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Video Denoising, Deblocking and Enhancement

Through Separable 4-D Nonlocal Spatiotemporal

Transforms
Matteo Maggioni, Giacomo Boracchi, Alessandro Foi, Karen Egiazarian

Abstract—We propose a powerful video filtering algorithm that
exploits temporal and spatial redundancy characterizing natural
video sequences. The algorithm implements the paradigm of
nonlocal grouping and collaborative filtering, where a higher-
dimensional transform-domain representation of the observations
is leveraged to enforce sparsity and thus regularize the data:
3-D spatiotemporal volumes are constructed by tracking blocks
along trajectories defined by the motion vectors. Mutually similar
volumes are then grouped together by stacking them along an
additional fourth dimension, thus producing a 4-D structure,
termed group, where different types of data correlation exist
along the different dimensions: local correlation along the two
dimensions of the blocks, temporal correlation along the motion
trajectories, and nonlocal spatial correlation (i.e. self-similarity)
along the fourth dimension of the group. Collaborative filtering is
then realized by transforming each group through a decorrelating
4-D separable transform and then by shrinkage and inverse
transformation. In this way, the collaborative filtering provides
estimates for each volume stacked in the group, which are then
returned and adaptively aggregated to their original positions
in the video. The proposed filtering procedure addresses several
video processing applications, such as denoising, deblocking, and
enhancement of both grayscale and color data. Experimental
results prove the effectiveness of our method in terms of both
subjective and objective visual quality, and shows that it outper-
forms the state of the art in video denoising.

Index Terms—Video filtering, video denoising, video deblock-
ing, video enhancement, nonlocal methods, adaptive transforms,
motion estimation.

I. INTRODUCTION

S
EVERAL factors such as noise, blur, blocking, ringing,

and other acquisition or compression artifacts, typically

impair digital video sequences. The large number of practical

applications involving digital videos has motivated a signifi-

cant interest in restoration or enhancement solutions, and the

literature contains a plethora of such algorithms (see [3], [4]

for a comprehensive overview).

At the moment, the most effective approach in restoring

images or video sequences exploits the redundancy given by
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the nonlocal similarity between patches at different locations

within the data [5], [6]. Algorithms based on this approach

have been proposed for various signal-processing problems,

and mainly for image denoising [4], [6], [7], [8], [9], [10], [11],

[12], [13], [14], [15]. Specifically, in [7] has been introduced

an adaptive pointwise image filtering strategy, called non-

local means, where the estimate of each pixel xi is obtained

as a weighted average of, in principle, all the pixels xj of

the noisy image, using a family of weights proportional to

the similarity between two neighborhoods centered at xi and

xj . So far, the most effective image-denoising algorithm is

BM3D [10], [6], which relies on the so-called grouping and

collaborative filtering paradigm: the observation is processed

in a blockwise manner and mutually similar 2-D image blocks

are stacked into a 3-D group (grouping), which is then filtered

through a transform-domain shrinkage (collaborative filtering),

simultaneously providing different estimates for each grouped

block. These estimates are then returned to their respective

locations and eventually aggregated resulting in the denoised

image. In doing so, BM3D leverages the spatial correlation

of natural images both at the nonlocal and local level, due

to the abundance of mutually similar patches and to the high

correlation of image data within each patch, respectively. The

BM3D filtering scheme has been successfully applied to video

denoising in our previous work, V-BM3D [11], as well as to

several other applications including image and video super-

resolution [14], [15], [16], image sharpening [13], and image

deblurring [17].

In V-BM3D, groups are 3-D arrays of mutually similar

blocks extracted from a set of consecutive frames of the

video sequence. A group may include multiple blocks from

the same frame, naturally exploiting in this way the nonlocal

similarity characterizing images. However, it is typically along

the temporal dimension that most mutually similar blocks

can be found. It is well known that motion-compensated

videos [18] are extremely smooth along the temporal axis

and this fact is exploited by nearly all modern video-coding

techniques. Furthermore, experimental analysis in [12] shows

that, even when fast motion is present, the similarity along

the motion trajectories is much stronger than the nonlocal

similarity existing within an individual frame. In spite of this,

in V-BM3D the blocks are grouped regardless of whether their

similarity comes from the motion tracking over time or the

nonlocal spatial content. Consequently, during the filtering, V-

BM3D is not able to distinguish between temporal and spatial

nonlocal similarity. We recognize this as a conceptual as well
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as practical weakness of the algorithm. As a matter of fact,

the simple experiments reported in Section VIII demonstrate

that the denoising quality do not necessarily increase with

the number of spatially self-similar blocks in each group; in

contrast, the performances are always improved by exploiting

the temporal correlation of the video.

This work proposes V-BM4D, a novel video-filtering ap-

proach that, to overcome the above weaknesses, separately

exploits the temporal and spatial redundancy of the video

sequences. The core element of V-BM4D is the spatiotemporal

volume, a 3-D structure formed by a sequence of blocks

of the video following a specific trajectory (obtained, for

example, by concatenating motion vectors along time) [19],

[20]. Thus, contrary to V-BM3D, V-BM4D does not group

blocks, but mutually similar spatiotemporal volumes according

to a nonlocal search procedure. Hence, groups in V-BM4D

are 4-D stacks of 3-D volumes, and the collaborative filtering

is then performed via a separable 4-D spatiotemporal trans-

form. The transform leverages the following three types of

correlation that characterize natural video sequences: local

spatial correlation between pixels in each block of a volume,

local temporal correlation between blocks of each volume, and

nonlocal spatial and temporal correlation between volumes of

the same group. The 4-D group spectrum is thus highly sparse,

which makes the shrinkage more effective than in V-BM3D,

yielding superior performance of V-BM4D in terms of noise

reduction.

In this work we extend the basic implementation of V-

BM4D as a grayscale denoising filter introduced in the con-

ference paper [1] presenting its modifications for the de-

blocking and deringing of compressed videos, as well as for

the enhancement (sharpening) of low-contrast videos. Then,

leveraging the approach presented in [10], [21], we generalize

V-BM4D to perform collaborative filtering of color (multi-

channel) data. An additional, and fundamental, contribution

of this paper is an experimental analysis of the different types

of correlation characterizing video data, and how these affect

the filtering quality.

