwIST (SSIM = 0.6649)

KSVD-OMP (SSIM = 0.587)

Fig. 4. SSIM comparison of the offline and online GMM, TwIST, GAP and
KSVD-OMP for the traffic dataset (T = 8). The SSIM values in the
bracket in the upper-right corner are the average SSIM over all 96 frames.

devaluation σ = 10−3 is added to the simulated measurement,

to represent model mismatch in the actual (real) data.

We synthesize three videos for reconstruction. They contain

scenes denoted traffic, couple, and train. These three

synthetic videos have different characteristics. The traffic

and train are dominated by a moving foreground, while

the couple video has more of a fixed background. The

traffic video contains multiple moving objects, while the

train video contains one moving object. All synthetic videos

are of size 256 × 256 × 96, and have temporal compression

ratio T = 8.

For the proposed GMM-based inversion method, three-

dimensional video patches are of size 8×8×T , i.e., T0 = T ,

and offline-training data are twenty arbitrary (distinct) videos,

which contain the various scenes and object motion (see

http://www.cs.technion.ac.il/~ronrubin/software.html

9

#89 #90 #91 #92 #93 #94 #95 #96

TwIST

GAP

GMM-online

Ground truth

KSVD-OMP

GMM-offline

Raw measurement

(Coded image)

Fig. 5. Reconstructed frames 89 to 96 for the traffic dataset (T = 8) by the offline and online-updated GMM, TwIST, GAP and KSVD-OMP methods.

example frames in Fig. 2)5, respectively. Note these training

videos are all unrelated to the videos to be reconstructed.

1) Reconstruction Results: We plot PSNR curves to com-

pare the reconstruction performance quantitatively, and also

display the reconstructed video of selected video frames for

psychovisual comparison. These results are shown in Figs.

3, 6 and 7 for the data traffic, couple and train,

respectively. Due to the space limitations, reconstructed frames

by GAP, TwIST and KSVD-OMP for the couple and recon-

structed frames by all methods for train are not shown here.

Interested readers may refer to our aforementioned website for

all the videos and frames. From the PSNR results shown in

these figures, the online-updated GMM consistently performs

best among all methods for these three synthetic datasets.

Importantly, its PSNR is generally increasing as more frames

are reconstructed. This vividly illustrates the merit of online

5The training videos can be downloaded from
http://projects.cwi.nl/dyntex/database pro.html,
http://www.di.ens.fr/ laptev/actions/,
http://www.brl.ntt.co.jp/people/akisato/saliency3.html

learning. Fig. 4 plots the SSIM curves for the traffic

dataset. The results in this figure show similar pattern to the

PSNR results in Fig. 3, and further verify the performance ad-

vantage of the proposed method over the other reconstruction

methods. This kind of observations are also observed in the

couple and train datasets, and SSIM curves are hence not

shown for these datasets.

The GAP algorithm generally performs best among all base-

lines. KSVD-OMP generally performs worse among all meth-

ods. Visual quality evaluations on the reconstructed frames

are consistent with the PSNR and SSIM results. Specifically,

from Fig. 5, the reconstructed frames by TwIST and KSVD-

OMP have the bold artifacts among both foreground and

background, while reconstructed frames by GAP look better

but with more blurring. The reconstructed frames by the offline

GMM method looks well on the background but some detailed

information on the foreground are not well maintained. The

online-updated GMM can generally reconstruct the frames

with sharper scenes than other methods (notice the small

moving vehicles).

http://projects.cwi.nl/dyntex/database_pro.html
http://www.di.ens.fr/~laptev/actions/
http://www.brl.ntt.co.jp/people/akisato/saliency3.html

10

GMM-online

Raw measurement

Frames 49~56

#49 #50 #51 #52

#53 #54 #55 #56

(a) PSNR vs. Frames

 (b) Reconstructed frames #49 to #56

10 20 30 40 50 60 70 80 90
26

28

30

32

34

36

38

40

Frames

P
S

N
R

 (
d
B

)

GMM-online (PSNR = 35.63)

GMM-offline (PSNR = 35.13)

GAP (PSNR = 32.29)

TwIST (PSNR = 31.13)

KSVD-OMP (PSNR = 28.76)

Fig. 6. (a). PSNR comparison of the offline and online GMM, TwIST, GAP
and KSVD-OMP for the couple dataset (T = 8). (b). Reconstructed frames
49 to 56 by the online-updated GMM method.

10 20 30 40 50 60 70 80 90
23

24

25

26

27

28

29

30

31

32

Frames

P
S

N
R

 (
d
B

)

GMM-online (PSNR = 28.93)

GMM-offline (PSNR = 28.79)

GAP (PSNR = 26.16)

TwIST (PSNR = 26.44)

KSVD-OMP (PSNR = 25.78)

Fig. 7. PSNR comparison of the offline and online GMM, TwIST, GAP and
KSVD-OMP for the train dataset (T = 8).

