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completely equipped to assimilate the detailed and compli-

cated technical aspects of video forensics.
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1 Introduction

The wide-spread proliferation of inexpensive and port-

able video-capture devices, such as digital cameras and 

cell phones, combined with the remarkable surge in the 

use of surveillance cameras, has caused a sudden increase 

in the amount of digital audio-visual data being generated 

every single day. All this data not only fulfils a recreational 

purpose but also serves as a record of events occurring in 

every corner of the world. The information provided by 

the contents of digital images and videos forms the basis 

of several crucial and consequential decisions in the fields 

of criminal or forensic investigations, intelligence services, 

politics, and journalism. For instance, during a criminal 

trial, surveillance footage of the crime, if available, can be 

admitted as ‘video evidence’, and its contents are expected 

to provide a truthful depiction of the event.

A decade ago, digital videos would have been consid-

ered infallible, but the wide-spread availability of low cost 

and easy to use the video-editing software, such as Adobe 

Premiere, Photoshop, Cinelerra, and Lightworks, and 

development of specialized forgery techniques [1–7], has 

led to the realization that this is no longer the case. Even 

novice individuals are now capable of altering the contents 
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forensics and counter anti-forensics. Moreover, the paper 
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of action that could assist developers and future researchers 

explore new avenues in the domain of video forensics. Our 
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of digital videos in a manner that renders them practically 

indistinguishable from genuine content.

There are several different kinds of video forgeries1, but 

they all usually belong to one of two categories: inter-frame 

forgeries or intra-frame forgeries.

(a) Inter-frame forgeries These are the kinds of forgeries 

that affect the sequence of frames in a video in some 

way. Usually, such forgeries involve removal or inser-

tion of a set of frames from or into a video sequence. 

Frame replication or duplication is also a kind of inter-

frame forgery, where a set of frames are copied and 

inserted into the same video at another temporal loca-

tion. Such forgeries can also be referred to as ‘inter-

frame copy–paste forgeries’.

Another kind of inter-frame forgery is temporal splicing, 

where frames of two or more different videos are interpo-

lated to generate a new video.

(b) Intra-frame forgeries In an intra-frame forgery, the 

actual contents of individual frames are modified. 

Copy–paste and upscale-crop are examples of intra-

frame forgeries.

1. Copy–paste forgeries (aka partial manipulation) In a 

copy–paste (or copy–move) forgery, an attacker might 

add or remove an object to or from a scene represented 

in the video frames. The term ‘partial’ here basically 

means that only a small region of the frame under-

goes manipulation and the rest of the frame remains 

untouched.

1 Technically, a ‘forgery’ refers to something that is falsely made 

with the intent to deceive whereas ‘tampering’ refers to the inten-

tional modification of structure or composition of something that 

would render it harmful. Being subtly different, in this survey, as in 

the literature, these terms would be used synonymously.

When an object is removed from a video scene, a tech-

nique called inpainting is used to restore the missing or 

tainted regions in a visually plausible manner. Inpaint-

ing can be performed in one of two ways. Either the most 

coherent blocks from temporally adjacent frames are used 

to fill in the missing region [Temporal Copy and Paste 

(TCP)], or the missing regions are filled in with the help 

of sample textures [Exemplar-Based Texture Synthe-

sis (ETS)]. ETS is generally less suitable for inpainting a 

video, because it treats each frame individually and that 

makes it difficult to maintain temporal coherence between 

successive frames after inpainting. TCP is much more 

equipped to preserve this temporal coherence.

Green-screening or blue-screen compositing are also 

examples of intra-frame forgeries.

2. Upscale-crop Such forgeries entail cropping the frames 

of a video to eliminate evidence of occurrence of a 

crime in the outermost parts of said video, and then 

enlarging the affected frames so as to maintain consist-

ent resolution across the entire video.

Figures  1, 2, 3 and 4 present some examples to better 

illustrate the different kinds of video forgeries.

All these examples are demonstrative of the fact that 

plausible and carefully constructed video forgeries may 

remain completely inconspicuous to a human viewer. 

Therefore, in matters where a video constitutes potential 

evidence, it is vital to ascertain that its contents are in fact 

an actual and unaltered representation of reality, and since 

subjective inspection cannot provide adequate assurance, 

specialized forensic techniques have to be relied upon. 

These specialized solutions are offered by the research 

domain known as digital visual media forensics. Basically, 

digital visual media forensics is concerned with the accom-

plishment of three main tasks [11], as illustrated in Fig. 5.

To handle the challenge of digital content authentica-

tion, the domain of visual media forensics provides a set 

a tools and techniques which are collectively known as 

Fig. 1  Examples of copy–paste forgeries. a and c Represent sample frames from original videos [8], and b and d are their forged versions 

wherein certain objects have been removed
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tamper or forgery detection techniques. These techniques 

are based on the premise that all post-production content 

modification operations inevitably disturb the inherent 

statistical properties of the digital content and leave cer-

tain discernible traces (sometimes known as ‘forensic fin-

gerprints’, ‘footprints’ or ‘forensic artifacts’) in the data, 

which, upon suitable analysis, provide an insight into the 

possible modifications that the content may have gone 

through.

The existing forgery detection methods can be catego-

rized in a number of different ways. All the commonly uti-

lized classifications have been listed in Table 1.

For two decades now, visual media forgery detection 

field has remained at the receiving end of much innovation. 

Fig. 2  Examples of upscale-crop forgeries. a and c Original video frames [8], which are cropped and resized to eliminate objects at the extremi-

ties of the frames, thereby producing the forged frames (b) and (d), respectively

Fig. 3  Inter-frame forgeries. a Original frame sequence. b Exam-

ple of frame-insertion forgery, where frames a, b, and c have been 

inserted into the video. c Example of frame-deletion forgery, where 

frames 7, 8, and 9 (denoted in white) have been removed from the 

video. d Example of frame-duplication forgery, where frames 10, 11, 

and 12 have been duplicated at another location in the video

Fig. 4  Examples of green screening a and c represent sample frames of videos with people engaged in various activities in front of a green 

screen. b and d Frames from a new video where these people have been composited into their new surroundings [9, 10]
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Over the years, a multitude of image forensic techniques 

have been developed, and have subsequently been analyzed 

and catalogued in various surveys [12–27]. However, only 

a few papers [11, 28–31] have appraised the innovations in 

the field of video forensics.

Although these papers possess some fine qualities of 

their own, they remain inadequate in some aspects. While 

in [11], only two video forgery detection techniques have 

been analyzed (the rest of the paper focuses on image tam-

per detection) [28–30] and appraise only a few video foren-

sic techniques. Several noteworthy and contemporary con-

tributions have not been discussed or analyzed, and since 

an effective survey is expected to be a thorough repository 

of every relevant and notable piece of research and inno-

vation in any given field, if some important video tamper 

detection techniques remain un-cited, they might eventu-

ally remain unidentified. Furthermore, in the absence of 

such crucial references, it would become difficult to com-

pletely understand the current state of affairs of the digital 

video forensics domain. A recent survey [31] reviews pas-

sive video forgery detection techniques and offers quite an 

informative study of the basics of this field. However, this 

work too overlooked several important works of merit. The 

techniques discussed in the survey were found to have been 

described in a somewhat restricted manner and the nature 

of test data used by the respective authors, or the qualitative 

or quantitative performances of the proposed techniques 

had not been discussed. The absence of such information 

may negatively affect the extent of comprehension of the 

subject matter thereof. The study in [31] lacked rigorous 

analysis; it also lacked thorough exposition of both the 

video anti-forensics domain and the open issues that need 

to be tackled in the near future. A noteworthy paper [32] 

provides an overview of the advancements in the field of 

information forensics, wherein the authors have examined 

the subjects of device forensics, embedded fingerprinting, 

and watermarking, and environmental signatures, such as 

electric network frequency (ENF), have also analyzed vari-

ous social factors and behavior dynamics pertaining to the 

field of forensics. They have provided a very brief outline 

of the tamper detection and anti-forensic domains, but the 

investigation was almost entirely limited to digital images, 

with only a cursory discussion of few forensic features used 

in the video forgery detection domain.

To overcome the aforementioned impediments, this sur-

vey presents a comprehensive and up-to-date assemblage 

of the most influential contributions in the field of passive-

blind video tamper detection and anti-forensics, includ-

ing several other cognate research fields, such as video 

up-conversion detection, re-capture detection, and video 

phylogeny. In this survey, we classify the forensic features 

used for forgery and video re-capture detection, intimately 

analyze the available literature, and highlight the favorable 

features and shortcomings of each of the discussed tech-

niques. Furthermore, we discuss certain open issues that 

require immediate attention, along with some other long-

term goals. Through this discussion, we seek to develop a 

perspective on the selected domain, which could prove use-

ful to the researches and practitioners working in the field 

of video forensics to find new utilitarian ideas and to help 

the video processing community identify novel research 

challenges. A vital objective of this survey is to provide an 

overview suitable for both the researchers and practition-

ers working in the field of digital video forensics and for 

those researchers and general enthusiasts who are new to 

this field and are not yet completely equipped to assimilate 

the detailed and complicated technical aspects of video 

forensics. To achieve this, it was essential to provide a clear 

Fig. 5  Objectives of digital visual media forensics

Table 1  Possible classifications of video tamper detection methods

Classifications Underlying methodology

Active techniques These use a known identifying trace such as a signature or watermark that is either embedded into the content at the 

time of recording or is sent with it to the receiver (also known as intrusive or non-blind techniques)

Passive techniques These use only the received content to determine its authenticity without the help of any other kind of side-information 

(also known as non-intrusive or blind techniques)

Intra-frame techniques Analysis is performed by considering one frame at a time

Inter-frame techniques Relationships between adjacent frames are considered to detect the forgery

Detection techniques The presence of tampering is detected but its exact location, either within the frame (spatial localization) or within the 

video sequence (temporal localization) is not determined

Localization techniques In addition to detection, tampering is localized as well
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and simplistic understanding of the subject matter, which is 

why in-depth and complicated technical description of any 

particular method has been avoided in this survey.

Analysis of the literature revealed that due to lack of 

standardized video forensics databases, researchers had 

tested their forgery detection technique on videos from dif-

ferent databases, the most frequently used being [8, 33]. 

The remaining techniques were validated on videos cap-

tured and forged by the respective authors themselves. It 

is important to realize that the nature of the scene being 

captured and processed can have a significant effect on the 

outcomes of the various forensic methods. All the available 

forgery detection techniques are diverse in functionality 

and have been designed to tackle different forensic chal-

lenges, and since they have not been tested on a standard-

ized neutral platform, it becomes difficult to judge their 

efficaciousness from a universal standpoint. Albeit, analy-

sis of the outcomes of a particular technique with respect 

to the visual contents and underlying characteristics of test 

videos used during performance validation can provide 

valuable information regarding the applicability of that 

techniques in a specific forensic scenario. Such an analysis, 

however, would be unable to predict the technique’s behav-

ior in an entirely different forensic scenario. Therefore, to 

provide an idea of how these different forensic solutions 

would behave in a neutral setting, we have assessed the 

performances of some forgery detection techniques which 

we believe to be among the most representative and con-

temporary advancements documented in the literature. We 

implemented each of these techniques by adhering to the 

specifications, assumptions, variable parameters settings, 

and threshold values suggested by the respective authors, 

and validated them on test videos form two databases [8, 

34]. SULFA [8] provides a large number of original videos 

and five forged videos, exhibiting intra-frame copy–paste 

forgeries. The database in [34] was constructed by us, by 

performing intra-frame copy–paste and inter-frame forger-

ies on original videos taken from [8]. Figures 1c, d and 2c, 

d represent some examples of forged content available in 

[34].

The rest of the paper is organized as follows. Section 2 

serves as a compendium of the advancements in the field 

of video forgery detection, wherein the existing video for-

gery detection literature has been thoroughly examined. 

The enumerated forgery detection techniques have been 

categorized on the basis of the type of forgeries they detect, 

i.e., inter-frame forgeries and intra-frame forgeries. Then, 

we discuss various video anti-forensic strategies, and pro-

vide an overview of the fields of video up-conversion, 

phylogeny, and re-capture detection. The best possible fit 

of the presented references into these categories has been 

attempted. The quantitative results of our comparative anal-

ysis have also been provided in Sect. 2. Section 3 is geared 

towards the exposition of the various issues and impedi-

ments pertaining to the video forensics domain, and the 

survey is concluded in Sect. 4.

2  Techniques proposed for passive-blind content 

authentication in videos

Passive-blind techniques use only the received content 

to determine its authenticity, and work in the complete 

absence of any kind of identifying trace or embedded 

information, such as watermarks or signatures. The task 

of forensic analysis begins with the reconstruction of the 

processing history of the data under investigation. The first 

step of this process is the extraction of certain descrip-

tive features from the given video that provide useful hints 

regarding the authenticity of its contents. Over the years, 

various researchers have utilized many different kinds of 

such descriptive features to accomplish the task of forgery 

detection. These have been presented in Fig. 6.

The evidence of content modification manifests as spe-

cific artifacts in one or more of these features. These arti-

facts are not only discernible but are also unique to each 

content alteration operation. Therefore, the presence of a 

particular forensic artifact serves as an evidence of pres-

ence of the corresponding post-production content manipu-

lation operation.

In the upcoming sections, we examine various passive-

blind content authentication techniques that have been pro-

posed in the literature so far. The forgery detection tech-

niques discussed hereinafter have been organized according 

to the outline presented in Fig. 7.

2.1  Inter-frame forgery detection techniques

In this section, we present an analysis of the inter-frame 

forgery detection techniques proposed in the literature. 

First, we discuss the various frame-insertion, frame-dele-

tion, and frame-duplication/replication detection tech-

niques, followed by the methods suggested for the detection 

of temporal interpolation.