The paper is organized as follows. Section II introduces the

observation model, the formal definitions, and describes the

fundamental steps of V-BM4D, while Section III discusses

the implementation aspects, with particular emphasis on the

computation of motion vectors. The application of V-BM4D

to deblocking and deringing is given in Section IV, where it is

shown how to compute the thresholds used in the filtering from

the compression parameters of a video; video enhancement

(sharpening) is presented in Section V. Before the conclusions,

we provide a comprehensive collection of experiments and a

discussion of the V-BM4D performance in Section VI, and a

detailed analysis of its computational complexity in Section

VII.

II. BASIC ALGORITHM

The aim of the proposed algorithm is to provide an estimate

of the original video from the observed data. For the algorithm

design, we assume the common additive white Gaussian noise

model.

Fig. 1. Illustration of a trajectory and the associated volume (left), and a
group of mutually similar volumes (right). These have been calculated from
the sequence Tennis corrupted by white Gaussian noise with σ = 20.

A. Observation Model

We consider the observed video as a noisy image sequence

z : X × T → R defined as

z(x, t) = y(x, t) + η(x, t), x ∈ X, t ∈ T, (1)

where y is the original (unknown) video, η(·, ·) ∼ N (0, σ2) is

i.i.d. white Gaussian noise, and (x, t) are the 3-D spatiotem-

poral coordinates belonging to the spatial domain X ⊂ Z
2

and time domain T ⊂ Z, respectively. The frame of the video

z at time t is denoted by z(X, t).

The V-BM4D algorithm comprises three fundamental steps

inherited from the BM3D paradigm, specifically grouping

(Section II-C), collaborative filtering (Section II-D) and ag-

gregation (Section II-E). These steps are performed for each

spatiotemporal volume of the video (Section II-B).

B. Spatiotemporal Volumes

Let Bz(x0, t0) denote a square block of fixed size N × N
extracted from the noisy video z; without loss of generality,

the coordinates (x0, t0) identify the top-left pixel of the block

in the frame z(X, t0). A spatiotemporal volume is a 3-D

sequence of blocks built following a specific trajectory along

time, which is supposed to follow the motion in the scene.

Formally, the trajectory associated to (x0, t0) is defined as

Traj(x0, t0) =
{

(xj , t0 + j)
}h+

j=−h−
, (2)

where the elements (xj , t0 + j) are time-consecutive coordi-

nates, each of these represents the position of the reference

block Bz(x0, t0) within the neighboring frames z(X, t0 + j),
j = −h−, . . . , h+. For the sake of simplicity, in this section

it is assumed h− = h+ = h for all (x, t) ∈ X × T .

The trajectories can be either directly computed from the

noisy video, or, when a coded video is given, they can be

obtained by concatenating motion vectors. In what follows

we assume that, for each (x0, t0) ∈ X × T , a trajectory

Traj(x0, t0) is given and thus the 3-D spatiotemporal volume

associated to (x0, t0) can be determined as

Vz(x0, t0) =
{
Bz(xi, ti) : (xi, ti) ∈ Traj(x0, t0)

}
, (3)

where the subscript z specifies that the volumes are extracted

from the noisy video.

C. Grouping

Groups are stacks of mutually similar volumes and consti-

tute the nonlocal element of V-BM4D. Mutually similar vol-

umes are determined by a nonlocal search procedure as in [10].
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Specifically, let Ind(x0, t0) be the set of indices identifying

those volumes that, according to a distance operator δv, are

similar to Vz(x0, t0):

Ind(x0, t0) =
{
(xi, ti) : δv(Vz(x0, t0), Vz(xi, ti)) < τmatch

}
.

The parameter τmatch > 0 controls the minimum degree of

similarity among volumes with respect to the distance δv,

which is typically the ℓ2-norm of the difference between two

volumes.

The group associated to the reference volume Vz(x0, t0) is

then

Gz(x0, t0) =
{
Vz(xi, ti) : (xi, ti) ∈ Ind(x0, t0)

}
. (4)

In (4) we implicitly assume that the 3-D volumes are stacked

along a fourth dimension; hence the groups are 4-D data

structures. The order of the spatiotemporal volumes in the 4-D

stacks is based on their similarity with the reference volume.

Note that since δv(Vz, Vz) = 0, every group Gz(x0, t0) con-

tains, at least, its reference volume Vz(x0, t0). Figure 1 shows

an example of trajectories and volumes belonging to a group.

D. Collaborative Filtering

According to the general formulation of the grouping and

collaborative-filtering approach for a d-dimensional signal

[10], groups are (d + 1)-dimensional structures of similar

d-dimensional elements, which are then jointly filtered. In

particular, each of the grouped elements influences the filtered

output of all the other elements of the group: this is the basic

idea of collaborative filtering. It is typically realized through

the following steps: firstly a (d + 1)-dimensional separable

linear transform is applied to the group, then the transformed

coefficients are shrunk, for example by hard thresholding or by

Wiener filtering, and finally the (d+1)-dimensional transform

is inverted to obtain an estimate for each grouped element.

The core elements of V-BM4D are the spatiotemporal

volumes (d = 3), and thus the collaborative filtering performs

a 4-D separable linear transform T4D on each 4-D group

Gz(x0, t0), and provides an estimate for each grouped volume

Vz:

Ĝy(x0, t0) = T −1
4D

(
Υ (T4D (Gz(x0, t0)))

)
,

where Υ denotes a generic shrinkage operator. The filtered

4-D group Ĝy(x0, t0) is composed of volumes V̂y(x, t)

Ĝy(x0, t0) =
{
V̂y(xi, ti) : (xi, ti) ∈ Ind(x0, t0)

}
,

with each V̂y being an estimate of the corresponding unknown

volume Vy in the original video y.