In addition, compared with GAP, TwIST and KSVD-OMP,

the proposed GMM method can provide richer probabilistic

information, such as confidence of reconstruction, or “error

bars”. Specifically, the “error bar” is defined as the square

root of variance of the estimator. In the proposed method, co-

variance of the estimator, denoted by Cov(xi|yi), is expressed

below:

Cov(xi|yi) =

∫

(xi − E(xi|yi))(xi − E(xi|yi))
′p(xi|yi)dxi

=

K∑

k=1

λ̃k

{

Σ̃k + (x̃i − µ̃k)(x̃i − µ̃k)
′
}

,

where p(xi|yi) and E(xi|yi) are given by (5) and (8), re-

spectively. The diagonal elements of Cov(xi|yi) are taken

as the variance of the estimator. Fig. 8 shows the error

bars of reconstruction provided by the online-updated GMM

Raw measurement

Reconstructed frames 89~96

“Error bar” of the reconstructed frames 89~96

#89 #90 #91 #92

#93 #94 #95 #96

#69 #70 #71 #72

#65 #66 #67 #68

Frames 89~96

Reconstructed frames 1~8

“Error bar” of the reconstructed frames 1~8

#1 #2 #3 #4

#5 #6 #7 #8

#21 #22 #23 #24

#17 #18 #19 #20

Frames 1~8

(a)

(b)

(c)

(d)

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.02

0.04

0.06

0.08

0.1

0.12

Raw measurement

Fig. 8. Reconstruction frames 1-8 (a), 89-96 (c) and their corresponding
“error bars” (b,d) for the traffic dataset. Fig. 3 shows the corresponding
PSNR values frame by frame.

method for the traffic dataset, at frames 1-8 and 89-

96. From the figure, frames 89-96 not only have the better

visual quality than frames 1-8, but also have lower error bars.

This implies that as the inversion algorithm proceeds, the

confidence of reconstruction increases. This again validates the

efficacy of the online-updated GMM method. In addition, at

each reconstructed frame, the foreground often corresponds to

high “error bar” relative to the background. This is reasonable,

as the foreground often has lower temporal redundancy.

2) Investigation on updated prior, soft-assignment property

and patch size: In the online-updated GMM, the parameters of

the GMM are updated once within every time integration win-

dow (l− 1)T0 < t ≤ lT0 (∀l = 1, 2, . . .). Fig. 9 demonstrates

the updated priors at two integration windows. From the figure,

it is clear that the patterns of the updated GMM components

and the component weights are significantly different after

updating.

Fig. 10 illustrate the soft-assignment property (as mentioned

in Section III-C2) of the proposed GMM-based inversion algo-

rithm. Recall that the posterior distribution is also a mixture of

Gaussian distribution as derived in (5). We perform the offline

GMM-based inversion algorithm on the traffic dataset

11

F
ra

m
e

GMM Component

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

GMM component

W
e
ig

h
t
o
f
G

M
M

 c
o
m

p
o
n
e
n
t:
 

k

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

GMM component

W
e
ig

h
t
o
f
G

M
M

 c
o
m

p
o
n
e
n
t:
 

k
F

ra
m

e

GMM Component

(a) The third measurement (b) The ninth measurement

Fig. 9. Illustration of the online-updated GMM priors for the first mea-
surement (0 < t ≤ T0)and the ninth measurement (8T0 < t ≤ 9T0),
respectively. In each subfigure, the upper part shows all Gaussian components
in 20 columns and each Gaussian component is shown in 8 (T0) image patches
size of 8× 8 (P ×P), and the lower part shows the weights of all Gaussian
components.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

Number of the dominant Gaussian components in posterior distribution

P
e
rc

e
n
ta

g
e
 o

f
p
a
tc

h
e
s
 (

%
)

Fig. 10. Illustration of the soft-assignment property of the proposed method.
The traffic dataset for the first measurement is used with T = 8. The
size of a video patch is 8× 8×T . The Gaussian component with the weight
(defined in (6)) greater than 10−3 are considered as a dominated components.
The percentage of patches is zero when the number of the dominant Gaussian
components in posterior distribution is greater than 7.

2 X 2
PSNR = 28.3 SSIM = 0.9055

4 X 4
PSNR = 34.95 SSIM = 0.9494

8 X 8
PSNR = 35.66 SSIM = 0.9543

12 X 12
PSNR = 34.49 SSIM = 0.9445

Ground truth

Fig. 11. Reconstruction results of couple dataset with T = 8 based on four
different patch size. The second frame out of eight video frames are shown.

within one integration window. From this figure, we found that

more than 40% of patches have a posterior distribution with

more than one dominated Gaussian components. This justifies

the soft assignment implied in the conditional expectation (8).

The effect of different choices of patch size in the GMM-

based algorithm to the video reconstruction fidelity is investi-

gated on the couple dataset with T = 8. The four different

settings of patch size are compared in the offline GMM

Raw measurement

#37 #38 #39 #40 #41 #42

#43 #44 #45 #46 #47 #48

#49 #50 #51 #52 #53 #54

#55 #56 #57 #58 #59 #60

#61 #62 #63 #64 #65 #66

#67 #68 #69 #70 #71 #72

Frames 37~72

(a) PSNR vs. Frames

(b) Reconstructed frames #37 to #72

20 40 60 80 100 120 140 160 180 200
14

15

16

17

18

19

20

21

22

Frames

P
S

N
R

 (
d
B

)

GMM (PSNR = 20.23)

GAP (PSNR = 17.22)