2.1.1  Detection of frame-insertion/deletion/duplication

2.1.1.1 Use of  sensor artifacts for  inter-frame forgery 

detection Recording devices usually leave specific detect-

able traces in the recorded video. In the past, such artifacts 

were mostly utilized for the purposes of source camera iden-

tification [35–37], but some authors exploit them as a means 

of tamper detection as well. For this, the basic idea is to 

determine whether or not all the scenes of the video were 

recorded using the same camera.
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A CCD digital camera introduces readout noise in 

every frame it records upon readout. Since this noise fol-

lows a particular pattern over a sequence of consecutive 

frames, the authors in [38] suggested that any variation 

in this pattern could be helpful in detecting forgeries. To 

detect frame insertion, the authors computed the vari-

ance between mean noise (for all the frames in the video) 

and noise in a particular frame. Frames with high vari-

ance from mean value were tagged as not belonging to 

the original video. To detect object insertion in a frame, 

correlation patterns between noise in a frame-sub-block 

and overall noise of the frame were observed, and any 

inconsistency therein hinted towards the possibility of 

forged regions. The authors did not provide any informa-

tion regarding the performance of this technique. How-

ever, thorough analysis of its functionality revealed cer-

tain drawbacks. First, its method of operation suggested 

that it would most likely be unable to perform well for 

compressed videos. Second, it relied on a number of hard 

thresholds that were determined empirically and, there-

fore, lacked flexibility. In addition, it was tested on only 

one self-recorded video sequence, which was not enough 

to provide an accurate estimation of the scope of applica-

bility of this technique.

Fig. 6  Different features used for detecting forgeries in digital videos

Fig. 7  Categorization of the video forgery detection techniques discussed in the survey
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The authors in [39] suggested using the artifacts caused 

by components of imaging pipeline (specifically interlaced 

scanning) and proposed a motion adaptive algorithm that 

was capable of detecting and localizing forgeries in inter-

laced and de-interlaced videos in both spatial and tempo-

ral domains. The basis of the algorithm was the detection 

of disturbances in correlation (for de-interlaced videos) 

and disturbances in motion between frames (for interlaced 

videos), which occurred when some sort of tampering was 

involved. For a de-interlaced un-compressed video cap-

tured using a digital video camera, 100% detection accu-

racy was achieved. However, when this video underwent 

additional MPEG compression, detection accuracy was 

97%, 96.1%, and 93.3% at 9, 6, and 3 Mbps, respectively. 

No clear results were reported for the three interlaced vid-

eos used for testing. Compression artifacts seemed to make 

it difficult for the algorithm to estimate the de-interlacing 

correlations, thereby rendering this approach unsuitable for 

low-quality videos. Noise too was found to be a debilitating 

factor for this technique. Insufficient validation of the pro-

posed method’s effectiveness was another major limitation 

of this work.

In [40], a fingerprinting-based approach was suggested 

which utilized the concept of Sensor Pattern Noise (SPN) 

to determine if all the frames of the given test video were 

recorded with the same camera, based on sign modifica-

tions seen in the number (or content) of the frames. The 

unique noise patterns of the camcorder used to capture the 

video were estimated for the initial frames of the video 

sequence, and were used to identify different types of for-

geries. The correlation between SPN of the frame under 

investigation and a reference SPN was calculated and com-

pared with an empirical threshold to detect frame insertion 

and replication, and object insertion within a frame. Dif-

ferent tests were carried out on both un-compressed and 

MPEG compressed videos. Instead of quantitative results, 

the authors reported some case studies after implementing 

their algorithm. The results indicated that the system was 

reliable for un-compressed videos, but algorithm’s per-

formance deteriorated significantly in case of compressed 

videos. The method was claimed to be reliable for videos, 

whose frames had undergone interpolation but was not 

found to be very accurate if the SPN had high-frequency 

components.

Another camera-based approach was proposed in [41] 

that provided pixel-level authentication of digital videos, 

and was also capable of localizing any and all inter-frame 

forgeries. Suspicious regions in a given video (frames 

recorded using a different camera and inserted in a desired 

location in the given video) recorded in any scan format 

were detected by utilizing the inconsistencies in photon 

shot noise introduced by different acquisition devices. 

When the method was tested on two un-compressed videos 

recorded indoors and outdoors, the results were impressive: 

97% of forged pixels were located with a false alarm rate 

of 2.5%. The system’s performance suffered severe deg-

radation when two compressed videos were experimented 

upon. The detection rate dropped to 46% for MPEG-2, 6% 

for Cinepak, and 39% for H.264 codecs. The reason for per-

formance affliction was evident: since modern codecs make 

good use of motion information, they effectively remove 

most of the noise characteristics from a video. Considering 

the fact that this method was based entirely on the utiliza-

tion of noise characteristics, its performance dropped as the 

amount of noise in the test video decreased. The method 

was applicable only to static-scene videos, such as those 

recorded by stationary surveillance cameras. In addition, 

since the method was tested on a very small number of test 

sequences, its wide-scale utility cannot be determined with 

certitude.

2.1.1.2 Detection of  forgery via  detection of  double com-

pression The sheer volume of digital data being generated 

everyday necessitates that this data, videos especially, be 

compressed before they are stored or transmitted. To modify 

the content of a compressed video, the forger would first 

have to convert it into a sequence of frames, perform the 

forgery (say frame-deletion), and then re-encode this modi-

fied sequence. Re-compression or double compression is, 

therefore, an inevitable consequence of the forgery, and its 

detection could help detect the presence of the tampering 

operation.

The first successful probing step in this direction can be 

attributed to the authors in [42], who worked with MPEG-

1, 2 compressed videos. Their algorithm was based on the 

simple assumption that when an MPEG video was tam-

pered with, it suffered two compressions: first, when the 

video was being created and, second, when it was re-saved 

after said tampering. The authors investigated a spatial and 

a temporal phenomenon. The first one was based on the fact 

that when a video is re-compressed after removing some of 

its frames, its Group of Pictures (GOP) patterns get desyn-

chronized (GOP refers to the specific arrangement of I-, B-, 

and P-frames in a compressed video). This desynchroniza-

tion causes disturbances in the Discrete Cosine Transform 

(DCT) coefficient distribution, which introduced easily 

detectable periodic artifacts in the histograms of double 

quantized frames. They also exploited the fact that within 

a GOP, the frames exhibit great correlation and adding or 

deleting a frame in a GOP increases the error of motion 

estimation, which also results in detectable periodic spikes. 

The authors stated that this approach was quite effective in 

detecting if a video was re-saved after it was recorded. The 

technique was tested on one self-recorded video, but no 

quantitative or qualitative results were reported, although 

it was evident that the presence of noise in the given test 
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content caused significant degradation in performance. In-

depth analysis revealed that the periodic peaks in motion 

estimation error do not show if the entire GOP or a mul-

tiple of GOP is deleted, in which case, the method would 

be unable to detect any forgery. Furthermore, this method 

could not determine whether a video was only re-saved 

(after a harmless viewing, for instance) or if it was re-

saved after some sort of tampering. Finally, this algorithm 

implicitly assumed that the videos were coded via Variable 

Bit Rate (VBR) coding model [a VBR model sets a fixed 

Quantization Parameter (QP) for each frame]. The method 

was thus rendered inapplicable to videos recorded using the 

Constant Bit Rate (CBR) coding model.

Survey of the literature revealed that another course of 

action for detecting double compression was the utiliza-

tion of the first digit law, aka Benford’s law [43]. This law 

was used to develop many double-compression detection 

approaches for digital images, and usually generated an 

accuracy of over 90%. When applied to videos, the effi-

ciency of the detector reduced to about 70% [29].

The authors in [44] observed that MPEG compression 

introduced certain block artifacts in different frames of a 

video, which persisted even after the video underwent post 

frame-deletion re-compression. Therefore, they proposed 

to detect signs of frame deletion by analyzing the changes 

in temporal patterns of block artifacts (i.e., the degree of 

change in the Block-Artifact Strength (BAS) of the re-com-

pressed video), which was a function of number of deleted 

frames and previous GOP structure of the video. 11 forged 

sequences created from an MPEG-2 test sequence were 

used for experimentation. The authors claimed that this 

technique was less sensitive to video content and could dis-

cern GOP transformation as well, but no empirical results 

were reported. Moreover, this technique was applicable 

to MPEG-2 videos with a fixed GOP structure only. The 

concept of BAS also presented some constraints. Usually, 

the effects of change in BAS are discernible as long as the 

second compression is weaker than the first one. It was 

only natural that as the strength of the second compression 

increased, the performance of the system would rapidly 

deteriorate.

In [45], the authors presented a technique for detect-

ing double quantization, which resulted from either re-

compressing an MPEG compressed video or combin-

ing videos of dissimilar characteristics. The technique, 

unlike [42], could detect highly localized tampering by 

determining if the DCT coefficients of the video frames 

underwent double compression at any point. Experiments 

were performed on two sets of digital videos (total 498 

sequences) captured using a digital video recorder and 

downloaded off of the Internet from Microsoft’s show-

case. The empirical results indicated that the detec-

tion rate was highly dependent on the ratio of first and 

second quantization scales. When the ratio was less than 

1.3, True Positive Rate (TPR) was 2.5%. TPR was 41.2% 

when the ratio was between 1.3 and 1.7, and for ratio 

higher than 1.7, an average TPR of 99.4% was reported. 

Evidently, the technique was effective as long as the sec-

ond compression quality factor was higher than the first 

one. This requirement limited the effective scope of 

applicability of this method. In addition, this technique 

could only work when the quantization scale was kept 

constant throughout the test sequence.

In [46], forgeries in MPEG-2 encoded videos were 

detected by examining DCT coefficient distribution. This 

algorithm was based on the observation that histogram of 

quantized DCT coefficients of a video suffering from dou-

ble compression exhibited a convex pattern. On a set of 100 

self-captured videos for a bitrate range of 4–8  Mbps, the 

algorithm generated TN rate in the range of 94.02–93.96% 

(for originally compressed videos) and TP rate in the range 

of 86–100% (for double-compressed videos). Unlike [45], 

which was highly dependent on the quantization scales, the 

authors in this case suggested controlling the output bitrate, 

which made this algorithm adaptable to the needs of differ-

ent kinds of video encoding systems. However, unlike [45], 

this method could not localize the forgery in the video. It 

also could not perform well for slow-motion videos.

The work in [47] also focused on detecting frame-based 

tampering by detecting double compression in MPEG-2 

videos. Double-compression detection techniques that 

relied on temporal artifacts [42, 44] were extremely vul-

nerable to the influence of encoder parameters. Therefore, 

instead of basing the frame-addition/deletion detection pro-

cess on temporal features, the authors suggested using fre-

quency features. It was observed that when an MPEG video 

was re-compressed after frame addition/removal, some 

high-frequency components of the re-compressed frames 

were lost because of the desynchronization of GOPs and 

the non-linear quantization performed in the coding pro-

cess. These variations created clearly observable periodic 

patterns in the energy values of DCT coefficients, which 

not only helped detect the forgery but locate it as well. A set 

of 20 test videos taken from Video Quality Experts Group 

[48] and 30 high-quality DVD videos were used for perfor-

mance evaluation, but no quantitative results were reported 

that could help estimate the accuracy or precision of the 

method. In addition, since the entire method was based on 

the detection of coding-type change, any forgery that did 

not introduce such change in the video remained unde-

tected. For instance, this method would not detect removal 

of the entire GOP or its multiples. Furthermore, the final 

decision regarding the presence of absence of forgeries was 

based on a hard threshold, which the authors determined 

empirically. The method, therefore, had restricted practical 

applicability.
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The methods proposed in [44, 45] suffered significant 

performance deterioration as the strength of the second 

compression increased. With the aim of overcoming this 

limitation, the authors in [49] proposed a robust and dis-

tinctive footprint called Variation of Prediction Footprint 

(VPF). The work in [49] was not directed towards actual 

forgery detection but suggested certain solutions that 

could be useful in the field of video forensics. The authors 

claimed that VPF could not only help detect double com-

pression but also determine the original GOP structure 

of the video sequence. They believed that estimating the 

original size of the GOP and assessing the video’s process-

ing history was an important step towards forensic analy-

sis of the said video. The technique was tested on a total 

of 1344 test samples constructed from 14 sequences. For 

H.264 encoded videos, this system yielded 94% detection 

rate with 5% false positives. For MPEG-x encoded videos, 

the detection rate was 80% when 5% false positives were 

allowed. Although this technique was not exactly built 

for detecting forgeries, it still laid a solid foundation upon 

which forgery detection mechanisms could be built. How-

ever, before attempting to utilize VPF for forgery detection, 

it is necessary to understand that this technique would not 

be able to detect double compression if frames are removed 

from the beginning of the video, and if double compression 

is not detected, the forgery could pass undetected as well. 

In addition, in its present form, this technique works only 

for videos with a fixed GOP structure.

Another MPEG double-compression-based forgery 

detection technique was proposed in [50], where abnormal-

ities in DCT coefficient patterns were treated as an indica-

tive of frame insertion/deletion. The authors extracted 

a 12D feature from the GOPs, which was then used by a 

serial Support Vector Machine (SVM) to determine origi-

nal bitrate of the given double-compressed video. 12 

MPEG encoded YUV sequences were used for testing 

and the results indicated 97.9% TNR and 100% TPR. The 

original bitrate was estimated with 95.83% accuracy. The 

authors observed that the  technique’s detection perfor-

mance was relatively poorer for videos with lower bitrate, 

because larger quantization scale required a coarser quan-

tization process, which the technique was not equipped to 

handle.

In the same year, another similar technique was pro-

posed in [51]. The novelty of this technique was its abil-

ity to detect transcoded videos, i.e., videos that had been 

doubly compressed using two different compression stand-

ards. The periodicity introduced in the reconstructed non-

zero DCT coefficients after MPEG-2 compression has been 

a thoroughly utilized forensic artifact. The authors further 

observed that after an MPEG-2 video was transformed to 

MPEG-4 video, the previous MEPG-2 compression traces 

generated new periodicities that were distinctly observable 

in the histograms of the reconstructed DCT coefficients. 