E. Aggregation

The groups Ĝy constitute a very redundant representation

of the video, because in general the volumes V̂y overlap

and, within the overlapping parts, the collaborative filtering

provides multiple estimates at the same coordinates (x, t). For

this reason, the estimates are aggregated through a convex

combination with adaptive weights. In particular, the estimate

ŷ of the original video is computed as

ŷ =

∑

(x0,t0)∈X×T

(∑

(xi,ti)∈Ind(x0,t0)
w(x0,t0)V̂y(xi, ti)

)

∑

(x0,t0)∈X×T

(∑

(xi,ti)∈Ind(x0,t0)
w(x0,t0)χ(xi,ti)

) ,

(5)

where we assume V̂y(xi, ti) to be zero-padded outside its

domain, χ(xi,ti) : X×T → {0, 1} is the characteristic function

(indicator) of the support of the volume V̂y(xi, ti), and the

aggregation weights w(x0,t0) are different for different groups.

Aggregation weights may depend on the result of the shrinkage

in the collaborative filtering, and these are typically defined

to be inversely proportional to the total sample variance of

the estimate of the corresponding groups [10]. Intuitively, the

sparser is the shrunk 4-D spectrum Ĝy(x0, t0), the larger is

the corresponding weight w(x0,t0). Such aggregation is a well-

established procedure to obtain a global estimate from different

overlapping local estimates [22], [23].

III. IMPLEMENTATION ASPECTS

A. Computation of the Trajectories

In our implementation of V-BM4D, we construct trajectories

by concatenating motion vectors which are defined as follows.

1) Location prediction: As far as two consecutive spa-

tiotemporal locations (xi−1, ti − 1) and (xi, ti) of a block

are known, we can define the corresponding motion vector

(velocity) as v(xi, ti) = xi−1−xi. Hence, under the assump-

tion of smooth motion, we can predict the position x̂i(ti + 1)
of the block in the frame z (X, ti + 1) as

x̂i(ti + 1) = xi + γp · v(xi, ti), (6)

where γp ∈ [0, 1] is a weighting factor of the prediction. In

the case (xi−1, ti − 1) is not available, we consider the lack

of motion as the most likely situation and we set x̂i(ti +
1) = xi. Analogous predictions can be made when looking

for precedent blocks in the sequence.

2) Similarity criterion: The motion of a block is generally

tracked by identifying the most similar block in the subsequent

or precedent frame. However, since we deal with noisy signals,

it is advisable to enforce motion-smoothness priors to improve

the tracking. In particular, given the predicted future x̂i(ti+1)
or past x̂i(ti − 1) positions of the block Bz(xi, ti), we define

the similarity between Bz(xi, ti) and Bz(xj , ti ± 1), through

a penalized quadratic difference

δb
(
Bz(xi, ti), Bz(xj , ti ± 1)

)
=

||Bz(xi, ti) − Bz(xj , ti ± 1)||22
N2

+ γd ||x̂i(ti ± 1) − xj ||2 , (7)

where x̂i(ti ± 1) is defined as in (6), and γd ∈ R
+ is the

penalization parameter. Observe that the tracking is performed

separately in time ti + 1 and ti − 1.

V-BM4D constructs the trajectory (2) by repeatedly mini-

mizing (7). Formally, the motion of Bz(xi, ti) from time ti to

ti ± 1 is determined by the position xi±1 that minimizes (7)

as

xi±1 = arg min
xk∈Ni

{

δb
(
Bz(xi, ti), Bz(xk, ti ± 1)

)}

,

where Ni is an adaptive spatial search neighborhood in

the frame z(X, ti ± 1) (further details are given in Section

III-A3). Even though such xi±1 can be always found, we

stop the trajectory construction whenever the corresponding

minimum distance δb exceeds a fixed parameter τ traj ∈ R
+,

which imposes a minimum amount of similarity along the

spatiotemporal volumes. This allows V-BM4D to effectively
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Fig. 2. Effect of different penalties γd = 0.025 (left) and γd = 0 (right)
on the background textures of the sequence Tennis corrupted by Gaussian
noise with σ = 20. The block positions at time t = 1 are the same in both
experiments.

deal with those situations, such as occlusions and changes of

scene, where consistent blocks (in terms of both similarity and

motion smoothness) cannot be found.

Figure 2 illustrates two trajectories estimated using different

penalization parameters γd. Observe that the penalization term

becomes essential when blocks are tracked within flat areas

or homogeneous textures in the scene. In fact, the right image

of Figure 2 shows that without a position-dependent distance

metric the trajectories would be mainly determined by the

noise. As a consequence, the collaborative filtering would

be less effective because of the badly conditioned temporal

correlation of the data within the volumes.

3) Search neighborhood: Because of the penalty term

γd ||x̂i(ti ± 1) − xj ||2, the minimizer of (7) is likely close to

x̂i(ti±1). Thus, we can rightly restrict the minimization of (7)

to a spatial search neighborhood Ni centered at x̂i(ti±1). We

experienced that it is convenient to make the search-neighbor

size, NPR × NPR, adaptive on the velocity of the tracked

block (magnitude of motion vector) by setting

NPR = NS ·

(

1 − γw · e
−

||v(xi,ti)||
2
2

2·σ2
w

)

,

where NS is the maximum size of Ni, γw ∈ [0, 1] is a

scaling factor and σw > 0 is a tuning parameter. As the

velocity v increases, NPR approaches NS accordingly to σw;

conversely, when the velocity is zero NPR = NS(1 − γw).
By setting a proper value of σw we can control the decay rate

of the exponential term as a function of v or, in other words,

how permissive is the window contraction with respect to the

velocity of the tracked block.

B. Sub-volume Extraction

So far, the number of frames spanned by all the trajectories

has been assumed fixed and equal to h. However, because

of occlusions, scene changes or heavy noise, any trajectory

Traj(xi, ti) can be interrupted at any time, i.e. whenever the

distance between consecutive blocks falls below the threshold

τ traj. Thus, given a temporal extent
[
ti − h−

i , ti + h+
i

]
for the

trajectory Traj(xi, ti), we have that in general 0 ≤ h−
i ≤ h

and 0 ≤ h+
i ≤ h, where h denotes the maximum forward and

backward extent of the trajectories (thus of volumes) allowed

in the algorithm.