TwIST (PSNR = 16.37)

KSVD-OMP (PSNR = 16.33)

Fig. 12. (a). PSNR comparison of the offline-GMM, TwIST, GAP and KSVD-
OMP for the train dataset (T = 36). (b). The reconstructed frames 37-72
by the online-updated GMM method.

method. We can see that although the inversion algorithm with

all these four settings of patch size can yield the reasonable

reconstruction performance, the patch size 8×8 generally leads

to the sharper reconstructed frames and less artifacts on the

moving objects. This is confirmed by the quantitative values of

the PSNR and SSIM metrics. In terms of computational cost,

since the dimension of signals dx quadratically increases with

respect to the patch size, larger dx can significantly increase

the costs of EM and inversion procedures as analyzed in

Section III-D. To balance the performance and computational

cost, we choose the patch size 8×8 for the proposed method.

D. Results on Synthetic Data: Related Training Data

We now evaluate the three reconstruction methods on two

challenging tasks: high compression ratio and complicated

motion. The first video is the same traffic dataset used

above, but with higher compression ratio T = 36. The second

video contains the NBA game scene, with T = 8, where a

player has complicated movement during his dunk. These two

videos are of size 256 × 256 × 216 and 256 × 256 × 96,

respectively. For the proposed GMM method, we employ

related data to train the GMM. Specifically, for the traffic

video, the related training data are traffic videos having the

12

same type of background but different foreground (moving ve-

hicle). For the NBA game video, the related training data are

videos containing similar NBA games (they generally do not

contain the same background). It is worth noting that utilizing

related training data is often reasonable, since in some cases,

like surveillance in the highway, we can first record some

uncompressed videos and then use these videos as the training

data to reconstruct the upcoming compressed videos. As the

related training data are with high visual quality and strong

relevance, the trained GMM is deemed to be good enough such

that the online-updated GMM is not necessary in general. This

has been verified in our extensive experiments. Thus, we adopt

the offline-trained GMM to directly reconstruct the above two

challenging videos; three-dimensional video patches of size

8× 8× T are used.

Fig. 12 plots the PSNR curves against frame for the GM-

M, GAP, TwIST and KSVD-OMP methods, for the highly-

compressed traffic data, and displays the reconstructed

frames 37 to 72 (corresponding to the second compressive

measurement) by the proposed method. The reconstructed

frames by GAP, TwIST and KSVD-OMP are not shown here

due to space limitations. From the figure, the proposed GMM

method performs significantly better than GAP, TwIST and

KSVD-OMP in terms of PSNR and visual quality (please

refer to our website). As far as the proposed method is

concerned, its average PSNR value decreases 1.6dB compared

with the results in the case of T = 8 (shown in Fig. 3),

while the reconstructed frames for T = 36 still maintain

nearly comparable visual quality as those with T = 8. Note

that GAP and TwIST do not utilize training data at all, and

their generality is therefore undermined in this specific video

challenge. On the other hand, the GMM results could be

improved even further via online adaptivity to the video under

test.

Fig. 13 plots PSNR for the GMM, GAP, TwIST and

KSVD-OMP methods, for the NBA game dataset, and also

display the reconstructed frames 81 to 88 (corresponding to

the eleventh measurement) by the proposed method. From

the figure, the proposed GMM method improves upon GAP,

TwIST and KSVD-OMP by 2.40 dB, 2.87 dB and 2.99 dB on

average, respectively. Importantly, all methods have PSNRs

that decrease at frames 70 to 80, which correspond to the

moment of the dunk. However, the proposed method still

performs better than GAP, TwIST and KSVD-OMP in this

period. From the reconstructed frames, the proposed method

can provide high visual quality (of course, this is subjective).

Compared with the reconstructed frames by GAP, TwIST

and KSVD-OMP (please refer to our website), the proposed

method maintains the highest fidelity in the foreground (the

regions around the ball and the player). Note that defocusing

exists in the ground truth (notice the audience in the video)

and offline training data. As a consequence, the blur among

audiences exists in the reconstructed frames for all reconstruc-

tion methods.

E. Results on Real CACTI Data

We now present results to demonstrate the efficacy of the

proposed method on real data acquired by the CACTI camera

we have built. This is a significant contribution, as the GMM-

based inversion method has not been applied to reconstruct

the videos for real data so far. As an effective reconstruction

approach, in the following, we show the proposed method out-

performs the GAP, TwIST and KSVD-OMP methods for three

real datasets: chopper wheel, eye blink and hand

lens. The chopper wheel dataset contains the scene that

a letter “D” is placed at the edge of a chopper wheel. The

wheel is rotating in front of the camera at an angular velocity

of 15 blades per second. The eye blink dataset contains

the scene of an eye blink from closed to open. The hand

lens dataset contains the scene of an optical lens falling in

front of a hand. These three videos are composed of 6, 8 and

5 compressed measurements, respectively. The CACTI camera

captures data at 30 frames per second (fps). The integration

window ∆t for each measurement is 33ms. The number of

reconstructed frames from a single compressive measurement

is T = 14, so each frame corresponds to δt = 2.36 ms (420

fps). The measurement matrix Φ is provided by the details of

the CACTI hardware.

