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Abstract

We describe a method for obtaining the principal objects,

characters and scenes in a video by measuring the reoccur-

rence of spatial configurations of viewpoint invariant fea-

tures. We investigate two aspects of the problem: the scale

of the configurations, and the similarity requirements for

clustering configurations.

The problem is challenging firstly because an object

can undergo substantial changes in imaged appearance

throughout a video (due to viewpoint and illumination

change, and partial occlusion), and secondly because con-

figurations are detected imperfectly, so that inexact patterns

must be matched.

The novelty of the method is that viewpoint invariant fea-

tures are used to form the configurations, and that efficient

methods from the text analysis literature are employed to

reduce the matching complexity.

Examples of ‘mined’ objects are shown for a feature

length film and a sitcom.

1. Introduction

The objective of this work is to extract significant objects,

characters and scenes in a video by determining the fre-

quency of occurrence of spatial configurations. The intu-

ition is that spatial configurations that have a high rank will

correspond to these significant objects. For example, the

principal actors will be mined because the spatial config-

uration corresponding to their face or clothes will appear

often throughout a film. Similarly, a particular set or scene

that reoccurs (e.g. the flashbacks to Rick’s cafe in Paris in

‘Casablanca’) will be ranked higher than those that only oc-

cur infrequently (e.g. a particular tree by the highway in a

road movie).

There are a number of reasons why it is useful to have

commonly occurring objects/characters/scenes for various

applications. First, they provide entry points for visual

search in videos or image databases (this is the “page zero”

problem in image retrieval systems). Second, they can be

used in forming video summaries – the basic elements of

a summary will often involve the commonly occurring ob-
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Figure 1: (a) Two frames from the movie ‘Groundhog Day’. (b)

The two frames with detected affine co-variant regions superim-

posed. (c) An example of a scene region that has been automati-

cally ‘mined’ because it occurs frequently throughout the movie.

This particular region is detected in 22 shots. (d) Close-up of the

region with affine co-variant regions superimposed. A subset of

these ellipses correspond, and it is this correspondence that sup-

ports this particular cluster.

jects [2, 7, 26] and these are then displayed as a storyboard.

A third application area is in detecting product placements

in a film – where frequently occurring logos or labels will

be prominent.

Data mining, or knowledge discovery, in large databases

is a well established research pursuit, particularly for text

databases. The aim is to identify previously unknown, valid,
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novel, potentially useful, and understandable patterns in

the database [8]. Even in the case of text this is seen as

non-trivial. However, text has the advantages of having a

grammar and sentences. This gives a natural granularity to

the task – documents can be clustered for example on co-

occurring words within sentences.

The visual task is substantially more challenging. First,

there is no natural segmentation into sentences, indeed there

is not even a natural ordering of an image. A solution to this

problem in natural language analysis is to use a sliding win-

dow [14] to measure word co-occurrence. In this paper we

borrow the idea of a sliding window, which here becomes a

sliding region. A second reason the visual task is challeng-

ing is because the visual descriptors may not match (they

may be occluded, or not detected) or even mismatched.

Our aim is to identify frequently co-occurring parts of

the visual scene rather than the image – if an object is im-

aged at twice the size in one frame as another we would

wish to identify these as two instances of the same object,

even though the image region covered is very different. For

this reason our visual descriptors must be invariant to at

least scale, and we will employ descriptors that have affine

invariance. An example of a typical cluster that is obtained

using the methods of this paper is shown in figure 1.

Previous work has applied clustering methods to de-

tected faces in videos [3, 6] in order to automatically extract

the principal cast of a movie. A similar approach could be

used to cluster other objects classes that can now be fairly

reliably detected, for example cars [1, 4, 23]. However,

in the method investigated here spatial configurations are

clustered directly, rather than first detecting object classes

and then clustering within these classes. Previously co-

occurrence clusters have been used to support texture clas-

sification and segmentation. For example Schmid [21] and

Lazebnik et al. [11] clustered co-occurrences of textons and

viewpoint invariant descriptors respectively.

In the following sections we first provide a review of the

visual descriptors used (section 2) for image representation.