As a result, in principle, V-BM4D may stack together

volumes having different lengths. However, in practice, be-

cause of the separability of the transform T4D, every group

Gz(xi, ti) has to be composed of volumes having the same

length. Thus, for each reference volume Vz(x0, t0), we only

consider the volumes Vz(xi, ti) such that ti = t0, h−
i ≥ h−

0

and h+
i ≥ h+

0 . Then, we extract from each Vz(xi, ti) the sub-

volume having temporal extent [t0 −h−
0 , t0 + h+

0 ], denoted as

EL0

(
Vz(xi, ti)

)
. Among all the possible criteria for extracting

a sub-volume of length L0 = h−
0 + h+

0 + 1 from a longer

volume, our choice aims at limiting the complexity while

maintaining a high correlation within the grouped volumes,

because we can reasonably assume that similar objects at

different positions are represented by similar volumes along

time.

In the grouping, we set as distance operator δv the ℓ2-

norm of the difference between time-synchronous volumes

normalized with respect to their lengths:

δv
(
Vz(x0, t0), Vz(xi, ti)

)
=

∣
∣
∣
∣Vz(x0, t0) − EL0

(
Vz(xi, ti)

)∣
∣
∣
∣
2

2

L0
.

(8)

C. Two-Stage Implementation with Collaborative Wiener Fil-

tering

The general procedure described in Section II is imple-

mented in two cascading stages, each composed of the group-

ing, collaborative filtering and aggregation steps.

1) Hard-thresholding stage: In the first stage, volumes are

extracted from the noisy video z, and groups are then formed

using the δv-operator (8) and the predefined threshold τ ht
match.

Collaborative filtering is realized by hard thresholding each

group Gz(x, t) in 4-D transform domain:

Ĝht
y (x, t) = T ht−1

4D

(
Υht
(
T ht

4D (Gz(x0, t0))
))

, (x, t) ∈ X × T,

where T ht
4D is the 4-D transform and Υht is the hard-threshold

operator with threshold σλ4D.

The outcome of the hard-thresholding stage, ŷht, is obtained

by aggregating with a convex combination all the estimated

groups Ĝht
y (x, t), as defined in (5). The adaptive weights used

in this combination are inversely proportional to the number

N ht
(x0,t0)

of non-zero coefficients of the corresponding hard-

thresholded group Ĝht
y (x0, t0): that is wht

(x0,t0)
= 1/N ht

(x0,t0)
,

which provides an estimate of the total variance of Ĝht
y (x, t). In

such a way, we assign larger weights to the volumes belonging

to groups having sparser representation in T4D domain.

2) Wiener-filtering stage: In the second stage, the motion

estimation is improved by extracting new trajectories Trajŷht

from the basic estimate ŷht, and the grouping is performed

on the new volumes Vŷht . Volume matching is still performed

through the δv-distance, but using a different threshold τwie
match.

The indices identifying similar volumes Indŷht(x, t) are used

to construct both groups Gz and Gŷht , composed by volumes

extracted from the noisy video z and from the estimate yht,

respectively.

Collaborative filtering is hence performed using an em-

pirical Wiener filter in T wie
4D transform domain. Shrinkage is

realized by scaling the 4-D transform coefficients of each

group Gz(x0, t0), extracted from the noisy video z, with the

Wiener attenuation coefficients W(x0, t0),

W(x0, t0) =

∣
∣T wie

4D

(
Gŷht(x0, t0)

)∣
∣
2

∣
∣T wie

4D

(
Gŷht(x0, t0)

)∣
∣
2

+ σ2
,
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Fig. 3. V-BM4D two stage denoising of the sequence Coastguard. From left
to right: original video y, noisy video z (σ = 40), result of the first stage yht

(frame PSNR 28.58 dB) and final estimate ywie (frame PSNR 29.38 dB).

that are computed from the energy of the 4-D spectrum of the

group Gŷht(x0, t0). Eventually, the group estimate is obtained

by inverting the 4-D transform as

Ĝwie
y (x0, t0) = T wie−1

4D

(
W(x0, t0) · T

wie
4D (Gz(x0, t0))

)
,

where · denotes the element-wise product. The final global

estimate ŷwie is computed by the aggregation (5), using the

weights wwie
(x0,t0)

= ||W(x0, t0)||
−2
2 , which follow from con-

siderations similar to those underlying the adaptive weights

used in the first stage.

D. Settings

The parameters involved in the motion estimation and in

the grouping, that is γd, τ traj and τmatch, depend on the noise

standard deviation σ. Intuitively, in order to compensate the

effects of the noise, the larger is σ, the larger become the

thresholds controlling blocks and volumes matching. For the

sake of simplicity we model such dependencies as second-

order polynomials in σ: γd(σ), τ traj(σ) and τmatch(σ). The

nine coefficients required to describe the three polynomials

are jointly optimized using the Nelder-Mead simplex direct

search algorithm [24], [25]. As optimization criterion, we

maximize the sum of the restoration performance (PSNR) of

V-BM4D applied over a collection of test videos corrupted

by synthetic noise having different values of σ. Namely, we

considered Salesman, Tennis, Flower Garden, Miss America,

Coastguard, Foreman, Bus, and Bicycle corrupted by white

Gaussian noise having σ levels ranging from 5 and 70. The

resulting polynomials are

γd(σ) = 0.0005 · σ2 − 0.0059 · σ + 0.0400, (9)

τ traj(σ) = 0.0047 · σ2 + 0.0676 · σ + 0.4564, (10)

τmatch(σ) = 0.0171 · σ2 + 0.4520 · σ + 47.9294. (11)

The solid lines in Figure 4 show the above functions. We

also plot, using different markers, the best values of the

three parameters obtained by unconstrained and independent

optimizations of V-BM4D for each test video and value of σ.