The reconstruction results of these three datasets using the

proposed GMM method are displayed in Fig. 14, along with

the TwIST, GAP and KSVD-OMP results6. The reconstructed

frames by the three methods correspond to the sixth, fifth and

third measurements for the chopper wheel, hand lens

and eye blink datasets, respectively. Due to the difficulty

of regenerating the temporal motion (the motion only lasts

around 0.15s in real life), the reconstructions on these three

datasets are evaluated solely by visual quality. Specifically,

for chopper wheel, the online-updated GMM provides

the clearest character “D” among the four methods. The

character “D” exhibits ghosting due to ambiguities within the

reconstructed solutions. While this ghosting effect exists for

all three methods, the proposed method exhibits little ghosting

and better preserves the video clarity. For eye blink, all

results can successfully show the process of the eye blink,

from closed to open, while the proposed method appears to

provide more complete process of the eye blink. For hand

lens, all methods can recover the falling process of the lens.

TwIST does have clearer background than the other results.

However, the artifact in the simulation results now can also

be observed from the red-box marked in frame 1. Only the

GMM method can provide the unbroken edge (the small hole

at right-bottom inside the red-box) of the lens. GAP still has

the obvious blurring effect, which can be noticed from the

red-box marked in frame 14.

6The related videos are adopted to train the GMM prior and the dictionary
for the proposed method and KSVD-OMP method. For the chopper

wheel and hand lens datasets, the training videos were captured with a
camcorder prior to being adjusted to the desired framerate of the decompressed
videos. For the chopper wheel dataset, the training videos include a
chopper wheel rotating at several orientations, positions, and velocities.
For the hand lens dataset, the training videos include a lens falling
in front of a hand at different velocities. For the eye blink data, the
training videos include related eye blink videos that are downloaded from
website http://www.fotosearch.com/photos-images/eye-video.html. The three-
dimensional video patch used in GMM is of size 8×8×14 for the chopper
wheel and the hand lens data, and 8×8×28 for the eye blink dataset.

http://www.fotosearch.com/photos-images/eye-video.html

13

10 20 30 40 50 60 70 80 90
20

22

24

26

28

30

32

Frames

P
S

N
R

 (
d
B

)

GMM (PSNR = 28.64)

GAP (PSNR = 26.24)

TwIST (PSNR = 25.77)

KSVD-OMP (PSNR = 25.65)

Raw measurement

Frames 81~88

(a) PSNR vs. Frames

 (b) Reconstructed frames #81 to #88

#81 #82 #83 #84

#85 #86 #87 #88

Fig. 13. (a) PSNR comparison of the offline GMM, TwIST, GAP and KSVD-
OMP for the NBA game dataset (T = 8). (b) The reconstructed frames 81-88
by the online-updated GMM method.

F. Performance Comparison under Other Coding Strategies

The proposed GMM algorithm can be used for a video CS

camera using any local coding strategy 7. In this section, we

consider the coding strategies in [3, 4] as well as a more

general strategy, and compare the proposed algorithm to other

video inversion algorithms in these cases. The DMD/LCoS

modulator in [3] is simulated as random binary matrices with

entries i.i.d. from a Bernoulli distribution with parameter 0.5,

each matrix applied to a distinct frame. The bump modulator

in [4] is simulated as a sequence of dependent binary random

matrices, each for a distinct frame, with the dependency being

such that each pixel is turned on for b consecutive time steps,

starting from a random time drawn from [1, 2, . . . , T − b+1],
where T equals the total number of steps during the temporal

integration. In addition, we also consider a more general

coding strategy in CACTI, in which the mask is simulated by

a random matrix with each element independently drawn from

a uniform distribution in [0, 1]. Lastly, we consider the case

in which the elements of the mask are drawn from a normal

distribution with mean as 0.5 and standard deviation as 1.

Considering the hardware constraints, we truncate the elements

of mask within [0, 1]. Fig. 15 shows the reconstruction results

on the Traffic dataset (T = 8) by various methods,

under the above four coding strategies. It is seen that all

methods yield similar performances as those in Fig. 3, and the

proposed online adapted GMM method consistently performs

the best under all coding strategies. These results demonstrate

the efficacy of the proposed method under general coding

strategies.

7The proposed method is a patch-based model and cannot work with global
measurement matrices as those used on a single-pixel camera [13, 11].

G. Adaptive Integrative Window

We evaluate the proposed adaptive integration window ∆t

on the simulated traffic data. Assuming δt is fixed, the

adaptive integration window ∆t is equivalent to adapting the

number of encoded frames T in a measurement. The offline-

trained GMM is used and the video patch is of size 8×8×12.

We begin the experiment with T = 6. As time progresses, the

proposed method varies T according to the estimated motion

within each integration window. We artificially change the

speed of the foreground during the 168 frames comprising

this video to evaluate the fidelity of the proposed method.

Frames 1-60 (Fig. 16(b)) and 121-168 (Fig. 16(d)) play at

the originally-captured frame rate, while the scene is frozen

between frames 61-120 (Fig. 16(c)).