An SVM was used to train and test the classifier that could 

label each video as being originally MPEG compressed 

or being transcoded. The algorithm was tested on videos 

in YUV format taken from VQEG [48]. The authors pre-

sented the results in the form of Receiver Operating Char-

acteristics (ROC) curves and stated that perfect results were 

obtained in case of low bitrates. These curves also demon-

strated that as the target output bitrate increased, the detec-

tion performance declined. The reason can be attributed 

to the fact that increased bitrates led to smaller MPEG-2 

quantization scale factors, which in turn made the periodic-

ities in histograms weaker and, therefore, harder to detect. 

In addition to not being able to locate the forgery, this tech-

nique worked for MPEG-2 to MPEG-4 transcoding only. 

It also assumed that transcoding was always suggestive of 

tampering.

The work in [52] was directed towards detecting multi-

ple compressions (up to three) in a video sequence. Mul-

tiple SVMs were trained by exploiting Benford’s law [43], 

and then tested on the statistics of quantized DCT coef-

ficients to retrace the compression steps. The system was 

tested on 12 H.264/AVC encoded videos and the detection 

accuracy varied with respect to the number of compres-

sions undergone by the video. The technique could detect 

a single compression with 100% accuracy, two compres-

sions with 73.9% accuracy, and the third one with accu-

racy of 77.8%. The shortcomings of this technique were the 

assumptions that were imposed on its functionality. First, 

the QPs used during compression were not entirely random 

but instead uniformly distributed over a particular inter-

val. Second, the QPs between consecutive compressions 

had to differ by at least two units, otherwise, the technique 

would not be able to detect the compression. The authors 

also conceded that this technique was entirely ineffective 

against any anti-forensic approach directed towards delib-

erately hiding the traces of compression. The work itself 

was pioneering in nature since none of the previous works 

in the literature attempted detection of more than two com-

pressions in a given video sequence. However, further inno-

vation is required to make this technique widely applica-

ble, and that too with improved accuracy of re-compression 

detection.

A technique for detecting frame deletion with the help 

of machine learning was proposed in [53]. The first step 

was feature vector extraction, where the process of fea-

ture selection was based on several important observa-

tions. Since frame-deletion affects prediction residuals and 

percentage of intra/inter-coded MBs, mean and standard 

deviation of these residuals and percentages were used as 

suitable features. The fact that frame-deletion causes deg-

radation of video quality led to Peak Signal-to-Noise Ratio 

(PSNR) being used as another feature. Finally, the author 
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observed that in videos encoded using CBR model, frame 

deletion manifested in terms of increased quantization 

scales. The extracted feature vector first underwent dimen-

sionality reduction with the help of spectral regression, 

followed by use of logistic regression (L Reg), K-Nearest 

Neighbor (KNN), and SVM to detect forgeries. Perfor-

mance evaluation was performed on 36 MPEG-2 encoded 

QCIF sequences. Average TPR using SVM, L Reg, and 

KNN was 94.3%, 94.8%, and 95.6%, respectively, while the 

False Alarm Rate (FAR) ranged from 3.8% to 4.4%. The 

technique worked well regardless of the number of deleted 

frames. Unlike [42], the methodology in [53] could suc-

cessfully distinguish re-encoded videos with and without 

frame deletion, with average TPR of 96% (SVM), 95.1% 

(L Reg), and 92.8% (KNN). Unlike [39], it could handle 

videos coded using both VBR and CBR models. However, 

despite its effectiveness, it could not localize the forgery. 

Furthermore, the technique worked only if the number of 

deleted frames was not a multiple of the length of a GOP.

The methodology in [54] dealt with detection of double 

compression in MPEG-4 encoded videos, using Markov 

statistics as the distinguishing features. The basic idea was 

to treat every GOP as a detection unit, followed by extract-

ing Markov features and classifying each GOP as singly 

or doubly compressed using Fisher’s Linear Discrimi-

nant (FLD) analysis [55]. For experimentation, a data set 

containing 5040 sample clips constructed from 30 YUV 

sequences in CIF resolution was used. For different values 

of the first and second quantization scales (Q1 and Q2), dif-

ferent classification results were obtained. When Q2 was 

an odd multiple of Q1, classification accuracy ranged from 

50.1–52.4%. When Q2 was an even multiple of Q1, this 

range was 92.7–99.3%. The authors also compared Markov 

features with other features commonly used to detect dou-

ble compression, such as First Digit Distribution (FDD) 

feature, as used in [56], and DCT histogram features, as 

used in [45, 50]. These comparisons indicated that when-

ever the two quantization scales differed by only a small 

value, the first-order statistics failed to detect forgeries, 

while the second-order statistics (Markov features) pos-

sessed strong discriminative power. For instance, when Q2 

was an even multiple of Q1, while the classification accu-

racy using FDD ranged from 53.5–54.1%, this range was 

92.7–99.3% for Markov statistics. This contribution was 

of considerable significance, given the fact that nowadays 

a large proportion of digital and surveillance cameras sup-

port the MPEG-4 codec. However, the detection accuracy 

of this technique was found to be extremely dependent on 

the ratio of Q1 and Q2.

Along the lines of the system proposed in [51], another 

video forensic technique capable of detecting frame addi-

tion/deletion in transcoded videos was proposed in [57]. 

The authors adopted the scheme proposed in [49] and 

modified it to detect any misalignments in the frame struc-

ture of a test video as a result of frame deletion/addition. 

This method could detect double encoding even if a set of 

leading frames were deleted. This method had an additional 

advantage of being able to effectively locate the forgery. 

The method was suitable for H.264 encoded videos too, 

unlike [51] which worked for MPEG videos only. The mod-

ified methodology was also able to estimate the number 

of deleted frames. 14 YUV videos in CIF resolution were 

used for constructing a test set containing 10,206 test clips 

for evaluating the performance of the proposed method. 

MPEG-2, 4 & H.264 encoders were used to compress the 

videos. While the average frame-removal detection accu-

racy was 84%, for frame-addition detection, this value 

was 79%. The only other VPF based scheme proposed in 

the literature so far, [58], generated better detection results 

than this scheme, but only as long as the two quantization 

scales were carefully monitored and controlled. In addition, 

while [58] was applicable to MPEG-2 encoded video only, 

[57] was suitable for MPEG-2, 4 and H.264 encoded vid-

eos. However,  even though [57] was a viable method with 

a wide range of applicability, certain limitations need to 

be pointed out here. First, applicability of this method was 

limited to videos compressed using CBR model. Second, 

the method could be applied to videos with a fixed GOP 

structure only. Third, forgery localization was not as pre-

cise as that achieved by, say, motion vector schemes. 

Fourth, manipulations involving removal/insertion of entire 

GOPs could not be detected, because in that case, the exact 

periodicity of the original signal is re-established. Finally, 

the authors assumed, as in [51], that double compression 

is always indicative of tampering, which, from a forensics 

point of view, was a rather unsound assumption.

It may seem like a convenient and effective idea to detect 

forgeries by detecting double compression, but this con-

cept suffers from a dire shortcoming; the presence of dou-

ble compression is not always indicative of a forgery. This 

fact was brought to light by the authors in [29] who stated 

that multiple compressions were a poorly explored topic 

and that it was risky to make any assumptions regarding 

the authenticity of the digital content merely on the basis 

of the presence of double compression. Their claim was 

supported by the simple fact that the (perfectly legitimate) 

digital content available on the Internet usually undergoes 

more than one compression. The authors thereof also pro-

posed a technique to accurately discern the nature of the 

double JPEG compression in [29], but it was not extended 

to videos.

It is important to realize that in a real-life scenario, 

application of a forensic scheme and interpretation of its 

results are different from what it seems to be in theory. 

Deciding whether or not a technique will be viable is not 

something that can be generalized; the actual case context 



221Video content authentication techniques: a comprehensive survey  

1 3

defines which methods could be useful. Evidence pro-

vided by any forensic technique must in fact be analytically 

judged before reaching any conclusions regarding content 

authenticity. For instance, for an ordinary video (such as 

one downloaded off of the Internet or one recorded on a 

mobile phone), the presence of double-compression arti-

facts may not be suspicious. A doubly compressed surveil-

lance footage  on the other hand must not be considered 

innocuous, simply because once recorded, surveillance 

footage is supposed to remain unaltered in every way, 

which means that double compression should normally not 

occur in such a scenario. If a given footage shows signs of 

double compression, it would indicate the presence of some 

sort of unauthorized modification. Therefore, the presence 

of double-compression (or multiple compression) artifacts 

would serve as the first and quite possibly the most impor-

tant sign of tampering in surveillance footage, while in any 

other scenario, double-compression artifacts may be of the 

least importance.

2.1.1.3 Motion and  brightness feature-based inter-frame 

forgery detection techniques Detection of frame addition/

deletion can also be achieved with the help of motion-com-

pensated edge artifacts (MCEA). This artifact was utilized 

in [59] and later in [60]. The advantage of MCEA is that its 

calculation requires no information, whatsoever, regarding 

the original video.

The technique in [59] introduced the idea of using 

MCEA to detect frame-deletion and determine the loca-

tion of such tampering. In general, whenever consecu-

tive frames are deleted from a video sequence, temporal 

correlations between adjacent frames decrease. MCEA 

energy was found to have close association with temporal 

correlation and thus was useful in measuring this change. 

An impact factor (calculated using MCEA energy values) 

effectively indicated the GOP that suffered from frame-

deletion. Experimentation was done on 25 MPEG-2 vid-

eos, but quantitative results were presented in the form of 

impact factor values rather than accuracy rates. The authors 

claimed that as the number of deleted frames increased, so 

did the detection accuracy. Examination of the technique 

reveled that it was likely to be ineffective for videos devoid 

of rapid motion. In addition, the technique worked for vid-

eos with fixed GOP structures only and could not detect 

any forgery if the number of frames deleted were a multiple 

of this GOP length.

The scheme suggested in [60] was another attempt at 

using MCEA to detect frame-deletion. This was basi-

cally an improved version of [59], where MCEA differ-

ence between adjacent P-frames was exploited to see if any 

periodic spikes appeared in the frequency spectrum after 

application of DFT. These spikes indicated that the frame 

sequence within a GOP had been disturbed somehow, 

either due to frame-deletion or addition. This method could 

also predict the original GOP structure of the video, as long 

as the minimum distance between two P-frames remained 

the same. Observing the frequency spectrum in the Fourier 

domain eliminated the need of a hard threshold, which was 

a necessity in [59]. Testing was performed on four CIF and 

QCIF videos, and the results were presented in the form 

of Fast Fourier Transform (FFT) spectrums. This tech-

nique worked for videos with fixed GOP structures only 

and could not detect any forgery if the number of frames 

deleted were a multiple of this GOP length.

In both [59, 60], the influence of B-frames on the 

MCEA of P-frames was not investigated. Meanwhile, 

H.264/AVC codec would also prove to be a challenge for 

these techniques, since this codec contains some new fea-

tures, such as integer transform and multiple intra/inter pre-

diction modes, which neither [59] nor [60] were equipped 

to handle.

A novel motion-based approach for detecting forgeries 

in videos was proposed in [61], where motion-based fea-

tures were extracted by modeling motion between the adja-

cent frames of a video sequence using Markov models. The 

first step was obtaining a base frame by applying collusion 

on adjacent frames. Then, a small window was centered on 

each frame and an average function was applied to all the 

frames within that window to capture the motion informa-

tion between those frames. Motion residue was obtained 

from the difference between estimated and actual motion 

and a Markov model was applied to this residue. Finally, 

pattern recognition was performed with the help of an 

SVM. The authors reported an average detection accuracy 

of about 87%. The technique was found to be computa-

tionally intensive, and its performance was not validated 

sufficiently.

An inter-frame forgery detection method was proposed 

in [62], which was based on detecting optical-flow incon-

sistencies that resulted from frame addition/deletion. Opti-

cal flow represents the distribution of perceptible veloci-

ties of objects in a video frame or an image. Using a small 

moving window and calculating optical flow between the 

first and last frames inside the window (for detecting frame-

insertion), and between every pair of adjacent frames (for 

detecting frame-deletion), the authors were able to detect 

highly inconsistent optical-flow values. For performance 

evaluation, they constructed one test video database using 

TRECVID Content Based Copy Detection (CBCD) scripts 

and two databases using OpenCV function library (on vis-

ual studio 2010). For frame-insertion detection, the recall 

and precision rates of 95.4% and 95.3% were reported (for 

videos created using CBCD scripts). These rates were 

94.3% and 97.9% (for videos created using OpenCV func-

tion). The performance dropped as the number of inserted 

frames decreased. For detecting frame deletion, recall and 
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precision rates of 85.7% and 89.4% were reported. Again, 

these rates dropped as number of deleted frames decreased. 

It was evident that the method was less likely to be effective 

in case of insertion or removal of small number of frames. 

In addition, since the frame-deletion detection mecha-

nism used a single threshold for all videos, any attempt 

to increase the recall rate increased the false alarm rate as 

well. For the frame-addition detection scheme, an adap-

tive threshold was used. However, while a low threshold 

ensured high recall, it also ascertained more false alarms. 

Furthermore, the absence of large motion in the test video 

could cause the system to miss some forgeries. In addi-

tion, calculation of optical-flow values is a very complex 

and computationally intensive process. It is highly prone to 

errors as well, which could eventually compromise the for-

gery detection accuracy of this technique.