Empirically, the polynomials demonstrate a good approxima-

tion of the optimum (γd, τ traj, τmatch). Within the considered

σ range, the curve (9) is “practically” monotone increasing

despite its negative first-degree coefficient. We refrain from

introducing additional constraints to the polynomials as well as

from considering additional σ values smaller than 5, because

the resulting sequences would be mostly affected by the noise

and quantization artifacts intrinsic in the original test-data.

During the second stage (namely, the Wiener filtering) the

γd, τ traj and τmatch parameters can be considered as constants

and independent, because in the processed sequence ŷht the

noise has been considerably reduced with respect to the

observation z; this is evident when looking at the second and

third image of Figure 3. Moreover, since in this stage both the

trajectories and groups are determined from the basic estimate

ŷht, there is no a straightforward relation with σ, the noise

standard deviation in z.

IV. DEBLOCKING

Most video compression techniques, such as MPEG-4 [26]

or H.264 [27], make use of block-transform coding and thus

may suffer, especially at low bitrates, from several com-

pression artifacts such as blocking, ringing, mosquito noise,

and flickering. These artifacts are mainly due to the coarse

quantization of the block-transform coefficients and to the

motion compensation. Moreover, since each block is processed

separately, the correlation between pixels at the borders of

neighboring blocks is typically lost during the compression,

resulting in false discontinuities in the decoded video (such as

those shown in the blocky frames in Figure 8).

A large number of deblocking filters have been proposed

in the last decade; among them we mention frame-based en-

hancement using a linear low-pass filter in spatial or transform

domain [28], projection onto convex sets (POCS) methods

[29], spatial block boundary filter [30], statistical modeling

methods [31] or shifted thresholding [32]. Additionally, most

of modern video coding block-based techniques, such as

H.264 or MPEG-4, embed an in-loop deblocking filter as an

additional processing step in the decoder [26].

Inspired by [33], we treat the blocking artifacts as additive

noise. This choice allows us to model the compressed video

z as in (1), where y now corresponds to the original uncom-

pressed video, and η represents the compression artifacts. In

what follows, we focus our attention on MPEG-4 compressed

videos. In this way, the proposed filter can be applied reliably

over different types of data degradations with little need of

adjustment or user intervention.

In order to use V-BM4D as a deblocking filter, we need

to determine a suitable value of σ to handle the artifacts

in a compressed video. To this purpose, we proceed as in

the previous section and we identify the optimum value of

σ for a set of test sequences compressed at various rates.

Figure 5 shows these optimum values plotted against the

average bit-per-pixel (bpp) rate of the compressed video and

the parameter q that controls the quantization of the block-

transform coefficients [26] (Figure 5(a)). Let us observe that

both the bpp and q parameters are easily accessible from

any given MPEG-4 coded video. These plots suggest that a

power law may conveniently explain the relation between the

optimum value of σ and both the bpp rate and q. Hence, we fit

such bivariate function to the optimum values via least-squares

regression, obtaining the adaptive value of σ for the V-BM4D

deblocking filter as

σ(bpp, q) = 0.09 · q1.11 · bpp−0.46 + 3.37 (12)

The function σ(bpp, q) is shown in Figure 5 (right). Note that

in MPEG-4 the parameter q ranges from 2 to 31, where higher

values correspond to a coarser quantization and consequently

lower bitrates. As a matter of fact, when q increases and/or

bpp decreases, the optimum σ increases, in order to effectively

cope with stronger blocking artifacts. Clearly, a much larger
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Fig. 4. From left to right, the second-order polynomials (9), (10), and (11) describing the relation between the parameters γd, τ traj and τmatch and the
noise standard deviation σ. The nine coefficients of the three polynomials have been determined by maximizing the sum of the PSNR of the test sequences
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σ (bpp, q) (12) used by the V-BM4D deblocking filter.

Fig. 5. The sequences used in the fitting are Salesman (+), Tennis (◦), Flower Garden (∗), Miss America (×), Coastguard (�), Foreman (♦), Bus (△), and
Bicycle (▽).

value of σ could result in oversmoothing, while much smaller

values may not suffice for effectively reducing the compression

artifacts. While in this paper we mostly deal with short test

sequences, and we compute the bpp as the average rate over

the whole sequence, we argue that in practice this rate should

be computed as the average over a limited set of frames,

namely the so-called group of pictures (GOP) built around

each intra-coded frame. In principle, one could learn a model

for σ together with all the remaining V-BM4D parameters

at once (possibly achieving better results); but this would

have increased the risk of overfitting the many parameters to

the peculiarities of this compression method, and would have

complicated the optimization task.

Let us remark that V-BM4D deblocking can be straightfor-

wardly applied also to videos compressed by other encoders

than MPEG-4, because the q parameter can be both estimated

as a subjective quality metric for compressed videos, or as an

objective measurement [34] on the impairing artifacts to be

filtered out.

V. ENHANCEMENT

Enhancement is used to improve the video quality, so that

the filtered video becomes more pleasing to human subjec-

tive judgment and/or better suited for subsequent automatic

interpretation tasks, as segmentation or pattern recognition.

In particular, by enhancement we refer to the sharpening

of degraded details in images (frames) characterized by low

contrast.

Among the existing enhancement techniques we mention

methods based on histogram manipulation [35], linear and

non-linear unsharp masking [36], [37], [38], fuzzy logic

[39], and weighted median filter [40], [41]. Transform-domain

methods generally apply a nonlinear operator to the transform

coefficients of the processed image/video in order to accentu-

ate specific portions of the spectrum, which eventually results
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in sharpening of details [42], [43], [35], [13]. One of the

most popular technique is alpha-rooting [42], which raises the

magnitude of each transform coefficient φi of the processed

spectrum Φ to a power 1
α

, with α > 1 as

φ̄i =







sign
[
φi

]∣
∣φ0

∣
∣

∣
∣
∣

φi

φ0

∣
∣
∣

1
α

, if φ0 6= 0,

φi, otherwise,
(13)

where φ0 is the DC term and φ̄i is the resulting sharpened

coefficients. Observe that α > 1 induces sharpening, as

it scales the large coefficients relatively to the small ones,

i.e. those carrying high-frequency information [42]. Although

(13) assumes real-valued transform coefficients, it can be

generalized to complex-valued ones, observing that alpha-

rooting preserves the sign in the former case, and the phase

in the latter.