The proposed GMM updates T every 12 reconstructed

frames (Fig. 16), as the same size of video patch is constantly

used. From Fig. 16, we observe that the proposed method can

effectively adapt T based on the estimated motion velocity in

the reconstructed video. Specifically, the algorithm holds T at

the initial value 6 for the first 72 frames, before increasing T
to 12 when the scene motion stops. After the scene recovers to

play at the originally-captured frame rate, T drops from 12 to

6. There are 12-frame delay of adapting T when the velocity

is changed. This is reasonable, as the proposed method uses

the reconstructed frames in the last T0 frames to predict T for

the current T0 frames as mentioned in Section IV.

The average T over all frames in the proposed method is

8.14. We also evaluate the performance of the reconstruction

without adaptive T , i.e., T = 8. The average PSNR values

for the adaptive T and the fixed T are 28.73dB and 26.31dB,

respectively.
(a)

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

Frames

P
S

N
R

PSNR

Adapt T

Velocity (pixels) Original Video

Velocity (pixels) Reconstructed Video

Measurement for Frames 1 to 6 Measurement for Frames 73 to 84 Measurement for Frames 145 to 150

(b)

Fig. 16. Demonstration of adaptive temporal compression ratio on synthetic
traffic data: (a) the plots of PSNR, adaptive CS ratio T , estimated velocity
from original videos and reconstructed videos against frame; (b) three typical
measurements corresponding to different vehicle speeds.

H. Computation Time

The proposed method and alternative methods are imple-

mented in Matlab 2012(b), and the experiments are conducted

14

(a) Raw measurement (coded image)

(b) Proposed GMM

(c) TwIST

(d) GAP

#1 #2 #3 #4 #5

#6 #7 #8 #9 #10

#11 #12 #13 #14

#1 #2 #3 #4 #5

#6 #7 #8 #9 #10

#11 #12 #13 #14

#1 #2 #3 #4 #5

#6 #7 #8 #9 #10

#11 #12 #13 #14

#1 #2 #3 #4 #5

#6 #7 #8 #9 #10

#11 #12 #13 #14

#1 #2 #3 #4 #5

#6 #7 #8 #9 #10

#11 #12 #13 #14

#1 #2 #3 #4 #5

#6 #7 #8 #9 #10

#11 #12 #13 #14

#1 #2 #3 #4 #5

#6 #7 #8 #9 #10

#11 #12 #13 #14

#1 #2 #3 #4 #5

#6 #7 #8 #9 #10

#11 #12 #13 #14

#1 #2 #3 #4 #5

#6 #7 #8 #9 #10

#11 #12 #13 #14

#1 #2 #3 #4 #5

#6 #7 #8 #9 #10

#11 #12 #13 #14

#1 #2 #3 #4 #5

#6 #7 #8 #9 #10

#11 #12 #13 #14

#1 #2 #3 #4 #5

#6 #7 #8 #9 #10

#11 #12 #13 #14

#1 #2 #3 #4 #5

#6 #7 #8 #9 #10

#11 #12 #13 #14

(e) KSVD-OMP

Fig. 14. (a) the raw measurements of chopper wheel, eye blink and hand lens dataset (T = 14) acquired from CACTI. The reconstructed frames
from the raw measurement (a) by the GMM (b), TwIST (c), GAP (d) and KSVD-OMP (e).

on a PC with an Intel i5-2500 CPU running at 3.30 GHz and

with 16GB RAM. The chopper wheel dataset is used to

compare the running times of all methods. Specifically, we

record the running time of reconstruction from one measure-

ment by each method. Decomposing the spatial domain into

3936 overlapping patches, the proposed GMM-based method

reconstructs the patches independently, each using around 0.08

seconds. TwIST and GAP spend 42 and 2 seconds, respective-

ly, for reconstruction from one measurement. A comparison

shows that the proposed method is computationally not as

efficient as TwIST or GAP.

However, a prominent advantage of our method is that it

reconstructs the patches independently. Therefore the compu-

tation can be achieved in parallel with respect to the batches,

which provides a potential p-times speedup where p is equal

to the number of patches (3936 in our case here). TwIST

and GAP may also accelerate their computation by exploiting

parallel computation, though the parallelization is not neces-

sarily with respect to patches. The examination of patch-based

parallel computation (as used by the proposed method) versus

other parallel computation methods (as may be used by TwIST

or GAP) is left to our future work. As detailed in Section III-D,

15

(a) (b) (c) (d)

10 20 30 40 50 60 70 80 90
19

20

21

22

23

24

Frames

P
S

N
R

(
d
B

)

GMM-online (PSNR = 22.21)

GMM-offline (PSNR = 21.28)

GAP (PSNR = 21.03)

TwIST (PSNR = 20.09)

KSVD-OMP (PSNR = 20.45)

10 20 30 40 50 60 70 80 90
16

18

20

22

24

26

Frames
P

S
N

R

(
d
B

)

GMM-online (PSNR = 23.13)

GMM-offline (PSNR = 21.72)

GAP (PSNR = 20.82)

TwIST (PSNR = 19.76)

KSVD-OMP (PSNR = 20.26)

10 20 30 40 50 60 70 80 90
18

19

20

21

22

Frames

P
S

N
R

(
d
B

)

GMM-online (PSNR = 20.87)

GMM-offline (PSNR = 20.55)

GAP (PSNR = 19.9)