Another optical-flow-based forgery detection technique 

was suggested in [63], where the authors first modeled the 

probability distributions of optical-flow variations for un-

tampered video sequences by a Gaussian distribution. Any 

abnormality in the flow variations was considered to be an 

anomaly, and a statistical inference test (Grubb’s test) was 

used to assign an anomaly score to the optical-flow patterns 

of every test video. This score depended on the degree to 

which that pattern exhibited anomalous behavior. Finally, 

to detect inter-frame forgeries, three cut-off thresholds 

(one each for frame insertion, frame deletion, and frame 

duplication) were applied to the anomaly score, which 

helped select the anomalies. The method was tested on a 

total of 160 test clips, where all these test clips were pro-

duced from two original MPEG-2 encoded videos, taken 

from TRECVID’s surveillance event detection data set 

[64]. Average accuracies for frame-deletion, insertion and 

duplication detection were reported to be 75%, 85%, and 

82.5%, respectively. For forgery localization, correspond-

ing accuracies of 96.9%, 100% and 86.2% were reported. 

It was observed that the detection performance degraded 

as the bitrates of the test videos decreased. Although this 

was quite a novel forensic scheme, it suffered from certain 

limitations. First, the videos constructed for frame-inser-

tion detection tests were not created in a plausible manner. 

Secondly, the parameters for the Gaussian distribution and 

the thresholds used during forgery detection were entirely 

dependent on the visual content of the given video, and 

were inherently unsuitable for any other test video exhibit-

ing essentially different characteristics. This technique was 

formally tested on test clips created from only two videos, 

which did not offer the degree of content diversity that is 

required to ensure the wide-spread applicability of a foren-

sic scheme. Furthermore, the technique was suitable for 

videos MPEG-2 encoded videos only.

An inter-frame forgery detection and localiza-

tion scheme based on a novel concept of velocity field 

consistency was presented in [65]. The concept of veloc-

ity field is closely associated to particle image velocime-

try, where the general idea is to estimate the displacement 

between adjacent video frames caused by time separation. 

The authors computed Velocity Field Intensity (VFI) and 

Relative Factor (RF) sequences for the given video, and 

showed that any inter-frame forgery ultimately caused dis-

tortions in the VIF sequences, which manifested as discern-

ible peaks in the frequency spectra of RF sequences. This 

scheme was evaluated on a data set consisting of 120 test 

sequences constructed from 4 MPEG-2 encoded TRECVID 

videos. Videos suffering from frame-deletion were detected 

with an accuracy of 85% while those suffering from frame-

duplication were detected with an average accuracy of 

80%. This scheme could detect tampered videos with an 

accuracy of 96.3% with 10 false positives (without being 

able to distinguish frame-deletion from frame-duplication). 

However, as the quantization scale of second compression 

increased from 1 to 3, detection accuracy dropped from 

80% to 62.5%. Aside from the excessive dependence on the 

quantization scales, another major drawback of this scheme 

was that every false detection was automatically reported 

as a frame-deletion forgery. Even though the performance 

of this scheme was far from desirable, this work represents 

a novel step in the video forensic domain, and although 

it was only tested on MPEG-2 encoded videos, it demon-

strates potential to be extended to the MPEG-4 and H.264 

domain.

A frame-deletion detection scheme specifically designed 

for H.264 encoded videos was proposed in [66], where 

the authors introduced a feature called Sequence of Aver-

age Residual of P-frames (SARP) and demonstrated that in 

case of frame-deleted videos, SARP exhibited periodici-

ties when analyzed in the time domain. In the frequency 

domain, these periodicities resulted in characteristic spikes 

at particular locations in the Discrete Time Fourier Trans-

form (DTFT) spectrum. These locations were then used 

to pinpoint the position of the deleted frames in the given 

sequence. Experimental validation was performed on a set 

of YUV test sequences from the video trace library [33] 

which were encoded using H.264 codec, and on another 

set of videos from the consumer digital video library [67]; 

average detection accuracy of 92.08% was reported. The 

authors showed that by combining information acquired 

from both time and frequency domains, they were not only 

able to overcome the various limitations faced by the meth-

odology of [42], but achieved better detection results as 

well. However, the final separation of original videos from 

the tampered ones was based entirely on a hard threshold, 

which did not offer the desired level of flexibility to sug-

gest an extensive scope of this method, especially for vid-

eos with essentially different visual content and character-

istics from those used during performance validation. In 
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addition, the authors assumed a fixed GOP structure for the 

test videos.

In [68], a Blockwise Brightness Variance Descriptor 

(BBVD) was proposed to help detect frame insertion and 

deletion. The basic idea here was that in equal time inter-

vals, the ratio of BBVD will display disturbances in case of 

videos suffering from inter-frame forgeries. The video was 

first divided into overlapping sub-sequences, and then all 

the frames of every sub-sequence were divided into 4 × 4 

blocks. Ratios of BBVDs in every group were then com-

puted and any irregularities therein, above a pre-determine 

threshold,   were considered to be an indicative of   the 

presence of forgery. Number of peaks in the BBVD error 

sequence helped differentiate fame-insertion forgery from 

frame-deletion forgery. For performance validation, the 

authors acquired original test videos from the recognition 

of human actions database [69] and created a total of 220 

forged test sequences with the help of TRECVID CBCD 

scripts. For frame-insertion detection (with number of 

inserted frames >25), average recall and precision rates of 

94.2% and 86.3% were reported. These rates were 89.2% 

and 79.4% for frame-insertion localization. If the number 

of inserted frames was less than 25, 83.5% recall rate and 

75.8% precision rate could be achieved. The authors did 

not report any results for frame-deletion detection. This 

technique worked only for video recorded with a station-

ary camera and could detect a forgery only if the number of 

inserted or deleted frames were more than 10. Furthermore, 

this technique also required that only one kind of forgery be 

present in the given video at one time (either frame inser-

tion or removal) and that the forgery be performed only 

once. All these assumptions rendered this technique unsuit-

able for utilization in real-life forensic scenarios.

In [70], a frame-duplication and deletion detection 

technique was proposed. To detect duplicated frames, the 

authors performed frame differencing at spatial ROIs to 

compute mean square values of motion energy. The entropy 

of difference between every successive frame and average 

object area was used as features to train an SVM classifier 

to detect videos suffering from frame deletion. The authors, 

however, did not provide any information regarding the 

database used for testing, neither did they provide any 

clearly comprehensible quantitative results, thereby making 

it difficult to evaluate the forensic significance and utility of 

this technique.

In [71], the authors suggested an improved version of 

the methodology proposed in [66], where, in addition to 

the periodic artifacts caused by frame deletion in SARP, 

they analyzed the magnitudes of the P-frame prediction 

error as well. However, unlike [66], this technique func-

tioned entirely in the frequency domain. The authors then 

analyzed a possible anti-forensic method in which the 

traces of forgery could be hidden by explicitly increasing 

the P-frame prediction error of the forged sequence. Then, 

a counter anti-forensic approach was suggested, where the 

authors estimated the actual prediction error and compared 

it with the prediction error obtained from the video under 

consideration. The technique’s performance was independ-

ent of the motion estimation algorithm used during the ini-

tial compression of the videos. This technique could detect 

both frame insertion and deletion and but was unable to 

localize the forgery.

In [72], a hybrid forensic system for the detection of 

frame-insertion, removal and replication was developed. 

For the detection of  frame-insertion and removal, the 

system detected irregularities introduced in the bright-

ness gradient component of optical flow by post-produc-

tion frame-tampering. Frame-replication forgeries were 

detected and localized by analyzing the abnormalities in 

the prediction residual patterns of forged videos. For per-

formance validation, ten original MJPEG and H.264/AVC 

encoded videos  from SULFA [8] and  ten original YUV 

format videos from video trace library [33] were acquired. 

These videos were then tampered with using different com-

binations of frame-insertion, removal and replication, and 

were re-compressed and transcoded before and after the 

forgeries using FFmpeg [129], to obtain a data set con-

sisting of 480 test videos. The system reportedly detected 

frame-insertion, frame-removal and frame-replication for-

geries with average accuracy rates of 98.2%, 98.6% and 

98.3%, respectively. The system was capable of identifying 

the presence of forgeries in MJPEG, MPEG-2, MPEG-4 

and H.264/AVC encoded videos, regardless of the number 

and/or location of the tampered frames. It was independent 

of heuristically determined thresholds and its performance 

remained unaffected by removal of entire GOPs or multi-

ples of GOPs.  The frame-replication detection technique 

of the proposed system missed no forgeries but generated 

a few false alarms, specifically in case of videos that con-

tained (non-replicated) visually similar frames.  Moreover, 

the system was not capable of detecting the presence of 

multiple post-production compressions. 

In the forensic system proposed in [74], the authors first 

detected the presence of double compression by calculat-

ing normalized histogram of the most significant digits of 

all DCT coefficients of the I-frames. An SVM was then 

used to distinguish singly compressed videos from dou-

ble-compressed ones. For inter-frame forgery detection, 

time-domain analysis of Mean Absolute of Residual Errors 

(MARE) of P-frames was performed. The authors demon-

strated that MARE sequences for tampered videos exhib-

ited discernible peaks, which were different from the peaks 

generated in case of original videos. Empirically deter-

mined thresholds were used to distinguish the different 

kinds of peaks in the MARE sequences. Then, another set 

of thresholds was applied to the magnitudes of the peaks to 
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determine if the given video was forged or authentic. The 

final decision regarding content authenticity was performed 

with the help of a decision-fusion scheme, where several 

rules were proposed to combine the evidence provided 

by the double-compression and frame-deletion detection 

schemes. For experimentation, 22 YUV test videos in CIF 

and QCIF formats were acquired from video trace library 

[33], and were then singly and doubly compressed using 

MPEG-2 encoder. Tampered videos were constructed by 

removing the same number of frames from the same loca-

tion in each of the test videos. Average detection accuracies 

of 87.1% for double-compression detection and 83.39% for 

frame-deletion detection were reported. Analysis of the sys-

tem’s functionality revealed that the double-compression 

detection accuracy decreased with increase in the quantiza-

tion scale of the first compression, and the frame-deletion 

detection accuracy decreased when the ratio of the second 

and first quantization scales increased. Furthermore, the 

authors assumed a fixed GOP structure of the test videos, 

and the system could detect deletion of entire GOPs only.

2.1.1.4 Pixel-level analysis-based techniques In [75], 

the authors detected frame duplication by observing pixel-

level anomalies. They proposed a coarse-to-fine process to 

determine similarity between given query clip and candi-

date clip to determine the presence of duplicate clips and 

to localize their positions. First, to detect duplication in 

temporal domain, difference in histograms of successive 

frames in RGB color space was calculated. Next, actual spa-

tial correlations between the corresponding frames of the 

query clip and candidate clip were calculated to ascertain 

that those frames were in fact identical and not just errors 

caused by noise. Experiments conducted on four test vid-

eos revealed that their method generated no false alarms 

and missed detections were caused in only one video. The 

accuracy of the system for localizing the duplicate frames in 

four test sequences was reported to be 100%. However, test-

ing on only four videos does not ensure practical suitability 

of this method. Furthermore, the entire method was based 

on several empirically determined hard thresholds, which 

limited its scope of applicability even more. In addition, it 

was found that this method would be unable to detect any 

forgery if the frames were shuffled before being pasted at 

another location within the video.

An inter-frame forgery detection scheme was suggested 

in [76], where the authors used Consistency of Correla-

tion Coefficients of Gray Values (CCCoGV) as a forensic 

feature, and stated that while for original videos, CCCoGV 

remained consistent, any post-production disturbance in the 

frame sequence caused this value to demonstrate abnor-

malities. An SVM was used to perform the final classifica-

tion. For quantitative analysis of their approach, the authors 

used five data sets (one containing original videos and four 

containing tampered ones), each consisting of 598 videos 

with still background and a little camera movement. Aver-

age detection accuracy of 99% (for frame-insertion detec-

tion) and 95% (for frame-deletion detection) was reported. 

Although the authors did not mention the compression 

standards used to create the videos, a basic analysis of this 

scheme’s functionality revealed that strong compression 

would ultimately cause severe degradation in its detection 

accuracy.

2.1.2  Detection of temporal interpolation and frame-rate 

up-conversion

Another way to forge a video is via temporal slicing, i.e., 

interpolating two or more different videos to generate a 

new video. If the source videos do not share the same frame 

rate, they have to be temporally interpolated before they 

can be spliced together. This is done with the help of an 

operation known as Frame-Rate Up-Conversion (FRUC), 

wherein new frames are generated with the help of the exit-

ing ones and are inserted into the original video, thereby 

increasing its frame rate.

The interpolation detection method suggested in [77] 

worked on the principle that whenever an attacker tried to 

perform frame interpolation while simultaneously trying to 

minimize the resultant temporal artifacts, it was done with 

the help of motion-compensated interpolation. However, 

motion-compensated interpolation left characteristic and 

quite detectable footprints of its own. The authors were 

able to suggest a system that worked for un-compressed 

and slightly compressed (e.g., H.264) videos (such as tel-

evision broadcast videos) and achieved promising results, 

even when used on only a subset of the frames. Exact quan-

titative results were not reported, but the authors admit-

ted that the performance of their system was not good for 

MPEG-2 encoded videos, because such compression was 

much more vigorous than H.264/AVC encoding. Moreover, 

the system functioned well on small-sized spatial windows, 

which allowed this detector to be used as a possible tool for 

detecting copy–paste forgery attacks. However, the number 

of observed interpolated frames had to be large enough for 

the system to detect forgeries successfully.

An edge intensity-based frame-rate up-conversion detec-

tion technique was proposed in [78], where after comput-

ing edge intensities form all the video frames, an adaptive 

threshold was calculated using the Kaufmann Adaptive 

Moving Average (KAMA) technique. This threshold was 

then used to distinguish original fames from up-converted 

ones and estimate the original frame rate as well. A set of 

15 un-compressed YUV sequences taken from the video 

trace library [64] were up-converted to different target 

rates, and were also lossy-compressed using H.264/AVC 
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encoder. Overall, for a total of 300 test sequences, an aver-

age detection of 95.4% was reported.

The authors in [79] observed that most frame-rate up-

conversion techniques introduced visually discernible peri-

odic artifacts into the texture regions of the affected frames. 