A critical issue in enhancement is the amplification of the

noise together with the sharpening of image details [44], [42],

an effect that becomes more severe as the amount of applied

sharpening increases. In order to cope with this problem,

a joint application of a denoising and sharpening filter is

often recommendable, and in particular this practice has been

investigated in [13], [39].

Enhancement of digital videos, following the approach

proposed in [13], can be easily performed by combining the

V-BM4D filter with the alpha-rooting operator (13), in order

to simultaneously reduce the noise and sharpen the original

signal. The V-BM4D sharpening algorithm still comprises the

grouping, collaborative filtering and aggregation steps, and it

is carried out through the hard-thresholding stage only. The

alpha-rooting operator is applied on the thresholded coeffi-

cients within the collaborative filtering step, before inverting

the 4-D transform. Note that, since the alpha-rooting amplifies

the group coefficients, the total variance of the filtered group

changes, thus the aggregation weights cannot be estimated

from the number of retained non-zero coefficients N har
(x0,t0)

.

A simple estimator is devised in [13], and can be used to

define the weights of (5) as

whar
(x0,t0)

=
1

∑

Φ(i) 6=0 wiσ2
,

having

wi =

(

1 −
1

α

)2

|φ0|
− 2

α |φi|
2
α +

1

α2
|φi|

2
α
−2 |φ0|

2− 2
α ,

where Φ is the transformed spectrum of the group Ght
z (x0, t0)

resulting from hard thresholding, and φ0 is its corresponding

DC coefficient. The DC-term is not alpha-rooted, thus its

contribution to the total variance of the sharpened group should

be σ2. However, in order to avoid completely flat blocks being

awarded with excessively large weights, the weight for the

DC-term is set equal to the weight of the smallest retained

coefficients, i.e. those having magnitude σλ4D as

w0 =

(

1 −
1

α

)2

|φ0|
− 2

α |σλ4D|
2
α +

1

α2
|σλ4D|

2
α
−2 |φ0|

2− 2
α .

The separability of the 4-D transform can be exploited to

extend this approach, by treating in a different way different

portions of the thresholded 4-D spectrum. Let us remind

that the 4-D spectrum is structured according to the four

dimensions of the corresponding group, i.e. two local spatial,

one local temporal, and one for the non-local similarity. In

particular, it includes a 2-D surface (face) corresponding to

the DC terms of the two 1-D transforms used for decorrelating

the temporal and non-local dimensions of the group, and 3-D

volume corresponding to the DC term of the 1-D temporal

transform. Hence, the value of α can be decreased for the

coefficients that do not belong to this 3-D volume, in order to

attenuate the temporal flickering artifacts. Likewise, the por-

tion of spectrum in the 2-D surface can be used to characterize

the group content as proposed in [45], for example by using

lower values of α on flat regions to avoid noise accentuation.

We introduce the sharpening operator in the first stage

(hard thresholding) only, as this guarantees excellent subjective

results, and we address to future work the application of alpha-

rooting during Wiener filtering.

VI. EXPERIMENTS

In this section we present the experimental results obtained

with a C/MATLAB implementation of the V-BM4D algorithm.

The filtering performance is measured using the PSNR, com-

puted on the whole processed video as

PSNR(ŷ, y) = 10 log10




2552|X||T |

∑

(x,t)∈X×T

(
y((x, t)) − ŷ(x, t)

)2



 ,

(14)

where |X| and |T | stand for the cardinality of X and T ,

respectively. Additionally, we measure the performance of

V-BM4D by means of the MOVIE index [46], a recently

introduced video quality assessment (VQA) metric that is

expected to be closer to the human visual judgement than

the PSNR, because it concurrently evaluates space, time and

jointly space-time video quality.

The transforms employed in the collaborative filtering

are similar to those in [10], [11]: T ht
4D (used in the hard-

thresholding stage) is a 4-D separable composition of 1-D

biorthogonal wavelet in both spatial dimensions, 1-D DCT in

the temporal dimension, and 1-D Haar wavelet in the fourth

(grouping) dimension while, T wie
4D (used in the Wiener-filtering

stage) differs from T ht
4D as in the spatial dimension it performs

a 2-D DCT. Note that, because of the Haar transform, the

cardinality M of each group is set to a power of 2. To

reduce the complexity of the grouping phase, we restrict the

search of similar volumes within a NG × NG neighborhood

centered around the coordinates of the reference volume, and

we introduce a step of Nstep ∈ N pixels in both horizontal and

vertical directions between each reference volume. Although

we set Nstep > 1, we have to compute beforehand the

trajectory of every possible volume in the video, since each

volume is a potential candidate element of every group. Table

I provides a complete overview of the parameters setting in

V-BM4D.

The remaining part of this section presents the results of

experiments concerning grayscale Denoising (Section VI-A),

Deblocking (Section VI-B), Enhancement (Section VI-C), and

Color Filtering (Section VI-D).
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TABLE I
PARAMETER SETTINGS OF V-BM4D FOR THE FIRST (HARD-THRESHOLDING) AND THE SECOND (WIENER-FILTERING) STAGE. IN THE

HARD-THRESHOLDING STAGE, THE THREE PARAMETERS γd , τ TRAJ , AND τ MATCH VARY ACCORDING TO THE NOISE STANDARD DEVIATION.

Stage N NS NG h M λ4D γp γw σw Nstep γd τ traj τmatch

Hard thr. 8
11

19
4

32 2.7
0.3 0.5 1

6 γd(σ) τ traj(σ) τmatch(σ)
Wiener filt. 7 27 8 Unused 4 0.005 1 13.5

TABLE II
DENOISING PERFORMANCE OF V-BM3D AND V-BM4D. THE PSNR (DB) AND MOVIE INDEX [46] (THE LOWER THE BETTER) VALUES ARE REPORTED

IN THE LEFT AND RIGHT PART OF EACH CELL, RESPECTIVELY. IN ORDER TO ENHANCE THE READABILITY OF THE RESULTS, EVERY MOVIE INDEX HAS

BEEN MULTIPLIED BY 103 . THE TEST SEQUENCES ARE CORRUPTED BY WHITE GAUSSIAN NOISE WITH DIFFERENT VALUES OF STANDARD DEVIATION σ.