TwIST (PSNR = 19.49)

KSVD-OMP (PSNR = 19.6)

10 20 30 40 50 60 70 80 90
19

20

21

22

23

Frames

P
S

N
R

(
d
B

)

GMM-online (PSNR = 21.72)

GMM-offline (PSNR = 20.78)

GAP (PSNR = 20.76)

TwIST (PSNR = 19.99)

KSVD-OMP (PSNR = 19.9)

Fig. 15. Demonstrations of various methods on four different coding strategies: (a) random binary code [3]; (b) random binary code with the single bump
constraint [4] (the bump length is fixed to 2 for all pixels); (c) random gray-scale code; (d) random code with elements drawn from a standard normal
distribution. The traffic data is used with T = 8. The size of a video patch in GMM and KSVD-OMP is 8× 8× T .

the computational cost of the proposed method can be further

reduced if the projection matrix Φ and covariance matrix R

are translation-invariant with respect to the patches.

VI. CONCLUSIONS

A GMM-based inversion algorithm is proposed to recon-

struct high-speed videos from temporally compressed mea-

surements. Extensive experimental results show that the pro-

posed GMM-based inversion method can reconstruct video

frames with greater fidelity than other methods, on both

synthetic and real data. The proposed inversion algorithm

enjoys the following advantages: i) Online-updated GMM

improves the reconstructed video quality. Following this, the

reconstruction becomes less-dependent on the offline training

videos and more robust to different scenes and motions. Re-

constructions of both real and synthetic coded measurements

show considerable improvement for the online-updated GMM

method. We found that for simple motions, the online-updated

GMM method with even unrelated training videos can yield

good reconstruction results. On the other hand, for fast and

complicated motions, the offline-learned GMM with related

training videos can yield promising results. In this case,

the online-updated GMM is often unnecessary. ii) Parallel

reconstruction using a GPU is applicable since the video

is reconstructed patch by patch, and each of the inversions

are performed independently. iii) The analytic inversion ex-

pression results in efficient reconstruction of every patch. iv)

Confidence of reconstruction on every video pixel is provided

by the proposed method’s probabilistic information “error-

bars”.

Another contribution of this paper is the adaptive integration

window. We utilize the reconstruction information of the

proposed inversion method and learn a multiclass classifier

to adapt T assuming fixed δt. Simulation results demonstrate

that our method can adaptively change T subject to the

motion of the objects in the scene while maintaining high-

quality reconstruction performance. Future work lies in the

implementation of adaptive integration window to the real

CACTI system.

The GMM-based inversion algorithm developed in this

paper can be straightforwardly extended to invert the hyper-

spectral datacubes from compressive measurements as dis-

cussed in [58]. Compared with the BPFA algorithm devel-

oped therein, the GMM-based inversion method enjoys fast

reconstruction. Finally, this algorithm’s low order of com-

plexity lends itself to future higher-dimensional imagery; in

particular, we seek to extend the proposed inversion method

to reconstruct 4D spatio-spectral-temporal data volumes from

2D compressed measurements in the near future.

REFERENCES

[1] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty
principles: Exact signal reconstruction from highly incomplete
frequency information,” IEEE Transactions on Information The-
ory, vol. 52, no. 2, pp. 489–509, February 2006.

[2] D. L. Donoho, “Compressed sensing,” IEEE Transactions on
Information Theory, vol. 52, no. 4, pp. 1289–1306, April 2006.

[3] D. Reddy, A. Veeraraghavan, and R. Chellappa, “P2C2: Pro-
grammable pixel compressive camera for high speed imaging,”
IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 329–336, June 2011.

[4] Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar,
“Video from a single coded exposure photograph using a learned
over-complete dictionary,” IEEE International Conference on
Computer Vision (ICCV), pp. 287–294, November 2011.

[5] P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin,
G. Sapiro, and D. Brady, “Coded aperture compressive temporal
imaging,” Optics Express, vol. 21, no. 9, pp. 10 526–10 545,
2013.

[6] M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson,
G. Sapiro, and L. Carin, “Nonparametric Bayesian dictionary
learning for analysis of noisy and incomplete images,” IEEE
Transactions on Image Processing, vol. 21, no. 1, pp. 130–144,
January 2012.

[7] Z. Xing, M. Zhou, A. Castrodad, G. Sapiro, and L. Carin,
“Dictionary learning for noisy and incomplete hyperspectral
images,” SIAM Journal on Imaging Sciences, vol. 5, no. 1, pp.
33–56, Jan. 2012.

[8] A. C. Sankaranarayanan, C. Studer, and R. G. Baraniuk, “CS-
MUVI: Video compressive sensing for spatial-multiplexing
cameras,” IEEE International Conference on Computational
Photography, pp. 1–10, April 2012.

[9] Z. Liu, A. Y. Elezzabi, and H. V. Zhao, “Maximum frame rate
video acquisition using adaptive compressed sensing,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 21, no. 11, pp. 1704–1718, November 2011.

[10] J. E. Fowler, S. Mun, and E. W. Tramel, “Block-based com-
pressed sensing of images and video,” Foundations and Trends
in Signal Processing, vol. 4, no. 4, pp. 297–416, 2012.