This observation led the authors to develop a two-stage 

blind detection method that based on the frame-level analy-

sis of a feature called Average Texture Variation (ATV). In 

the first stage of the method, ATV values for every frame 

were computed to obtain an ATV curve of candidate video. 

In the second stage, each ATV curve was further processed 

to detect the periodic artifacts, which were considered to 

be the evidence of frame-rate up-conversion operation. 

This technique could localize the position of the interpo-

lated frames and help estimate the original frame rate of the 

video as well. Exhaustive testing on videos from the video 

trace library [64] and xiph.org video test media library [80] 

demonstrated that the technique was quite effective for the 

detection of common frame-rate up-conversion techniques, 

such as motion-compensated and linear frame averaging; 

an average detection accuracy of 96% was reported.

2.2  Intra-frame forgery detection techniques

In this section, we analyze various methods suggested for 

detection of copy–move and upscale-crop forgeries in digi-

tal videos.

2.2.1  Copy–move forgery detection techniques

2.2.1.1 Pixel-similarity and  correlation analysis-based 

techniques The techniques that detect copy–move or 

copy–paste forgeries generally proceed by looking for simi-

larities or correlations between regions of successive video 

frames or regions of the same frame, which in theory should 

not have anything in common (primarily because they have 

different origins or have different time/place associated with 

their lineage).

To detect copy–move forgeries, the authors in [81] com-

puted spatial and temporal correlation coefficients to iden-

tify and locate resemblance between separate parts of the 

video. For detecting region duplication, the accuracy of 

100% (for stationary-camera videos) and 81.2% (for mov-

ing-camera videos) was reported for MPEG compressed 

videos. This performance affliction was attributed to the 

fact that compression artifacts were more pronounced in the 

presence of motion in the video. Performance was observed 

to drop with decrease in the region size (e.g., at 9  Mbps 

bitrate, when the region size dropped from 256×256 pix-

els  to 64×64 pixels, accuracy dropped from 100% to 35% 

for stationary-camera videos and from 87.8% to 39.4% for 

moving-camera videos). When tested for frame-duplication 

detection in two un-compressed videos recorded using a 

digital video camera, the method’s accuracy was reported 

to be 84.2% (for stationary-camera videos) and 100% (for 

moving-camera videos). For compressed videos, the results 

were 85.7% (for stationary-camera videos) and 95.2% (for 

moving-camera videos). The method was robust to com-

pression as long as the compression rate was large enough 

(for instance, the detection rate dropped from 100% for an 

un-compressed moving-camera video to 86.8% for a video 

compressed at 3 Mbps bitrate). Moreover, the method had 

a very high time complexity. It also generated false alarms 

for frames with areas of uniform texture, such as the sky. 

Insufficient validation was another limiting factor.

A forgery detection and localization method was sug-

gested in [82] that was based on the fact that correlation 

between temporal noise residue suffers a significant change 

whenever a region is forged (noise residue for every frame 

is calculated by subtracting the actual frame from its de-

noised version). Detecting this change led to the detection 

of the forged region. Experimental tests performed on three 

surveillance-like videos captured using a digital camcorder 

generated the following results. For videos suffering from 

temporal copy–paste attacks, the recall rate was 55%, preci-

sion rate was 96.6%, and the false positive rate was 3.3% 

with a miss rate of 44.2%. For synthetically inpainted 

frames, these values were 74.5%, 92.8%, 7.2%, and 25.4%, 

respectively. This resulted in an average accuracy ranging 

from 70% to 82%. Too high or too low illumination was 

the main cause of the false positives. Being a noise-based 

method, lossy encoded and poor quality videos like those 

streamed on low-bandwidth Internet were problematic, 

since the excessive amount of noise in such videos caused 

the residue calculations to became highly unreliable. Fur-

thermore, many missed detections were caused when the 

noise intensities of the original and manipulated regions 

differed significantly, and the method failed to calculate the 

noise residues accurately. The method was also sensitive to 

quantization noise. In addition, since correlation of noise 

residue was highly unstable for moving-camera videos, the 

method was rendered ineffective in such scenarios. Though 

this method could have been useful for frame-replication 

detection, the authors did not perform experiments in this 

direction.

Another technique for copy–move detection was pro-

posed in [83, 84] which was based on the hypothesis that 

correlation attributes of pixel sub-blocks within as well as 

between the frames were bound to be disarranged by tam-

pering attacks, such as double compression, retouching, or 

resampling. The authors extracted noise residue and quan-

tization residue features from adjacent frames and then 

performed correlation analysis using Canonical Correla-

tion Analysis (CCA), Cross-modal Factor Analysis (CFA), 

and Latent Semantic Analysis (LSA). Acute observation 

of such disturbances helped the technique to differentiate 
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the fingerprints of a genuine video from those of a tam-

pered one. For a set of video clips taken from low-band-

width Internet streamed movies, the technique reportedly 

achieved accuracy of 92.1% (for CFA), 91.8% (for CCA) 

and 91.2% (for LSA). The accuracy of this technique was 

found to be significantly better than that of [82], which was 

also a noise-residue-based approach. This improved perfor-

mance can be attributed primarily to the utilization of two 

residue features (noise and quantization) rather than a sin-

gle noise-residue feature. By not relying on noise residues 

entirely, this technique was able to overcome the drawbacks 

of [82] specifically, its inapplicability to lossy encoded and 

poor quality videos. The techniques, however, was still sen-

sitive to significant illumination variations, and was appli-

cable to videos with static backgrounds only.

An ETS detection technique based on fuzzy theory was 

proposed in [85], where the authors observed that even 

though the effects of ETS inpainting were quite imper-

ceptible, they introduced certain unnatural similarities 

into frame block pairs, thereby revealing the presence of 

a forgery. The first step was conversion of the video into 

a sequence of frames, followed by a block-matching pro-

cess, performed within a Region of Suspicion (ROS), to 

determine the degree to which sub-blocks of frames were 

similar to one another. By working on a portion of the 

frame instead of the entire frame, the technique was able 

to maintain a good balance between performance and com-

putational complexity. Fuzzy set theory was used to handle 

the uncertainty associated with similarity-measure calcu-

lations. Although the authors did not present any quanti-

tative results with which to judge the performance of the 

technique, it was observed that the detection performance 

was extremely dependent on a number of parameters that 

required careful empirical setting. Inapplicability to com-

pressed videos was yet another limitation of this technique.

The forgery detection and localization method of [86] 

was similar in functionality to [81] but was fully automatic, 

and the location of the tampered frames was not consid-

ered to be a priori information. It was a two-step algo-

rithm, where first, frame-level manipulations were detected 

by computing and analyzing zero-motion video residual, 

which was obtained by subtracting pixels occupying same 

spatial position on consecutive frames. Then, to detect 

duplicated content along the temporal dimension of the 

video, the authors cross-correlated small 3D spatio-tempo-

ral blocks of the frames. The presence of high-correlation 

indicated the location of the identical content. The method 

was completely unsupervised and to judge its performance, 

and 120 realistic H.264 encoded sequences taken from 

a standard data set SULFA [8] were used. Originally, all 

the videos were slightly compressed, but to test the meth-

od’s robustness to compression, the authors deliberately 

re-compressed certain test sequences. These latter videos 

were referred to as ‘re-compressed videos’, the former were 

called ‘not re-compressed videos’. For frame-level manipu-

lation detection, average detection accuracy of 84.2% (for 

not re-compressed videos) was reported. For video-based 

attacks, the detector correctly identified duplicated blocks 

on 90% of the not re-compressed videos. If re-compressed 

videos were also considered, 87% of the blocks were 

reported to have been detected correctly. The method was 

found to be tolerant of mild compression only.

In [87], the authors proposed an approach for detect-

ing and localizing region-level forgeries in videos. The 

approach was designed to detect irregularities caused by 

inpainting in spatio-temporal coherence between consecu-

tive frames. The video was first divided into sets of frames, 

where the effect of motion could be considered negligible 

in each set. Then spatio-temporal slices were extracted 

from each set of frames and coherence was computed 

between every one of these slices. Pairs of slices exhibit-

ing unnaturally high coherence (caused by TCP inpaint-

ing) or abnormally low coherence (caused by ETS inpaint-

ing) were classified as those belonging to frames suffering 

from copy–paste forgery. This approach was tested on 18 

self-captured video sequences. For un-compressed vid-

eos, average precision, recall, and accuracy rates for TCP 

inpainting detection were reported to be 93.6%, 80.2%, and 

85.5%, respectively. These values were 75.7%, 78.1%, and 

74.3% for ETS inpainting detection. For JPEG compressed 

frames (quality factor 90), the algorithm’s precision, recall, 

and accuracy dropped to 89.9%, 77.4%, and 81.4% (TCP 

inpainting) and 78.5%, 76%, and 74.8% (ETS inpaint-

ing). The results further degraded in case of MPEG and 

WMV compressions (70% for MPEG-2, 71% for MPEG-

4, and 70.3% for WMV-9 for TCP inpainting and 73.5% 

for MPEG-2, 75% for MPEG-4, and 75.3% for WMV-9 

for ETS inpainting, at 9 Mbps bitrate), suggesting that the 

method worked best for completely un-compressed videos. 

The decision regarding the presence of high or low coher-

ence was based on empirically thresholds, which further 

limits its scope.

An object removal detection and localization technique 

was suggested in [88]. It utilized Scale Invariant Feature 

Transform (SIFT) coupled with k-NN matching to detect 

spatial copy-paste forgeries, and noise-residue cross cor-

relation to detect temporal copy–paste forgeries. This tech-

nique was tested on 150 test videos, some of which were 

the authors’ own and others were taken from SULFA [8]. 

The authors reported an average detection accuracy of 99%, 

for spatial forgery detection. For temporal forgery detec-

tion, average detection accuracy of 98% was reported. For 

frame-duplication detection, average accuracy of 98% was 

reported. Though the technique performed well for the test 

videos under consideration, it suffered significant perfor-

mance degradation as the compression strength increased.
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In [10], a method to detect blue-screen compositing 

was proposed. The authors suggested that although blue-

screen compositing is generally used in applications such 

as weather forecasting on TV, it has the potential to be used 

as a forgery scheme. In this method, the authors computed 

quantized DCT coefficients of the foreground and back-

ground of the video separately. Then, a similarity measure 

called pattern distance was calculated from the histograms 

of the DCT coefficients, which was then compared to a 

threshold to classify the given video as original or compos-

ite. 21 self-recorded MPEG encoded CBR video sequences 

were to evaluate the performance of this method, and for 

bitrates ranging from 5 to 9 Mbps, detection accuracies in 

the range 70–100% were reported.

A rotation-invariant copy-move forgery detection 

method was proposed in [89], where a specialized 3D ver-

sion of PatchMatch [90] was devised. Previous instances of 

use of 3D versions of PatchMatch include tasks such as ste-

reo matching [91] and video inpainting [92]. The authors 

used Zernike moments as forensic features, and then used 

PatchMatch to generate a dense approximation of Nearest 

Neighbor Field (NNF) to search for copy-pasted regions 

within video frames. Experimental evaluation was per-

formed on a set of 10 test videos taken from the REWIND 

data set [93]. For these original test videos, average TPR 

of 48.7% and average False Positive Rate (FPR) of 0.02% 

were reported (for forgery localization). The authors then 

re-compressed these test video using H.264/AVC encoder 

with QP 10, 15, and 20, GOP was fixed at 150. TPR and 

FPR for re-encoded videos were 46.1% and 0.12% (for QP 

10), 29.4% and 0.06% (for QP 20). The technique produced 

a very small number of false alarms, but the detection 

accuracy was significantly lower than a desirable stand-

ard. The performance was found to be highly dependent 

on the amount and kind of motion present in the videos; 

larger motion led to lower detection accuracy. Neverthe-

less, this technique could detect forgeries even if the copy-

pasted regions underwent post-processing operations, such 

as rotation and scaling. The technique could achieve sub-

stantial improvement in performance by proper utilization 

of motion information.

2.2.1.2 Object features based copy-paste detection tech-

niques Another way to expose copy–paste forgeries is to 

focus on detecting the artifacts that arise after an object has 

been removed from a video frame.

The work in [94] was a novel technique that could iden-

tify a forged video by detecting ghost shadow artifacts, 

which arise when moving objects are removed from video 

frames. The video was first segmented into static back-

ground and moving foreground via bock matching. Then, 

the moving foreground was used to construct a foreground 

mosaic. The moving foreground was also used to compute 

an Absolute Difference Frame (ADI), from which isolated 

regions were removed with the help of morphological oper-

ators (erosion and dilation). The presence of any discrep-

ancies between the foreground mosaic and the binary ADI 

was considered to be evidence of forgery. Ten real-world 

videos were used to judge the performance of the technique 

and the results suggested that it was resilient to MPEG-2 

compression and re-compression. H.264/AVC encoded vid-

eos, however, could not be handled efficiently. In addition, 

the technique worked only for videos with stationary back-

ground. The forgery localization process was found to be 

imprecise as well.

Another novel concept was presented in [95], where 

manipulated videos were identified by detecting physically 

improbable trajectories of solid objects in the video. The 

objective was to create a 3D model of the parabolic trajec-

tories of objects in free flight (for instance, the trajectory of 

a basketball being thrown towards the basket) and its cor-

responding 2D projection onto the image plane, and then 

weed out inconsistencies from a geometric point of view. 

The performance of this method was not contingent upon 

the presence or absence of compression artifacts or qual-

ity of the video. In addition, the method was insensitive 

to resolution of the video and post-processing operations. 

For a set of 13 fake and 11 authentic test videos created by 

the authors and 3 videos downloaded from YouTube, the 

method was shown be quite efficacious. The authors did not 

report quantitative results in their paper.