We then describe the spatial configuration of these descrip-

tors (section 3), and the method of computing the frequency

of occurrence across all frames of the video (section 4). Ex-

amples of the resulting clusters are given (in section 5) and

we also discuss the issue of assessing ground truth on tasks

with this quantity of data.

The method will be illustrated for the feature length

film “Groundhog Day” [Ramis, 1993] and an episode from

the BBC situation comedy “Fawlty Towers” [‘A Touch of

Class’, 1975]. The video is first partitioned into shots using

standard methods (colour histograms and motion compen-

sated cross-correlation [12]), and the significance of a clus-

ter will be assessed by the number of shots and keyframes

that it covers.

2. Quantized viewpoint invariant de-

scriptors

We build on the work on viewpoint invariant descrip-

tors which has been developed for wide baseline matching

[15, 17, 20, 25, 27], object recognition [13, 18, 19], and

image/video retrieval [22, 24].

The approach taken in all these cases is to represent an

image by a set of overlapping regions, each represented

by a vector computed from the region’s appearance. The

region segmentation and descriptors are built with a con-

trolled degree of invariance to viewpoint and illumination

conditions. Similar descriptors are computed for all images,

and matches between image regions across images are then

obtained by, for example, nearest neighbour matching of the

descriptor vectors, followed by disambiguating using local

spatial coherence, or global relationships (such as epipo-

lar geometry). This approach has proven very successful

for lightly textured scenes, with robustness up to a five fold

change in scale reported in [16].

Affine co-variant regions In this work, two types of

affine co-variant regions are computed for each frame. The

first is constructed by elliptical shape adaptation about

an interest point. The implementation details are given

in [17, 20]. The second type of region is constructed us-

ing the maximally stable procedure of Matas et al. [15]

where areas are selected from an intensity watershed image

segmentation. Both types of regions are represented by el-

lipses. These are computed at twice the originally detected

region size in order for the image appearance to be more

discriminating. For a 720×576 pixel video frame the num-

ber of regions computed is typically 1600. An example is

shown in figure 1.

Each elliptical affine invariant region is represented by

a 128-dimensional vector using the SIFT descriptor devel-

oped by Lowe [13]. Combining the SIFT descriptor with

affine covariant regions gives region description vectors

which are invariant to affine transformations of the image.

Vector quantized descriptors The SIFT descriptors are

vector quantized using K-means clustering. The clusters

are computed from 474 frames of the video, with about 6K

clusters for Shape Adapted regions, and about 10K clusters

for Maximally Stable regions. All the descriptors for each

frame of the video are assigned to the nearest cluster centre

to their SIFT descriptor.

Vector quantizing brings a huge computational advan-

tage because descriptors in the same clusters are considered

matched, and no further matching on individual descriptors

is then required. Following our previous work [24] we will

refer to these vector quantized descriptors as visual words.

As in [24] very common and uncommon words are sup-

pressed. The frequency of occurrence of single words
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Frame1 Frame2 Frame1 Frame2

(a) (b)

Figure 2: Two definitions of a spatial configuration. (a) An area

(square) centred at an affine covariant region. (b) The convex hull

of the region’s N nearest spatial neighbours. The figures show,

for each type of configuration of affine covariant regions, an affine

geometric transformation between two frames. Note that in (a) the

mapped region is not square, but in (b) the convex hull is mapped

to the convex hull. Provided no regions are missing or mismatched

(b) is a similarity invariant definition (it is not affine invariant

because anisotropic scaling does not preserve relative distances).

However, in practice regions are missing and are mismatched. In

this work (b) is used.

across the whole video (database) is measured, and the top

and bottom 5% are stopped. This step is inspired by a stop-

list in text retrieval applications where very common words

(such as ‘the’) and very rare words are discarded. A stop

list is very important in our case, since otherwise features

(such as specularities) that occur very frequently (in almost

every frame) dominate the results.

Final representation The video is represented as a set of

key frames, and each key frame is represented by the visual

words it contains and their position. This is the represen-

tation we use from here on for data mining. The original

raw images are not used other than for displaying the mined

results. Thus the film is represented by a nw by nk matrix

M where nw is the number of visual words (the vocabulary)

and nk the number of key frames. Each entry of M specifies

the number of times the word appears in that frame.