σ

Video: Salesm. Tennis Fl. Gard. Miss Am. Coastg. Foreman Bus Bicycle

Res.: 288×352 240×352 240×352 288×360 144×176 288×352 288×352 576×720

Frames: 50 150 150 150 300 300 150 30

5
V-BM4D 41.00|0.02 39.02|0.03 37.24|0.02 42.16|0.03 39.27|0.02 40.34|0.03 38.35|0.04 41.04|0.02

V-BM3D 40.44|0.02 38.47|0.03 36.46|0.02 41.58|0.03 38.25|0.03 39.77|0.04 37.55|0.05 40.89|0.02

10
V-BM4D 37.30|0.09 35.22|0.12 32.81|0.07 40.09|0.08 35.54|0.09 36.94|0.11 34.26|0.14 37.66|0.09

V-BM3D 37.21|0.09 34.68|0.15 32.11|0.09 39.61|0.11 34.78|0.13 36.46|0.13 33.32|0.20 37.62|0.09

15
V-BM4D 35.25|0.24 33.04|0.34 30.34|0.14 38.85|0.17 33.41|0.19 35.03|0.21 31.87|0.32 35.61|0.19

V-BM3D 35.44|0.21 32.63|0.37 29.81|0.18 38.64|0.20 33.00|0.25 34.64|0.24 31.05|0.45 35.67|0.17

20
V-BM4D 33.79|0.46 31.59|0.60 28.63|0.23 37.98|0.27 31.94|0.32 33.67|0.33 30.26|0.53 34.10|0.30

V-BM3D 34.04|0.46 31.20|0.73 28.24|0.28 37.85|0.31 31.71|0.41 33.30|0.38 29.57|0.72 34.18|0.27

25
V-BM4D 32.66|0.75 30.56|0.85 27.35|0.33 37.24|0.37 30.81|0.48 32.61|0.46 29.10|0.73 32.89|0.42

V-BM3D 32.79|0.93 30.11|1.10 27.00|0.39 37.10|0.44 30.62|0.65 32.19|0.55 28.48|1.00 32.90|0.39

30
V-BM4D 31.75|1.07 29.72|1.10 26.29|0.45 36.58|0.48 29.90|0.66 31.80|0.60 28.17|0.94 31.83|0.56

V-BM3D 31.68|1.56 29.22|1.46 25.89|0.55 36.41|0.58 29.68|0.96 31.27|0.75 27.59|1.30 31.77|0.54

35
V-BM4D 30.99|1.41 29.04|1.33 25.40|0.59 35.98|0.59 29.17|0.88 31.11|0.74 27.39|1.15 30.92|0.72

V-BM3D 30.72|2.36 28.56|1.85 25.16|0.70 35.87|0.74 28.92|1.36 30.56|0.98 26.91|1.61 30.85|0.73

40
V-BM4D 30.35|1.76 28.49|1.56 24.60|0.75 35.47|0.70 28.54|1.13 30.52|0.89 26.72|1.37 30.10|0.89

V-BM3D 29.93|3.09 27.99|2.17 24.33|0.92 35.45|0.89 28.27|1.86 29.97|1.21 26.28|1.93 30.02|0.94

Original frame Noisy frame V-BM3D V-BM4D

Fig. 6. From top to bottom, visual comparison of the denoising performance
of V-BM4D and V-BM3D on the sequences Bus, Flower Garden and Tennis

corrupted by white Gaussian noise with standard deviation σ = 40.

A. Grayscale Denoising

We compare the proposed filtering algorithm against V-

BM3D [11], as this represents the state of the art in video

denoising and we refer the reader to [11] for comparisons with

other methods that are less effective than V-BM3D. Table II

reports the denoising performance of V-BM3D and V-BM4D

in terms of PSNR and MOVIE index. In our experiments

the two algorithms are applied to a set of test sequences

corrupted by white Gaussian noise with increasing standard

deviation σ, which is assumed known. Observations z are

obtained by synthetically adding Gaussian noise to grayscale
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Fig. 7. Frame-by-frame PSNR (dB) output of the sequences Tennis (left)
and Bus (right) corrupted by white Gaussian noise with standard deviation
σ = 40 denoised by V-BM4D (thick line) and V-BM3D (thin line).

video sequences, according to (1). Further details concerning

the original sequences, such as the resolution and number of

frames, are reported in the header of the tables.

As one can see, V-BM4D outperforms V-BM3D in nearly all

the experiments, with PSNR improvement of almost 1 dB. It

is particularly interesting to observe that V-BM4D effectively

handles the sequences characterized by rapid motions and

frequent scene changes, especially under heavy noise, such

as Tennis, Flower Garden, Coastguard and Bus. Figure 7

shows that, as soon as the sequence presents a significant

change in the scene, the denoising performance decreases
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Original frame Compr. frame MPlayer V-BM4D

Fig. 8. Deblocking: visual comparison of V-BM4D and MPlayer on few
frames. The test sequences (from top to bottom, Foreman, Tennis and Coast-

guard) have been compressed with the MPEG-4 encoder with quantization
parameter q = 25.

significantly for both the algorithms, but, in these situations,

V-BM4D requires much less frames to recover the previous

PSNR values, as shown by the lower peaks at frame 90 of

Tennis.

Finally, Figure 6 offers a visual comparison of the perfor-

mance of the two algorithms. As a subjective quality assess-

ment, V-BM4D better preserves textures, without introducing

disturbing artifacts in the restored video: this is clearly visible

in the tree leaves of the Bus sequence or in the background

texture of Tennis. Such improvement well substantiates the

considerable reduction in the MOVIE index values reported

in Table II.