In [96], an object-based tampering detection mecha-

nism was proposed which was based on the observation 

that object-based manipulations always left certain splic-

ing traces in the video frames. This was due to the fact that 

object removal was generally followed by some kind of 

inpainting technique, which inevitably caused inconsisten-

cies near the object boundary or the boundary areas. The 

first step was the detection of motion objects in a frame to 

locate object boundaries. Afterwards, wavelet transform 

was used to extract features that could represent the for-

gery traces. These features served as inputs to the SVM 

that classified each frame as original or forged. On a set 

of 20 self-captured test videos in AVI and WMV formats, 

average TN, TP, and accuracy rates of 98.2%, 94.4%, and 

97.4%, respectively, were achieved. The method worked 

only for videos with static backgrounds. In addition, it was 

unfit for videos with very little object motion, because in 

such cases, it became difficult to extract splicing traces. 

One possible future direction for this methodology could 

be the exploration of more powerful discriminating fea-

tures, such as motion trajectories.

2.2.1.3 Motion feature-based copy–paste detection tech-

niques A motion-residue-based forgery detection tech-

nique was proposed in [97], the novelty of which was that 
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to extract forensic features from motion-residue informa-

tion, it utilized feature extractors originally built for image 

steganalysis. The authors first used collusion operators to 

compute motion residues and then extracted seven stega-

nalytic features, namely, CC-PEV, SPAM, CDF, CF, SRM, 

CC-JRM, and J + SRM, from these residues to model inter-

frame and intra-frame properties of pristine (completely un-

manipulated), forged, and double-compressed frames. An 

ensemble classifier, whose decision was based on majority 

voting from several base learners, was used to classify every 

frame as pristine, forged, or double-compressed. This tech-

nique was tested on the SYSU-OBJFORG data set (which 

is not yet publically available), consisting of 100  H.264/

MPEG-4 encoded static surveillance camera videos. The 

authors report a comprehensive assemblage of quantita-

tive results in their paper. Overall, pristine frames could 

be distinguished from double-compressed frames with an 

accuracy of 99%, and pristine and forged frames were also 

distinguished with an accuracy of 99%. Double-compressed 

frames were correctly classified with an accuracy of 95.8%, 

and forged frames were correctly classified with an accuracy 

of 85.3%. The best results were reported to have been gen-

erated with the help of J + SRM. However, in case of low-

bitrate videos, CC-PEV produced the most desirable results. 

Being a feature set of low dimensionality, CC-PEV was 

quite robust to reduced bitrates. An important advantage of 

this technique was that it was applicable to videos with vari-

able to GOP structures, as opposed to majority of the previ-

ous innovations that worked effectively as long as the GOP 

structure of the test video remained fixed. This technique 

was not capable of localizing the forged regions within the 

frames; this remains the subject of the authors’ future work.

The work in [58] addressed the issue of localizing intra-

frame forgeries in MPEG-2 videos. This method used the 

VPF based scheme proposed in [49]. First, the authors esti-

mated the size of original GOPs using VPF scheme, fol-

lowed by performing a Double Quantization (DQ) analysis. 

This consisted of observing certain periodic trends in DCT 

coefficient histograms and pinpointing the manipulated 

regions of the frame. Results of the experiments performed 

on 7 test sequences were presented in the form of ROC 

curves which demonstrated that for a given first quantizer 

scale factor (Q1), low values of second quantizer scale fac-

tor (Q2) resulted in high localization accuracy. On the other 

hand, by increasing Q1, the performance of the system 

could be raised. For instance, if Q2 was kept at a constant 

value of 2, detection accuracy of about 98% was achieved 

for different values of Q1. Further analysis of this method 

revealed that not only was it ineffective against inter-frame 

forgeries, its applicability was limited to MPEG-2 videos 

coded using VBR model only.

The authors in [98] utilized optical-flow inconsisten-

cies to detect region-level copy–move forgeries. Every 

video frame was first divided into suspicious and authentic 

regions, and then, Optical-Flow Variation Factors (OFVFs) 

were computed for all the regions separately. Any and all 

characteristic peaks arising in the OFVF of a given region 

were considered to be evidence of forgery. Peak periodic-

ity and auto-correlation analysis were then used to localize 

the forgery. This method was tested on 10 pairs of original 

and tampered MPEG videos from the REWIND database 

[93]. Original frames were correctly identified with a TPR 

of 86% (with 8% FPR), and tampered frames were cor-

rectly identified with 85% TPR (with 1.4% FPR). Overall, 

the method detected forgeries with an average accuracy of 

89.4%. This method worked only for videos with a fixed 

GOP, and could not locate the forgery if the displacement 

of the forged region was not a multiple of this GOP length. 

It was also highly sensitive to the ROI selection process. 

Peak periodicity analysis, a key operation in this method, 

was also found to be unreliable in case of GOPs with large 

motion.

2.2.2  Upscale-crop detection technique

Another simple way of video content manipulation con-

sists of enlarging the frames of a video and then cropping 

them to remove evidence of some incriminating event in 

the outermost part of the frames. The presence of such 

forgeries can be detected by looking for traces of resam-

pling, because whenever a video’s frames are cropped and 

enlarged, they undergo a process called resampling (specif-

ically up-sampling) so as to maintain consistent resolution 

across all the frames of said video.

An upscale-crop and partial manipulation detection 

method was suggested in [99]. The authors observed that 

since the resampling introduces certain statistical correla-

tions in the given content, its presence could be detected 

by looking for these correlations. The authors exploited 

SPN as the forensic feature and analyzed the variations in 

the correlation properties of reference SPN and SPN of up-

scaled frames. The method was tested on a total of 1920 

forged sequences that were constructed from 120  H.264 

encoded RGB and infrared self-captured test videos. As 

long as the scaling and quality factors were closely super-

vised and controlled, this technique generated a TNR of 

100% and TPR greater than 98%. In case of partial manipu-

lation detection, for region sizes in the range 100sq. pixels 

to 150sq. pixels, detection accuracy of 100% (for dynamic 

scene videos) and accuracy in the range 94.2–100% (for 

static-scene videos) were reported. This method was 

observed to be robust against not only RGB and infrared 

videos but also handled compressed videos effectively. It 

worked for both dynamic and static-scene videos, recorded 

using both static and moving cameras.
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Despite its innovative nature and high accuracy, this 

technique was found to be exceedingly dependent on a 

large number of content-dependent parameters and thresh-

olds that required extremely careful empirical setting. 

Moreover, the copy–paste forgery detection scheme was 

specifically designed to detect superimposed timestamps 

on video frames, and although the authors tested this tech-

nique on a variety of tampered videos, these forgeries were 

created by copying objects from other videos and then past-

ing them randomly into the target videos. This forgery crea-

tion procedure is inherently inaccurate, since creation of a 

plausible forgery requires that tampered region of the frame 

blends into the rest of the frame seamlessly, so as to main-

tain visual coherence within the frame and throughout the 

video. When target objects are taken from other videos, it 

becomes virtually impossible to maintain the required level 

of consistency because of the visible distortions caused by 

factors, such as minute variations in pose and scale of the 

objects, differences in lighting, and shadows caused by illu-

mination variations, and deformation and occlusion.

Upscale-crop forgery is not as common as other kinds 

of forgeries but is equally consequential. As compared to 

the image forensics domain, the field of video-resampling 

detection is dangerously under-populated, and it is evident 

that this research field is in need of substantial innovation. 

Motivation derived from the image-resampling domain 

could be conducive to further advancements in this field.

2.3  Amalgamation of multiple forensic tools

All the techniques discussed so far have been customized to 

handle at most two kinds of forgeries. No individual tech-

nique can be expected to single-handedly detect all forms 

of malicious manipulations that a video could suffer from. 

However, the idea of consolidating several techniques and 

using then together could induce further advancement in 

the domain of multi-utility video forensic mechanisms.

A doctoral thesis [100] was an early attempt at com-

bining several forensic tools into one. This amalgamated 

approach detected tampering in interlaced and de-inter-

laced videos utilizing camera artifacts, as in [39]. Since this 

method was inherently dependent on the use of motion, it 

was unsuitable for detecting manipulations in those regions 

of the video that exhibited no motion. The technique could 

detect the possibility of frame insertion/removal by iden-

tifying artifacts introduced by MPEG double compression 

[42]. The detection rate was observed to be highly depend-

ent on the ratio of the first and second-quantization scales. 

Evidently, the technique was effective only in those cases 

where the second compression scale was greater than the 

first. In addition, the technique worked best on videos 

with mostly static backgrounds captured using stationary 

cameras. Duplicate frames were detected by identifying 

similarities in the spatial and temporal correlations within 

and between the frames [79]. To identify re-captured vid-

eos, the method looked for distortions in camera skew, 

which occur when the re-capture device is placed off-axis 

with respect to the screen on which the video is being origi-

nally projected [101]. All the experiments were performed 

on videos recorded using digital video cameras and the 

results can be viewed from the previous sections that dis-

cuss these individual techniques in more detail. Further-

more, in addition to formulating tamper detection methods, 

the author also discussed possible anti-forensic techniques 

for each of these methods, which could prove to be highly 

beneficial for the development of counter anti-forensic 

schemes.

2.4  Anti-forensic and counter anti-forensic strategies

Advances in the forensics domain have been analogically 

mirrored by the exploration in the anti-forensics domain. 

Simply stated, anti-forensic techniques consist of adapt-

ing and re-modeling the forgery process so as to make the 

unauthorized alterations inconspicuous to tamper detec-

tion methods. That is, a malevolent adversary could alter 

the digital contents in such a manner that any traces of 

such alterations would remain well disguised and therefore 

highly difficult to detect or locate.

Review of the literature revealed that several researchers 

have proposed anti-forensic strategies that have been shown 

to deceive forensic schemes designed to detect forgeries in 

digital images [102–111].

The efforts directed towards constructing anti-forensic 

techniques specifically designed for videos can be attrib-

uted to [112–114]. In [112], the authors presented a method 

that could trick the frame-insertion/removal detection tech-

nique proposed in [42] (which detected missing frames 

from a video sequence by analyzing spikes in the predic-

tion error sequences generated with the help of I-, P-, and 

B frames). The authors observed that by raising prediction 

errors of certain frames to the values expected in the spikes, 

the forgery could be camouflaged, since peaks in the error 

due to actual desynchronization of the I-, P-, and B frames 

would no longer remain distinguishable. The trick was sim-

ple and worked effectively, but paid a great cost in the form 

of coding efficiency. After performing this forgery, some of 

the frames had to be re-encoded at a bitrate that was con-

siderably higher than the one used initially.

The work in [113] demonstrated further advancements 

in the field of digital forensics and anti-forensics. The 

authors had already provided considerable insights into 

the mechanics of interplay between a forger and a foren-

sic investigator in [105–108] and in [113], mathemati-

cal models to highlight effects of frame addition/deletion 

in the P-frame prediction error sequences were proposed. 
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The authors developed two automatic frame-addition/dele-

tion techniques that worked for video encoded using codecs 

that used both fixed length and variable length GOPs. They 

also developed anti-forensic method to hide evidence of 

frame addition/deletion. This method was an extension 

of the technique proposed in [112]. Next, they discerned 

certain fingerprints that make anti-forensic manipulations 

more susceptible to identification. This knowledge helped 

them to modify their previous anti-forensic method in such 

a way that it became more immune to detection via these 

fingerprints. To evaluate the performance of their foren-

sic and anti-forensic techniques, 36 QCIF MPEG videos 

were used. From the ROC curves, it could be seen that the 

technique was able to detect frame addition/deletion with 

at least 85% probability of detection at less than 5% FAR 

(for fixed length GOPs) and with at least 90% probability of 

detection at less than 10% FAR (for variable length GOPs). 

Their anti-forensic method was able to fool the frame-dele-

tion detection technique almost completely (for a probabil-

ity of false alarms under 80%, the anti-forensic approach 

generated a susceptibility of 0.7 or more).

The sheer amount of innovation presented in this work 

could easily raise it to the standard of a landmark in the 

fields of digital forensics and anti-forensics. That being 

said, certain limitations need to be highlighted. First, the 

detection results were reported for the case when the num-

ber of deleted frames was a multiple of sub-GOP lengths 

only. Second, the authors assumed that frame-deletion 

began from an I- or P-frame only. Third, all the experi-

ments were carried out on test videos that were coded using 

VBR mode only, which makes it difficult to determine the 

extent of the method’s applicability to CBR coded videos. 

The method was sensitive to noise as well.

It was shown in [115, 116] that anti-forensic strategies 

are not completely immune to forgery detection algorithms. 

The authors thereof conducted several experiments and 

came to the conclusion that getting rid of all the traces of 

the entire compression process (undergone during the for-

gery process) is a very challenging task. As a result, anti-

forensic methods have an inevitable tendency of leaving 

their own slightly detectable traces behind. The authors 

studied the anti-forensic technique of [106] and proposed a 

method to counter it. Albeit originally designed for digital 

images, this work possesses the potential to be extended to 

videos.

Pioneering steps in the field of video counter anti-foren-

sics were taken in [114], where a method to counter the 

anti-forensic method of [113] was proposed. The method 

of [114] was based on the following observation: to suc-

cessfully deceive a forensic investigator, it is important for 

an anti-forensic approach to keep the amount of distortion 

introduced into the modified video under an acceptable 

limit. This implies that the anti-forensically altered frame 

would have to be similar to the original frame. Therefore, it 

was reasoned that by re-compressing the suspicious video 

(that has been modified anti-forensically), the true pre-

diction error sequence could be acquired which would be 

approximately equal to the prediction error sequence of a 

video that has not been altered anti-forensically. Thus, by 

estimating the actual prediction error, both frame-deletion 

and the use of anti-forensics could be detected simultane-

ously. The authors then suggested an anti-forensic frame-

deletion technique, which was simple yet quite clever: 

they added new frames in place of the deleted ones. The 

new frames to be inserted into a GOP were copied from 

the GOP itself. 220 QCIF sequences in YUV format were 

used for testing the method’s performance. It was observed 

that this method could detect videos tampered via the anti-

forensic method proposed in [113] with a maximum accu-

racy of 95%. Frame-deletion detection accuracy was also 

reported to be 95%, but if the frames were deleted anti-

forensically using the authors’ own technique, detection 

accuracy dropped to 49%.