3. Spatial configuration definition

We wish to determine the frequency of occurrence of spatial

configurations in scene space throughout the video. This

immediately raises two questions: (1) what constitutes a

spatial configuration? i.e. the neighbourhood structure and

extent; and (2) what constitutes a viewpoint invariant match

of a spatial configuration across frames?

For example, one natural definition would be to start

from a particular detected elliptical region p in one frame

and define the neighbourhood as all detected regions within

an area (a square say) centred on p. The size of the square

determines the scale of the configuration, and the neigh-

bours of p. In other frames detected elliptical regions

matching p are determined, and a match between p and

p
′ in a second frame also determines the 2D affine transfor-

mation between the regions. This affine transformation can

then be used to map the square surrounding p to its corre-

sponding parallelogram in the second frame, and thereby

determines the neighbours of p
′ in the second frame as

those elliptical regions lying inside the parallelogram. The

two neighbourhoods could be deemed matched if the affine

transformation maps all the elliptical neighbours of p onto

corresponding elliptical neighbours of p
′. These definitions

are illustrated in figure 2(a).

There are a number of problems with such a strict re-

quirement for matching. Foremost is that many of the

neighbours may not match for a variety of reasons includ-

ing: (i) they are not detected in the second frame due to

feature detection problems or occlusion, or (ii) they are not

mapped by an affine transformation because they lie on a

non-planar surface or another surface entirely, or (iii) the

affine transformation is not sufficiently accurate since it is

only estimated from a ‘small’ local region.

The approach we adopt here is to use the data itself to

define the neighbourhood. To be definite the neighbourhood

of an elliptical region p is the convex hull of its N spatial

nearest neighbours in the frame (see figure 2). Similarly

the neighbourhood of the matching region p
′ is the convex

hull of its N nearest neighbours. The two configurations are

deemed matched if M of the neighbours also match, where

usually M is a small fraction of N (e.g. 2 out of 10). The

scale (extent) of the neighbourhood is governed by N .

These definitions have the advantage of being robust to

the errors mentioned above (unstable affine transformation,

some neighbours not matching, etc). The apparent disad-

vantage in the neighbourhood definition is that it is not in-

variant to changes of scale. For example if the frame of p′ is

imaged at higher zoom than that of p, then one might expect

that there will be additional elliptical regions detected about

p
′ because extra textured detail can be resolved. In turn this

would mean that the N neighbourhood of p
′ will only be a

subset of the N neighbourhood of p. However, provided M

neighbours of p are included in this subset then the config-

urations are still matched.

It might be thought that such a loose definition would

give rise to many false positive matches of neighbourhoods,

and although these occur, they can be removed with fur-

ther geometric filtering. An example is that the correspond-

ing regions are required to be in a star graph configura-

tion [9]. Using the relative scale between the matched re-

gions p and p
′ to map the neighbourhood (experiments not

included here through lack of space), generates more false

positives than the neighbourhood definition above. This is

because an overestimation of the scale change maps a small

set of neighbours onto a large set, and the chances of some

of these matching is then increased. Other examples of

geometric filtering are mentioned in the following section.

What is most important is not to miss any matches (i.e. no

false negatives).
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Since the elliptical region descriptors are vector quan-

tized into ‘visual words’ we are essentially describing each

neighbourhood simply as a ‘bag of words’, where the actual

spatial configuration of the words is not significant within

the neighbourhood.

In the following section we investigate the frequency

of configuration occurrence over a range of scales with

N = 20, 50, and 100.

4. Implementation

In this section we describe the data structures and algo-

rithms that are used to efficiently compute the frequency of

occurrence of the neighbourhoods defined in the previous

section.

The algorithm consists of three stages. First, only neigh-

bourhoods occurring in more than a minimum number of

keyframes are considered for clustering. This filtering

greatly reduces the data and allows us to focus on only

significant (frequently occurring) neighbourhoods. Sec-

ond, significant neighbourhoods are matched by a progres-

sive clustering algorithm. Third, the resulting clusters are

merged based both on spatial and temporal overlap.

To avoid prohibitive computational expense, in the first

stage neighbourhoods are conditioned on a detected region,

and a neighbourhood match is only considered further if this

central region is matched. However, the second stage allows

neighbourhood matches missed due to non-matched central

regions to be recovered.