[11] M. F. Duarte, M. A.Davenport, D. Takhar, a. S. T. J. N. Laska,
K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via com-

16

pressive sampling,” IEEE Signal Processing Magazine, vol. 25,
no. 2, pp. 83–91, March 2008.

[12] A. Veeraraghavan, D. Reddy, and R. Raskar, “Coded strob-
ing photography: Compressive sensing of high speed periodic
videos,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 33, no. 4, pp. 671–686, April 2011.

[13] M. B. Wakin, J. N. Laska, M. F. Duarte, D. Baron, S. Sarvotham,
D. Takhar, K. F. Kelly, and R. G. Baraniuk, “Compressive
imaging for video representation and coding,” Proceedings of
the Picture Coding Symposium, pp. 1–6, April 2006.

[14] J. Holloway, A. C. Sankaranarayanan, A. Veeraraghavan, and
S. Tambe, “Flutter shutter video camera for compressive sensing
of videos,” Intl. Conf. Computational Photography, pp. 1–9,
April 2012.

[15] S. K. Nayar, V. Branzoi, and T. E. Boult, “Programmable
Imaging: Towards a Flexible Camera,” International Journal
on Computer Vision, pp. 7–22, Oct 2006.

[16] R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure
photography: motion deblurring using fluttered shutter,” ACM
Transactions on Graphics, vol. 25, no. 3, pp. 795–804, 2006.

[17] A. Agrawal, M. Gupta, A. Veeraraghavan, and S. Narasimhan,
“Optimal coded sampling for temporal super-resolution,” IEEE
Conference on Computer Vision and Pattern Recognition, pp.
599–606, June 2010.

[18] M. Gupta, A. Agrawal, A. Veeraraghavan, and S. G.
Narasimhan, “Flexible voxels for motion-aware videography,”
11th European Conference on Computer Vision, Part I, pp. 100–
114, September 2010.

[19] P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin,
G. Sapiro, and D. Brady, “Compressive sensing for video using
a passive coding element,” Computational Optical Sensing and
Imaging, pp. 1–3, 2013.

[20] A. C. Sankaranarayanan, P. K. Turaga, R. G. Baraniuk, and
R. Chellappa, “Compressive acquisition of dynamic scenes,”
11th European Conference on Computer Vision, Part I, pp. 129–
142, September 2010.

[21] J. Y. Park and M. B. Wakin, “A multiscale framework for
compressive sensing of video,” Proceedings of the Picture
Coding Symposium, pp. 1–4, May 2009.

[22] ——, “Multiscale algorithm for reconstructing videos from
streaming compressive measurements,” Journal of Electronic
Imaging, vol. 22, no. 2, pp. 1–17, 2013.

[23] C. Liu, “Beyond pixels: Exploring new representations and
applications for motion analysis,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, May 2009.

[24] S. Mun and J. E. Fowler, “Residual reconstruction for block-
based compressed sensing of video,” Data Compression Con-
ference, pp. 183–192, March 2011.

[25] D. Kittle, K. Choi, A. Wagadarikar, and D. J. Brady, “Multi-
frame image estimation for coded aperture snapshot spectral
imagers,” Applied Optics, vol. 49, no. 36, pp. 6824–6833,
December 2010.

[26] H. Permuter, J. Francos, and I. H. Jermyn, “Gaussian mixture
models of texture and colour for image database retrieval,”
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), vol. 3, pp. 569–72, April 2003.

[27] C. Stauffer and W. Grimson, “Adaptive background mixture
models for real-time tracking,” IEEE Conference on Computer
Vision and Pattern Recognition, pp. 246–252, 1999.

[28] G. Yu, G. Sapiro, and S. Mallat, “Solving inverse problems with
piecewise linear estimators: From Gaussian mixture models to
structured sparsity,” IEEE Transactions on Image Processing,
vol. 21, no. 5, pp. 2481–2499, May 2012.

[29] J. A. Guerrero-Colon, L. Mancera, and J. Portilla, “Image
restoration using space-variant Gaussian scale mixtures in over-
complete pyramids,” IEEE Transactions on Image Processing,
vol. 17, no. 1, pp. 27–41, January 2008.

[30] M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and L. Carin,
“Compressive sensing on manifolds using a nonparametric mix-

ture of factor analyzers: Algorithm and performance bounds,”
IEEE Transactions on Signal Processing, vol. 58, no. 12, pp.
6140–6155, December 2010.

[31] Y. C. Eldar and M. Mishali, “Robust recovery of signals
from a structured union of subspaces,” IEEE Transactions on
Information Theory, vol. 55, no. 11, pp. 5302–5316, November
2009.

[32] Y. C. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse
signals: Uncertainty relations and efficient recovery,” IEEE
Transactions on Signal Processing, vol. 58, no. 6, pp. 3042–
3054, November 2010.

[33] J. Yang, X. Yuan, X. Liao, P. Llull, G. Sapiro, D. J. Brady,
and L. Carin, “Gaussian Mixture Model for Video Compressive
Sensing,” International Conference on Image Processing, pp.
19–23, 2013.

[34] W. Carson, M. Chen, M. Rodrigues, R. Calderbank, and
L. Carin, “Communications inspired projection design with
application to compressive sensing,” SIAM Journal on Imaging
Sciences, vol. 5, no. 4, pp. 1185–1212, 2012.