The authors in [117] proposed their own set of anti-

forensic and counter anti-forensic schemes. The anti-foren-

sic scheme proceeded as follows. Once the given video was 

decoded, information regarding the Macro-Block (MB) 

types of the frames before and after the target frames (i.e., 

the frames that were going to be modified) were recorded. 

After the forgery, these recorded MB types served as a ref-

erence that enabled the forger to limit the coding modes of 

the targeted frames. The targeted frames were then encoded 

once, and the quantization indices of these frames were 

stored. Then, in the second round of encoding, these indi-

ces, along with the MB-types, were adjusted and recorded, 

so that a genuine-looking edited video could be created. 

The authors then suggested using the de-blocking filter of 

H.264/AVC to detect forgery in this anti-forensically cre-

ated manipulated video. Furthermore, they stated that the 

relationship of QP with video bitrate could also be used 

to expose anti-forensically created forgeries. De-blocking 

filters and intra-prediction in H.264/AVC would cause dif-

ficulties for this method, and it would also be unable to per-

form if videos were to be transcoded using the same rate 

control method.

Both anti-forensics and counter anti-forensics have dem-

onstrated their tendency to be very compelling research 

subjects, and further advancements in this domain may be 

expected in the near future.

2.5  Video bitrate up-conversion detection

In this section, we discuss notable advances in the field of 

video bitrate up-conversion. Bitrate up-conversion refers 

to the process of fraudulently increasing the bitrates of 

videos. Bitrate is an important criterion for judging the 
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quality of a digital video; high bitrates are usually asso-

ciated with better audio-visual quality. By deliberately 

increasing the bitrate of an originally low-bitrate video, 

low-quality videos can be made to appear as high-quality 

ones, and can therefore be used by exploitative individu-

als to gain increased commercial profits. Another reason 

for increasing the bitrate of a video could be to hide the 

evidence of a forgery.

The authors in [118] presented an algorithm dedi-

cated towards detecting videos exhibiting bitrate up-

conversion, and estimating the original bitrate of such 

videos. Although this algorithm was not designed to 

detect forgeries, it could still serve as a utilitarian pre-

processing step that could provide useful hints regarding 

content authenticity. This algorithm was an extension and 

improvement of the previous algorithms proposed by the 

same authors in [119, 120]. While the technique in [119] 

was evaluated on MPEG-2 encoded videos only, in [120], 

the authors worked on detecting up-converted videos 

only, without actually determining the original bitrates of 

these up-converted videos.

In [118], the authors observed that bitrate up-conver-

sion could not be accomplished without first re-compress-

ing the video. Therefore, re-quantization artifacts, motion 

vectors, and prediction errors were expected to provide 

useful clues for detecting fake bitrates. The authors used 

generalized Benford’s law [43], and some similarity 

measures in the DCT frequency domain to analyze dif-

ferences in the features of original high bitrate videos and 

fake ones. The final classification was performed with 

the help of a binary SVM classifier. Performance evalua-

tion was performed on 295 MPEG-2 and H.264 encoded 

test clips in CIF, QCIF, and VGA resolutions constructed 

from a single test sequence. Fake bitrates were detected 

with average rates of 97.5%, 97.3%, and 98.5% for CIF, 

QCIF, and VGA resolutions, respectively, for MPEG-2 

encoded videos. For H.264 encoded videos, the average 

detection rates of 91% (CIF), 92.7% (QCIF), and 95.2% 

(VGA) were reported.

All these works represent innovative steps in the field 

of video forensics via fake bitrate detection and original 

bitrate estimation, and could benefit from two sugges-

tions regarding possible future directions. First, advanced 

features, such as quantization artifacts, feature-curve 

inflexion points, and some other video properties, such 

as adaptive rate control encoding schemes, could help 

improve the performance of a bitrate up-conversion 

detection technique. Second, at present, these techniques 

work only for videos re-compressed using the same 

codec. By adapting to the needs of videos re-compressed 

using different encoding standards, the scope of these 

forensic solutions can be widened.

2.6  Technique for detecting video phylogeny

If two videos have the same content but are different in 

terms of attributes, such as size, resolution, and color, they 

are called ‘near-duplicates’ of one another. Given a set of 

near-duplicate videos, one might be interested in finding 

out the reason behind generating one video from another 

and to understand the causal association among these 

videos.

This problem was first presented for images and was 

called ‘image phylogeny’ [121] or ‘image dependencies’ 

[122]. In the context of videos, it is investigated as ‘video 

phylogeny’. The first (and by far the only) published work 

that dealt with video phylogeny was [123]. The method 

involves finding a sturdy and informative dissimilarity 

function capable of comparing the given duplicates and 

extracting the differences that lie hidden within their con-

tent. The calculated dissimilarities were then arranged in 

the form of a tree, known as Video Phylogeny Tree (VPT). 

Experiments were conducted on 16 video commercials 

downloaded from YouTube, which were used to create a 

total of 265 test videos. The quantitative metrics used to 

evaluate the reconstructed tree and compare it to the ground 

truth were: Root, Leaves, Edges, and Ancestry. Out of the 

five algorithms proposed by the authors, the best one was 

able to locate the root of the phylogeny tree, i.e., the video 

from which the entire set originated, with an accuracy of 

91% and could accurately categorized the leaves 77.7% of 

the time. In comparison with the ground truth, the algo-

rithm could find 65.8% correct connections (edges) correct 

ancestry information was identified 70.4% of the time.

Given that this research field is still comparatively new, 

increased interest and further innovation in this domain is 

expected in the near future.

2.7  Video re-capture detection techniques

Re-acquisition or re-capture refers to the activity of captur-

ing videos that are being reproduced on display monitors or 

projected on screens. According to [124], the challenge of 

Fig. 8  Various features used for detecting re-captured videos. *In the 

literature, video re-capture detection is treated as a sub-task of for-

gery detection. However, since a re-captured video may or may not 

be a forgery, these features have been catalogued separately from the 

forgery detection features presented in Fig. 6
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video re-capture detection is necessary to the field of digi-

tal forensics, since re-capture often indicates the existence 

of some previous tampering activity. Figure 8 presents the 

different features that have been used for detecting re-cap-

tured videos.

In [101], a notable technique for distinguishing origi-

nal videos from re-captured ones was presented. For this, 

the authors utilized the concept of multiple view geom-

etry. Videos re-captured with a camera placed off-axis with 

respect to the screen on which the video was being pro-

jected were discovered by observing discrepancies in the 

inherent parameters of the camera. The authors conducted 

several tests on simulated videos, and achieved good 

results. For completely noise-free sequences, instances of 

re-projection were correctly detected 84.9% of the times. 

In the presence of noise, detection accuracy varied from 

85% with 0.3% false alarms to 88% with 0.4% false alarms. 

The authors performed only one test on a real-world video 

sequence and the reason was the immense complexity of 

the skew estimation process involved in such a scenario.

The work in [124] presented a re-capture detection tech-

nique, the basis of which was to analyze the high-frequency 

jitter that was introduced when a handheld camera was 

used to re-capture a video. The authors observed that this 

jitter (generated by shaky movements of the hand while 

holding the camera) resulted in high-frequency 2D motion 

fields that were almost uniform. By tracking features of 

the video and deriving correlation between these high-fre-

quency components of the feature’s trajectories, a trained 

model was then used to classify the videos as original or re-

captured. The results demonstrated that the technique was 

indeed quite effective.

The algorithm in [125] addressed the challenge of deter-

mining if a given image might be a screenshot re-captured 

from an interlaced video. To accomplish this, the authors 

utilized the combing artifact of screenshots as an indica-

tive of interlaced video re-capture. Combing artifacts are 

generated due to motion when even and odd scan lines are 

weaved together to create an interlaced video, and is con-

sidered to be one of the most representative feature of such 

videos. The  algorithm was tested  on TV programs and 

videos recorded using a camcorder. The detection accura-

cies of 4500 input screenshots from 20 MPEG-2, MPEG-4, 

and H.264 format videos were 98.1%, 97.3%, and 97.8%, 

respectively. Detection accuracies of 1,500 JPEG, TIFF, 

and BMP format input screenshots were 97.7%, 97.8%, and 

97.9%, respectively. The average detection accuracy of the 

algorithm was 97.8%.

The authors in [126] detected video re-capture by 

exploiting the Photo Response Non-Uniformity (PRNU) 

of selected video shots. PRNU is a stochastic fingerprint 

unique to all image or video sensors. The method pro-

ceeded with determining which shots were recorded with a 

specific camcorder. Connections were made between shots 

that gradually led to the separation of original shots from 

the re-captured ones. For performance testing, the authors 

used four digital camcorders to re-capture ten original vid-

eos (generating a total of 40 re-captured videos). They also 

tested their technique on H.264/MPEG-4 AVC encoded 

videos. On an average, 100% detection accuracy was 

reported. This technique, however, did not account for post-

re-capture geometric distortions in a given test video. If 

such a distortion completely destroys or partly damages the 

PRNU information, this technique would be rendered inef-

fective. In addition, the detection rate of the technique was 

found to be highly dependent on the quality of the video 

and the scaling factor used.

The same authors proposed another re-capture detec-

tion technique in [127]. The authors observed how geo-

metric primitives, such as straight lines, get distorted while 

passing through the series of re-capture process. Based on 

this observation, they derived a mathematical curve model 

for a straight line distorted after single capture and then 

extended that model for re-captured lines. They tested their 

model to automatically extricate distorted straight lines for 

categorization and applied that information to synthetic 

video sequence.

A method to detect videos re-captured from an LCD 

monitor was suggested in [128]. This method had some 

advantages over the previously proposed techniques in 

the literature. Unlike [101], where camera was placed off-

axis with the screen, the camcorder used in this approach 

was perfectly aligned with the screen, making the task of 

re-capture detection considerably harder (since there was 

no way to rely on geometrical inconsistencies to provide 

a solution). In addition, the authors kept their camcorder 

fixed on a tripod, unlike in [124], where handheld cameras 

produced jitter, which provided an important cue regard-

ing the nature of the video. The idea was to use ghosting 

artifacts that were produced as a result of the lack of syn-

chronization between the camera and the monitor. After 

experiments performed on 18 test videos, it was observed 

that the maximum accuracy of the method was 94% and the 

minimum was 89%, giving an average of 91%.

2.8  Comparative analysis of video forgery detection 

techniques

The forgery detection techniques proposed in the literature 

had all been validated on different databases consisting of 

videos of distinct characteristics and displaying diverse 

range of visual contents. The basal dissimilarities between 

the test videos can have significant effect on the outcomes 

of the given forensic method, and while the results reported 

in a particular work can provide an idea about the useful-

ness of the corresponding technique in a certain forensic 
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scenario, they cannot help predict its behavior in a com-

pletely different setting.

In an attempt to determine the extent of applicabil-

ity of different forensic schemes, we perform comparative 

analysis of some forgery detection techniques, which we 

believe to be among the most innovative and representative 

advancements documented in the literature.

2.8.1  Experimental environment

All these techniques were implemented by adhering to the 

specifications, assumptions, variable parameters settings, 

and threshold values suggested by the respective authors, 

and were validated on test videos form two databases [8, 

34]. All the test videos were originally MJPEG and H.264/

AVC encoded, with resolution 320 × 240 pixels, and had 

been recorded at 30 FPS. While the forged sequences in [8] 

were MJPEG and H.264/AVC encoded as well, the forged 

sequences in [34] were encoded to MPEG-2 and H.264/

AVC formats using FFmpeg [129], after the forgery. Over-

all, a total of 530 test videos were used during comparative 

analysis. All these videos exhibit several simple and com-

plex life-like scenarios, and represent both indoor and out-

door scenes. All the forgeries have been created in a plau-

sible manner so as to simulate realistic forensic scenarios. 

Experimentation was performed in MATLAB v. R2015b 

(8.6.0.267246), and the results reported in Tables 2 and 3 

represent the average detection accuracies obtained.

2.8.2  Comparative analysis of copy–paste forgery 

detection techniques

We analyzed the performances of the following copy–paste 

detection techniques: the noise-based approaches proposed 

in [38, 82], the noise and quantization residue-based 

scheme of [84], motion-residue-based approach proposed 

in [86], the pixel-coherence analysis technique2 suggested 

in [87], the object-based technique suggested in [94], and 

the optical-flow-based method proposed in [98].

Table  2 presents a comparative summary of the out-

comes, as a function of various compression quality factors 

(QF) and bitrates.

2.8.3  Comparative analysis of inter-frame forgery 

detection techniques

We analyzed the performances of the following inter-

frame forgery detection techniques: the pixel-correlation 

based approach proposed in [75], the noise-based method 

2 Pseudo-codes of these techniques are available in the respective 

papers.