These stages are now explained in more detail. We will

use the particular example of a neighbourhood defined by

N = 20 descriptors, of which M = 3 are required to

match. The film is represented by a set of 2,820 keyframes

(a keyframe every two seconds).

Neighbourhood representation matrix The N-

neighbourhood about each detected region is rep-

resented as a (very sparse) m-dimensional vector

x = (x1, . . . , xi, . . . , xm)⊤, where m is the number

of visual words. The vector is binary, i.e. entry xi is set to

0/1 depending whether visual word i is absent or present

within the neighbourhood. Comparing two neighbourhoods

i, j can be naturally expressed as a dot product between

their corresponding vectors xi
⊤
xj . The value of the dot

product is the number of distinct visual words the two

neighbourhoods have in common. Note that the binary

counting discounts multiple occurrences of a visual word

within the neighbourhood. This naturally suppresses

(1) repeated structures (such as windows on a building

facade), and (2) multiple firings of the feature detector at

a point (a known problem [17]). The whole video is than

represented by a m × n matrix X = [x1 . . .xj . . .xn],
where m is number of visual words and n is the number of

neighbourhoods extracted from the video. Note that both

m and n can be quite large, e.g. m is typically 16K-22K

and n could be several million. Note that matrix X is very

sparse, roughly 0.002% entries are non-zero in the case of

the 20 neighbourhoods.

Stage I: neighbourhood stability filter The goal here is

to efficiently extract neighbourhoods occurring in more than

a minimum number of keyframes. Similar ‘minimum sup-

port pruning’ techniques are a common practice in the data

mining literature [8].

Two neighbourhoods are deemed matched if they have at

least M visual words in common, i.e. if the dot product of

their corresponding neighbourhood vectors is greater than

M . The difficulty is that comparing all neighbourhoods

against each other is a O(n2) problem in the number of

neighbourhoods. To reduce the complexity of the matching

we use that fact that neighbourhoods are constructed around

a central visual word, and therefore only neighbourhoods

with the same central visual word need to be considered

for matching. This reduces the complexity to O(
∑m

i=1
n2

i ),
where ni is the number of times the visual word i appears

throughout the video.

In the case of the movie ’Groundhog Day’ with about

106 neighbourhoods the method requires only about 108

dot products in comparison to about 1012 for the full O(n2)
method. This translates to about 5 minutes running time

(implemented using matlab sparse matrix engine on a 2GHz

Pentium) in comparison to a month (estimated) for the

O(n2) method.

The potential drawback is that the proposed method re-

lies on the central feature being detected and matched cor-

rectly by the appearance quantization. However, this does

not pose a significant problem since the neighbourhoods

are largely overlapping (a neighbourhood is formed around

each elliptical region). Consequently each object is likely

to be represented by several overlapping neighbourhoods,

which decreases the chance of an object being lost (scored

poorly).

The result of the filtering algorithm is a score (vote) for

every neighbourhood in all the keyframes of the video. In

total there are about 1.2 million neighbourhoods in all the

keyframes. Neighbourhoods which have score greater than

10 (are matched in at least ten distinct frames) and occur in

more than one shot are kept. This reduces the data to about

55,000 neighbourhoods.

Stage II: clustering the neighbourhoods from the filter-

ing The result of the filtering is that a particular neigh-

bourhood will in general be multiply represented. For ex-

ample, if a word p occurs in one frame, and corresponds

to a word p
′ in another frame, then there will be a neigh-

bourhood based around both p and p
′ because the filtering

considered every word in each frame.

To merge these repeated neighbourhoods we carry out
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a greedy progressive clustering algorithm guided by the

scores computed in the filtering stage. The algorithm starts

at the neighbourhood with the highest score and finds all the

neighbourhoods which have at least M words in common.

The matching neighbourhoods are combined into a cluster

and removed from the data set. This is repeated until no

neighbourhoods remain. If several neighbourhoods match

within one frame only the best matching one is extracted.

At this stage the match on the central region of the neigh-

bourhood is not required (as long as at least M other regions

within the neighbourhood match).