[35] J. M. Duarte-Carvajalino, G. Yu, L. Carin, and G. Sapiro, “Task-
driven adaptive statistical compressive sensing of Gaussian
mixture models,” IEEE Transactions on Signal Processing,
vol. 61, no. 3, pp. 585–600, February 2013.

[36] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the EM algorithm,” Journal
of the Royal Statistical Society: Series B, vol. 39, no. 1, pp. 1–
38, 1977.

[37] A. Corduneanu and C. M. Bishop, “Variational Bayesian model
selection for mixture distributions,” in Proceedings of Interna-
tional Conference on Artificial Intelligence and Statistics, 2001,
pp. 27–34.

[38] M. D. Hoffman, D. M. Blei, and F. Bach, “Online learning for
latent dirichlet allocation,” Proceedings of the Neural Informa-
tion Processing Systems, pp. 856–864, 2010.

[39] L. Li, J. Silva, M. Zhou, and L. Carin, “Online bayesian
dictionary learning for large datasets,” International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp.
2157–2160, 2012.

[40] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An Algorith-
m for Designing Overcomplete Dictionaries for Sparse Repre-
sentation,” IEEE Transactions on Signal Processing, vol. 54,
no. 11, pp. 4311–4322, November 2006.

[41] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse
solutions of systems of equations to sparse modeling of signals
and images,” SIAM review, no. 51, pp. 34–81, 2007.

[42] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman,
“Discriminative learned dictionaries for local image analysis,”
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1–8, 2008.

[43] M. Yuan and Y. Lin, “Model selection and estimation in regres-
sion with grouped variables,” Journal of the Royal Statistical
Society, Series B, vol. 68, pp. 49–67, 2006.

[44] J. Silva, M. Chen, Y. C. Eldar, G. Sapiro, and L. Carin, “Blind
compressed sensing over a structured union of subspaces,”
Arxiv preprint arXiv:1103.2469, Tech. Rep., 2011.

[45] F. Renna, R. Calderbank, L. Carin, and M. Rodrigues, “Re-
construction of signals drawn from a gaussian mixture via
noisy compressive measurements,” IEEE Transactions on Signal
Processing, vol. 62, no. 9, pp. 2265–2277, 2014.

[46] G. Yu and G. Sapiro, “Statistical compressed sensing of Gaus-
sian mixture models,” IEEE Transactions on Signal Processing,
vol. 59, no. 12, pp. 5842–5858, December 2011.

[47] C. Ordonez and P. Cereghini, “SQLEM: Fast clustering in SQL
using the EM algorithm,” In ACM SIGMOD Conference, pp.
559–570, 2000.

[48] S. Boyd and L. Vandenberghe, Convex Optimization. Cam-
bridge University Press, 2004.

[49] C.-H. Hsieh and T.-P. Lin, “VLSI architecture for block-
matching motion estimation algorithm,” IEEE Transactions on

17

Circuits and Systems for Video Technology, vol. 2, no. 2, pp.
169–175, June 1992.

[50] M. Ezhilarasan and P. Thambidurai, “Simplified block matching
algorithm for fast motion estimation in video compression,”
Journal of Computer Science, vol. 4, no. 4, pp. 282–289, 2008.

[51] K. Crammer and Y. Singer, “On the algorithmic implementa-
tion of multiclass kernel-based vector machines,” Journal of
Machine Learning Research, vol. 2, pp. 265–292, March 2002.

[52] J. Yang and I. W. Tsang, “Hierarchical maximum margin
learning for multi-class classification,” Proceedings of the 27th
Conference on Uncertainty in Artificial Intelligence, pp. 753 –
760, 2011.

[53] X. Yuan, J. Yang, P. Llull, X. Liao, G. Sapiro, D. J. Brady,
and L. Carin, “Adaptive temporal compressive sensing for
video,” International Conference on Image Processing, pp. 14–
18, 2013.

[54] C. M. Bishop, Pattern recognition and machine learning.
Springer, 2006.

[55] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,
“Image quality assessment: From error measurement to struc-
tural similarity,” IEEE Trans. Image Processing, vol. 13, pp.
600–612, 2004.

[56] X. Liao, H. Li, and L. Carin, “Generalized alternating projection
for weighted-ℓ2,1 minimization with applications to model-
based compressive sensing,” to appear in SIAM Journal on
Imaging Sciences, 2014.

[57] J. Bioucas-Dias and M. Figueiredo, “A new TwIST: Two-step
iterative shrinkage/thresholding algorithms for image restora-
tion,” IEEE Transactions on Image Processing, vol. 16, no. 12,
pp. 2992–3004, December 2007.

[58] A. Rajwade, D. Kittle, T.-H. Tsai, and L. Carin, “Coded
hyperspectral imaging and blind compressive sensing,” SIAM
Journal on Imaging Sciences, vol. 6, no. 2, pp. 782–812, 2013.

[59] J. A. Tropp and A. C. Gilbert, “Signal recovery from random
measurements via orthogonal matching pursuit,” IEEE Trans-
actions on Information Theory, vol. 53, no. 12, pp. 4655–4666,
December 2007.