Table 2  Comparison of average accuracies (%) of copy–paste detec-

tion techniques at different bitrates and QFs

Forgery detection technique Bitrates 

(Mbps)

Quality factors

60 80 100

De et al. [38] 3 54.9 62.9 74.3

6 56.8 65.6 79.1

9 58.7 70.5 82.0

Hsu et al. [82] 3 66.8 76.2 83.9

6 69.3 79.1 86.6

9 72.5 80.8 88.3

Goodwin and Chetty [84] 3 75.1 82.3 88.3

6 78.4 85.2 90.6

9 80.7 87.0 93.5

Bestagini et al. [86] 3 69.9 75.9 82.6

6 71.3 77.6 85.2

9 73.5 80.3 89.1

Lin and Tsay [87] 3 58.7 65.3 72.1

6 60.1 69.4 74.2

9 62.8 71.3 76.7

Zhang et al. [94] 3 62.0 72.5 85.3

6 65.3 75.4 87.2

9 70.1 78.3 88.7

Bidokhti and Ghaemmaghami [98] 3 54.8 65.3 76.1

6 58.2 68.7 79.9

9 62.5 73.3 82.1

Table 3  Effect of number of inserted/deleted/duplicated frames on 

the average accuracies (%) of inter-frame forgery detection techniques 

at different QFs

Forgery detection technique QF Number of deleted/

inserted/duplicated 

frames

30 65 100

De et al. [38] 100 71.9 82.3 86.1

80 65.8 69.3 72.3

60 57.9 60.5 63.5

Chao et al. [62] 100 86.6 88.5 91.6

80 74.6 78.3 81.7

60 68.9 69.5 71.1

Lin et al. [75] 100 83.9 85.4 88.0

80 77.7 80.3 82.2

60 70.8 72.0 75.5

Wang et al. [63] 100 79.1 82.9 85.3

80 72.0 74.2 76.4

60 67.1 69.6 70.5

Singh and Aggarwal [72] 100 95.6 97.2 99.3

80 94.1 96.5 98.9

60 92.0 94.4 96.3
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of [38], and the optical-flow-based schemes presented in 

[62, 72, 632, 72]. Table  3 presents a comparative sum-

mary of the outcomes as a function of various QFs and 

number of inserted/deleted/duplicated frames. For these 

tests, the bitrate of the videos was fixed at 5  Mbps. Note 

that the aforementioned techniques have been designed to 

detect different kinds of inter-frame forgeries. While the 

technique in [35, 59] detect frame-insertion and deletion, 

that   in [75] detects frame duplication. The methods pro-

posed in [63, 72] detect all three kinds of inter-frame for-

geries. The results in Table 3 pertain to the outcomes of the 

experiments performed with respect to the specific kinds of 

forgeries each of these techniques detect.

To ascertain the efficacy of a forgery detection tech-

nique, it needs to be tested on plausible forgeries that simu-

late real-world forensic scenarios. For a video recorded at 

25 or 30 FPS, removal of even one second of would require 

deletion of at least 25–30 frames. Removal of a slow mov-

ing object would require even more frames to be deleted. 

The same rationale is valid in case of frame insertion or 

duplication. Therefore, the forged videos used during this 

set of experiments were created by inserting, duplicat-

ing, or removing 30–100 frames into or from the original 

videos.

Tables  2 and 3 represent the results we obtained after 

testing the selected techniques in a neutral setting. We 

can observe a notable depreciation in the detection accu-

racies of some of these techniques in comparison with the 

performances reported in the respective papers. This is 

mainly due to the fact that these techniques were based on 

several content-dependent parameters and thresholds, and 

their performances were negatively affected when the basal 

attributes of test videos changed. Those techniques that did 

not rely too heavily on the visual contents or characteristics 

of the test data generated comparable results [70, 77, 79, 

89].

3  Open issues and future challenges

The astonishing growth in the creation and use of multime-

dia data in today’s world demands a parallel if not superior 

progress in the field of digital data forensics.

Over the years, image forensics has come a long way 

from simple spatial-analysis-based forgery detection [130] 

to more untraditional tamper detection approaches, such as 

fuzzy-fusion theory [131] and Extreme Machine Learning 

(EML)-based watermarking [132].

Videos, inherently not being as easy to work with as 

images, present their own unique set of difficulties. A lot 

has been achieved over the past few years, but certain mile-

stones still remain to be reached. The research spheres that 

suffer from some unresolved issues have been summarized 

in the following.

3.1  Inefficacious management of videos with variable 

GOP structures

The performances of a vast majority of the methodolo-

gies discussed in this survey depend on the codecs used 

for compressing the video sequences. Most of the video 

encoders use fixed GOP structures, because they are eas-

ier to implement, and therefore, many of the techniques in 

the literature work under the assumption that the test video 

under investigation consists of GOPs with fixed number 

of frames [42, 44, 47, 49, 53, 57, 59, 60, 66, 74, 89, 98]. 

However, prevalent compression standards, such as H.264/

MPEG-4 AVC, use adaptive GOP structures, and the 

lengths of these GOPs can be up to 250 frames (depend-

ing on the amount and frequency of change in the video 

content). Consequently, such techniques may fail entirely 

for videos encoded using H.264/MPEG-4 codecs. Further-

more, algorithms that exploit abnormal changes in motion 

or noise residue, and relocated I-frames are also unsuitable 

for this encoding standard, on account of the adaptive GOP 

structure. Evidently, there is a dire need for more powerful 

algorithms that are free from the assumption of fixed GOP 

structures, so that they can not only work effectively for 

video encoded using modern codecs but can also overcome 

another persistent constraint faced by several contemporary 

forensic solutions, i.e., the inability to detect removal of 

entire GOPs or multiples of GOP lengths.

3.2  Inadequate experimentation on realistically 

doctored video sequences

A major shortcoming of many state-of-the-art method-

ologies is that they lack adequate validation on realisti-

cally tampered videos. Fabricating manually forged videos 

is highly time-intensive and thus most of the authors ran 

experiments on synthetically doctored sequences. Verifying 

the integrity of such material is sometimes quite easy and 

could be achieved with just a simple visual examination.

The method in [77] was tested on TV broadcast videos 

to ascertain the effectiveness of the detector in a real-life 

situation. The results were acceptable for slight compres-

sion only. Surveillance-like test videos with static back-

grounds were used for testing in [83], but the detection 

accuracy rates were inadequate. The method in [99] was 

experimented on RGB and infrared videos, and although 

good detection accuracy was reported, the method of cre-

ating partially manipulated frames was found to be inher-

ently erroneous, as discussed earlier in Sect.  2.2.2. Desir-

able detection accuracy was reported in [97], where the 

proposed algorithm was tested on videos captured by static 
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surveillance cameras. The only techniques in the literature 

that generated satisfactory results for realistic tampered 

videos taken from a standard data set SULFA [8] were [72, 

86, 88].

3.3  Lack of multifaceted forensic systems

Digital video forensics is often considered to be still in its 

primitive stages. Digital forgery detection is a very compli-

cated task and the absence of a universally applicable solu-

tion exacerbates the situation. Every technique proposed in 

the literature has been exclusively designed to tackle spe-

cific kinds of forgeries or tampering attacks. However, in a 

real-life scenario, the authenticity of a digital video needs 

to be established without any prior knowledge regarding 

the kind of forgery it might be suffering from. A video 

may have undergone multiple tamper attacks. Therefore, to 

provide a real-world solution to the forgery detection chal-

lenge, a multifaceted forensic system is required, which is 

composed of multiple forgery detection techniques and all 

the specialized constituent techniques are responsible for 

detecting the kind of forgeries that they have been designed 

to handle.

The first (and by far the only) remedial step in this direc-

tion was taken in [100], where several forensic techniques 

developed by the authors over the years were combined 

into one composite forensic system. In spite of various lim-

itations and unpractical assumptions which restricted this 

system’s wide-spread applicability, this pioneer work still 

demonstrated its ability to serve as a foundation for further 

advances towards development of comprehensive tamper 

detection systems.

In a real-life situation, where the forensic examiner is 

oblivious to the nature of forgeries present in the given test 

video (if present at all), and stringent conditions typical of 

a laboratory experiment are not enforceable, a comprehen-

sive forensic system could be of immeasurable value. With 

the help of such a system, the investigator could inspect the 

video, analyze the forensic evidence provided by each of 

the constituent forensic technique, and then reach a deci-

sion regarding the veracity of the given content, based on 

whether or not the video showed signs of any of the pos-

sible forgeries it was tested for.

In the near future, integrity verification schemes, such as 

those based on the concept of utilizing the information pro-

vided by Video Event Data Recorders (VEDRs) [133], can 

also be incorporated into the existing passive forgery detec-

tion structures to develop all the more robust and reliable 

forensic investigation mechanisms.

Furthermore, to handle epistemic uncertainties in the 

decision-making process, mathematical theories, such as 

Dempster–Shafer theory of evidence [134, 135], can be 

utilized to effectively consolidate incomplete, inaccurate or 

even contradictory evidence provided by multiple features 

or artifacts, and establish the content’s authenticity with 

a higher degree of conviction. Decision-fusion schemes 

have been successfully implemented in the digital image 

forensics domain [136–139], and finally, the suitability of 

Dempster-Shafer Theory (DST) has also been explored 

[140–142]. The results are encouraging; it has been dem-

onstrated that when tested on realistic data sets, DST out-

performs several decision-fusion schemes, including logi-

cal disjunction-based and SVM-based fusion approaches 

[141, 142]. DST has also been shown to produce favorable 

results in the counter anti-forensics domain [143]. The field 

of video forensics would undeniably benefit from similar 

advancements.

3.4  Insufficient anti-forensic and counter anti-forensic 

strategies

As stated earlier in Sect.  2.4, while the field of image 

anti-forensics has received its fair share of attention, simi-

lar interest in video anti-forensics domain has not been 

observed. References [71, 112–114, 117] remain the only 

works that deal with this issue. Moreover, the algorithm 

proposed in [110] is the only attempt at countering the anti-

forensic technique proposed in [113]. The authors in [117] 

suggested a counter anti-forensic strategy that was specifi-

cally designed to counter their own anti-forensic technique. 

In [71], the authors proposed certain forgery detection tech-

niques, and then suggested possible anti-forensic and suit-

able counter anti-forensic schemes.

Such lack of innovation in this field is surprising and 

causes us to become skeptical of the resilience of the tech-

niques surveyed in this paper towards clever modifications.

Here, we would like to suggest a viable anti-forensic 

strategy. The forensic techniques presented in Sect. 2.1.1.2 

detected frame manipulation by looking for evidence 

of double compression. However, if a forger alters the 

encoded video directly and creates no second-quantization 

spatial and/or temporal artifacts, the research in [42, 46, 

50, 113, 119] would be rendered ineffectual. Furthermore, 

the anti-forensic approach proposed in [111] seems to have 

the potential to be molded into a potent digital video anti-

forensic tool.

At this point, our understanding of the dynamics of 

forensic and anti-forensic evolution equips us to make 

the following observation: the tendency of anti-forensic 

operations to leave their own detectable traces in the digi-

tal content causes forgers to compromise between com-

plete removal of evidence of forgery and introduction of 

new evidence of anti-forensic manipulation. Likewise, 

since forensic investigators have to limit the likelihood of 

false alarms, they end up compromising between forgery 

detection accuracy and accuracy of detecting anti-forensic 
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operations. This knowledge could prove to be highly useful 

for elevating the level of innovation in the field of counter 

anti-forensics.

3.5  Complete oversight of the audio component 

of digital videos

Although the visual contents of digital videos help us form 

opinions and take decision in several sectors of litigation 

and criminal justice (among other areas), the role of audio 

data in the decision-making process cannot be ignored. In 

all the video forgery detection techniques proposed in the 

literature so far, the audio aspect of digital videos has not 

been taken under consideration. All these techniques focus 

entirely on the visual content of the test sequences, and 

even though the video forensics domain has achieved sev-

eral milestones by doing so, the audio component of vid-

eos, whenever present, is certainly capable of providing 

valuable clues regarding content authenticity.

For instance, one of the forged test sequences3 available 

in SULFA [8] shows a street scene, where a vehicle, which 

was originally moving across the frame on the street, had 

been removed. In the forged sequence, no easily discernible 

clue of the missing vehicle can be noticed, except for the 

sound that the vehicle made when it passed by on the street. 

Now, this may very well have been an oversight on the part 

of the forger, but it does prove a very important point: 

audio data, if available in the test video, must not be 

ignored in a situation where forgery detection is the key 

objective. This particular domain of forgery detection is in 

immediate need of attention. There are several noteworthy 

developments in the field of audio authentication (details of 

which can be obtained from the survey [144]), which are 

currently concentrating on detection of audio manipula-

tions in audio recordings, recordings of phone conversa-

tions, and commercially distributed audio files (songs and 

music albums). If combined with frame-based analyses that 

are generally performed in the video forensics domain, 

such techniques (or their more flexible and potent modified 

versions) could certainly help further the cause of video 

content authentication.

3.6  Overall lack of vigor, potentially induced by lack 

of standardized databases

In all the techniques surveyed in this paper, the detection 

performances were not subjected to as severe analysis as 

is commonly observed in other fields of digital video pro-

cessing. When it came to strict inspection and comparisons 

3 This test sequence is available in the SULFA database under the 

name “van_car”.

of the detection accuracies of the systems, a general lack 

of eagerness was observed, which indicates that a research 

field as vital as this one warrants a far greater exposure and 

commitment than it is currently receiving.

Perhaps, the main reason for this inadequate enthusi-

asm was the lack of a large-scale video library or standard 

data set that could provide a neutral platform for unbiased 

comparison of various forgery detection techniques. To the 

best of the authors’ knowledge, the only such publically 

available data set is SULFA [8]. However, even SULFA 

was found to be inadequate, not only because it is still in 

its early stages of development but also because it provides 

only a few forged videos exclusively constructed for the 

purpose of tamper detection. Most of the videos are dedi-

cated towards tasks, such as source camera identification. 

In [97], the authors tested their technique on a self-created 

database called SYSU-OBJFORG, although this database 

has not been made publically available yet. For advanced 

video forensic evaluation, a comprehensive collection of 

tampered videos similar to the image forensic databases of 

[145–148] is required.

4  Conclusion

This paper presents a repository of information regarding 

the kinds of tamper attacks a video can suffer from and a 

comprehensive source of references for the passive-blind 

techniques proposed for detecting such attacks. The domain 

of video anti-forensics and counter anti-forensics has also 

been explored. Along with the analysis of each technique’s 

most consequential drawbacks and practical advantages, 

the limitations that need to be overcome in the long-term 

perspective and some open issues that require immediate 

attention have also been discussed. Some important inter-

connected research domains, such as video up-conversion, 

phylogeny, and re-capture detection, have been overviewed 

as well. We believe that this work could not only prove use-

ful to the researches and developers working in the video 

forensics domain to find new utilitarian ideas and identify 

novel research challenges, but also motivate new research-

ers to partake in this tremendously exciting research 

domain of incalculable worth.
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