The similarity threshold M controls how ‘tight’ the re-

sulting clusters are. It M is too low clusters contain mis-

matches. If M is too high the data is partitioned into a large

number of small clusters where neighbourhoods are typi-

cally found only within one shot. Here M = 3.

The advantage of the greedy algorithm over K-

clustering, e.g. K-medoids [10], algorithms is that we do

not have to specify the number of clusters K, which would

be difficult to guess in advance. In contrast to the standard

progressive clustering which is initialized at random start-

ing points the current algorithm is guided by the similarity

score computed in the filtering stage.

This clustering stage results typically in several thousand

clusters.

Stage III: spatial-temporal cluster growing In the pre-

vious clustering stage each neighbourhood is allowed to

have at most one match in each frame, which typically gives

several ‘parallel’ clusters which have matches in the same

keyframes, e.g. neighbourhoods centred on the left eye and

right eye of the same person. Here the task is to identify

and merge such clusters. Starting from the largest cluster,

clusters which have temporal overlap for a certain propor-

tion of keyframes and spatially share at least one region are

considered for merging.

A cluster can also have some keyframes missing due to

for example mismatched regions which caused the neigh-

bourhood to have low occurrence score. Therefore we also

attempt a temporal extension of clusters into the missing

frames. The situation can be imagined as two parallel tubes

weaving through the keyframes – the tubes must spatially

overlap or at least touch each other to be considered for

merging, but some parts of one of the tubes are missing.

In such cases we examine the vicinity of the neighbourhood

which is present in the frame for evidence of the missing

neighbourhood.

The examples presented in section 5 are clusters after

a single pass of the merging algorithm. After the merg-

ing stage we end up with 50-500 clusters depending on the

scale. Table 1 summarizes the basic statistics for neighbour-

hoods and the resulting clusters at the various stages of the

algorithm.

Note that expressing neighbourhoods using (sparse)

Neighbourhood size N 20 50 100

initial # neighbourhoods 1,190,162 1,190,162 1,190,162

after filtering 55,414 144,631 195,546

initial # of clusters 2,575 5,061 1,769

# of merged clusters 489 350 44

Table 1: Basic statistics for neighbourhoods of different sizes. For

the 20-neighbourhood scale the minimum number of key-frames

support required in filtering is 10, for the 50- and 100- neighbour-

hoods it is 5. This stronger constraint results in a smaller number

of filtered neighbourhoods for the 20-neighbourhood scale. Exam-

ples of final merged clusters are shown in figures 3 and 4.

Object frm pr frm rc sht pr sht rc

5 ’Phil’ 0.98 0.87 0.95 0.95

6 ’microphone’ 0.94 0.64 1.00 0.78

7 ’red clock’ 1.00 0.98 1.00 1.00

8 ’black clock’ 0.96 0.77 1.00 0.77

9 ’frames’ 0.89 0.89 0.83 0.91

Table 2: Precision/recall (pr / rc) measured on keyframes and shots

for five mined clusters (obj 5 – obj 9) from figure 3. The ground

truth for these five objects was obtained by manually labeling

2,820 keyframes of the movie Groundhog Day. Since the objects

are rather small an object was considered present in a frame if it

was at least 50% visible, i.e. greater than 50% unoccluded.

vectors xi allows for very efficient computation of cer-

tain neighbourhood comparisons, e.g. counting the num-

ber of distinct visual words in common, or ’histogram’ like

comparisons (where proper normalization of xi might be

needed). On the other hand, such a representation does not

allow for efficient computation of operations where posi-

tion of the regions (or ordering with respect to the central

region [25]) needs to be taken into account.

5. Examples

Figures 3 and 4 show samples from different clusters found

for the scales of 20, 50 and 100 neighbourhood in the movie

’Groundhog Day’. Figure 5 shows samples from clusters

found at the 30-neighbourhood scale on the ’Fawlty Tow-

ers’ episode.

Appraisal. Generally, smaller consistent objects, e.g.

faces and logos or objects which change background fre-

quently or get partially occluded, tend to appear at the

smaller scale. An example would be the two clocks on the

wall in the cafe (objects 7 and 8 of figure 3). Even though

they are on the same wall, in some keyframes or shots one

of them is out of view or is occluded so that they are mined

as two separate clusters at the smaller scale.

An interesting example is the ‘frames’ shop sign (object

9 of figure 3) which is extracted as a separate cluster at the

20-neighbourhood scale, and can be seen again as a subset

of the a 100-neighbourhood scale cluster which covers the
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obj 1

143 kfrms

24 shots

obj 2

28 kfrms

07 shots

obj 3

42 kfrms

25 shots

obj 4

38 kfrms

25 shots

obj 5

64 kfrms

22 shots

obj 6

36 kfrms

07 shots

obj 7

50 kfrms

10 shots

obj 8

46 kfrms

10 shots

obj 9

35 kfrms

12 shots

obj 10

41 kfrms

6 shots

obj 11

32 kfrms

6 shots

obj 12

28 kfrms

5 shots

Figure 3: Groundhog Day. Examples of mined clusters at the 20 neighbourhood scale. Each row shows ten samples from one cluster.

The first two rows show two different ties of the main character. The next two rows correspond to faces of the two main characters. The

remaining rows show various objects that occur often in the movie. The images shown cover a rectangular convex hull of the matched

neighbourhoods within the frame plus a margin of 10 pixels. The rectangles are resized to squares for this display.
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(a)

(b)

Figure 4: Groundhog Day. Objects and scenes mined on the scale

of (a) 50-neighbourhood and (b) 100-neighbourhood. The clusters

extend over (a) 7,21,3 shots, (b) 7,3,5 shots (top-down).

whole shop entrance (row 1 of figure 4b).

Even though the clustering procedure is done carefully

so that minimal number of mismatched neighbourhoods get

clustered we inevitably have clusters containing ‘outliers’.

More severe tests to prune out such mismatching neigh-

bourhoods might be necessary. A possibility is to use the

alignment procedure [5] to proof check the matches or even

propagate existing affine invariant regions to repair mis-

detections. The expense of such method would not be an

issue since they would be applied only within one cluster. It

is at this point that other geometric consistency tests can be

reintroduced. For example, that all corresponding regions

have a similar change in scale between frames.

Comparison with ground truth There are two criteria

which could be used to evaluate the results: (1) Were all po-

tential objects mined, (2) If an object has been mined, were

all occurrences of this object found. Whereas the second

criteria is relatively easy to verify by checking for all occur-

rences of a mined object in a particular video. The ground

truth for the first criteria is much more difficult to establish

Figure 5: Fawlty Towers. Examples of objects and scenes mined

on the scale of 30-neighbourhood in the first episode of the TV

series Fawlty Towers. The clusters extend over 48, 43, 19, 28, 13,

26, 24, 19, 14, 27, 19 and 9 shots (top-down).

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04) 

1063-6919/04 $20.00 © 2004 IEEE 



Figure 6: Examples of missed occurrences of objects 9, 5 and 6.

on the whole feature length movie.

To assess the algorithm performance, occurrences of five

objects (objects 5-9 from figure 3) were manually marked in

the 2,820 keyframe of the movie Groundhog Day. Precision

and recall of the corresponding clusters is shown in table 2.

Missed occurrences are mostly because of non-detected or

mismatched features due to extreme pose/scale changes, or

severe defocus. Examples of missed occurrences are shown

in figure 6.

Were all potential objects mined? The search is biased

towards lightly textured regions that are detectable by the

feature detectors used (corner like features, blob like fea-

tures). We can not tell if a particularly coloured wall-paper

occurs often unless it is somewhat textured.

Discovering the faces clusters is surprising since the fea-

ture detection methods are not specifically designed to work

on faces (or deformable objects). We can not claim to find

all occurrences of Bill Murray’s face in the whole movie.

He appears in a much larger range of poses with a variety

of expressions. Also both the clusters contain some mis-

matches (for other faces, not other objects).

6. Discussion and Future work

We have demonstrated that interesting and salient objects,

faces and background scenes can be extracted by cluster-

ing on viewpoint invariant configurations. Of course there

is room for improvement — currently the search is biased

towards textured regions and other regions are missed.

However, we are now at a point where the clustered con-

figurations are of sufficient quality that they may be used as

a basis for more extensive co-occurrence (spatial and tem-

poral) exploration.
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