B. Deblocking

Table III compares, in terms of objective measurements,

the V-BM4D deblocking filter against the MPlayer accurate

deblocking filter1, as, to the best of our knowledge, it repre-

sents one of the best deblocking algorithm. Eight sequences

compressed by the MPEG-4 encoder with different values of

the quantization parameter q have been considered: additional

details and the bit-per-pixel rates concerning these sequences

are reported in the table. Numerical results show that V-BM4D

outperforms Mplayer in all the experiments, with improvement

peaks of almost 2dB in terms of PSNR. For the sake of

completeness, we also report the MOVIE index. Observe

that, MOVIE often prefers the compressed observation rather

than the filtered sequences, thus showing a general preference

towards piecewise smooth images. However, let us observe

that such results do not conform to the visual quality of the

deblocked videos.

Figure 8 shows the results of V-BM4D deblocking on

the Foreman, Tennis and Coastguard sequences, encoded at

aggressive compression level (q = 25). The visual quality

of the filtered videos has been significantly improved, since

the compression artifacts, such as blocking or ghosting, have

been successfully filtered without losing fine image details. In

particular, we can note how the face in Foreman, the player and

the white poster in Tennis, and the stone-wall in Coastguard,

sharply emerge from their blocky counterparts, while almost-

uniform areas, such as the white striped building in Foreman,

1Source code and documentation can be found at
http://sourceforge.net/projects/ffdshow-tryout/ and
http://www.mplayerhq.hu/

Original frame Noisy frame α = 1.1 α = 1.25

Original frame Noisy frame α = 1.1 α = 1.25

Fig. 9. Visual comparison of V-BM4D algorithm using different value of
α. The test sequences, (Foreman and Bus), have been corrupted by white
Gaussian noise with standard deviation σ = 5 (top) and σ = 25 (bottom),
and have been jointly denoised and sharpened by V-BM4D.

Original frame Noisy frame αDC = αAC αDC = 2αAC

Fig. 10. Joint V-BM4D denoising, enhancement and deflickering of the
sequence Miss America corrupted by white Gaussian noise with standard
deviation σ = 10. From left to right, the bottom row shows the temporal
differences between the frames presented in the top row and the preceding
frames in the original, noisy, and enhanced sequences. The right-most column
shows the sharpening result using different a α in the temporal DC and AC
coefficients of the groups spectra, thus obtaining an effective deflickering yet
maintaining spatial sharpness. The images in the bottom row are all drawn
with respect to the same gray colormap, which is stretched 4 times in order
to improve the visualization.

or the table and the wall in Tennis, have been pleasingly

smoothed without introducing blur.

C. Enhancement

In the enhancement experiments we use the same settings

reported in Table I, testing two values of α, i.e. the parameter

that controls the amount of sharpening in the alpha-rooting.

Figure 9 presents the results of the V-BM4D enhancement

filter applied on the Foreman and Bus sequences, corrupted by

white Gaussian noise having standard deviation σ ∈ {5, 25},

and sharpened using α = 1.1, and α = 1.25. As the images

demonstrate, the combination of V-BM4D and alpha-rooting

produces satisfying results, as the fine details are effectively

preserved together with a fairly good noise suppression. Such

properties allowed the application of the V-BM4D enhance-

ment filter in biomedical imaging, to facilitate the tracking

of microtubules in RFP-EB3 time-lapse videomicroscopy se-

quences corrupted by heavy noise [2].

In particular, V-BM4D sharpens fine details, such as the tree

leaves in Bus, and reveals barely visible information hidden in

the noisy videos, as the background building of Foreman. The

proposed enhancement filter is minimally susceptible to noise

even when strong sharpening is performed (i.e., α = 1.25), as

shown by the smooth reconstruction of flat areas like the hat

of Foreman and the bus roof of Bus.
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TABLE III
DEBLOCKING PERFORMANCE OF V-BM4D AND MPLAYER ACCURATE DEBLOCKING FILTER. THE PSNR (DB) AND MOVIE INDEX [46] (THE LOWER

THE BETTER) VALUES ARE REPORTED IN THE LEFT AND RIGHT PART OF EACH CELL, RESPECTIVELY. IN ORDER TO ENHANCE THE READABILITY OF THE

RESULTS, EVERY MOVIE INDEX HAS BEEN MULTIPLIED BY 103 . THE PARAMETER q CONTROLS THE QUANTIZATION MATRIX OF THE MPEG-4
ENCODER AND BPP DENOTES THE AVERAGE BIT-PER-PIXEL RATE OF THE COMPRESSED VIDEO. AS A REFERENCE, WE ALSO SHOW THE PSNR AND

MOVIE INDEX OF THE UNFILTERED COMPRESSED (COMPR.) VIDEOS.

q

Video: Salesm. Tennis Fl. Gard. Miss Am. Coastg. Foreman Bus Bicycle

Res.: 288×352 240×352 240×352 288×360 144×176 288×352 288×352 576×720

Frames: 50 150 150 150 300 300 150 30

5

bpp 0.3232 0.5323 1.4824 0.0884 0.4609 0.3005 0.7089 0.4315

V-BM4D 35.95|0.16 34.41|0.18 33.54|0.05 39.51|0.15 34.75|0.13 36.49|0.16 35.05|0.13 38.01|0.08

Mplayer 35.14|0.17 33.79|0.17 32.73|0.07 38.58|0.14 34.00|0.13 35.60|0.14 34.36|0.10 36.53|0.11

Compr. 35.28|0.17 33.87|0.17 32.81|0.07 39.03|0.13 34.12|0.13 35.70|0.14 34.45|0.10 36.71|0.11

10

bpp 0.1319 0.2249 0.7288 0.0399 0.1926 0.1276 0.3285 0.2076

V-BM4D 32.12|0.87 30.39|0.83 27.93|0.26 37.30|0.48 30.75|0.50 32.91|0.49 30.69|0.43 33.54|0.36

Mplayer 31.66|1.08 29.87|0.89 27.40|0.31 36.61|0.53 30.23|0.53 32.16|0.52 30.11|0.41 32.45|0.46

Compr. 31.54|0.86 29.84|0.78 27.41|0.29 36.66|0.46 30.19|0.51 32.09|0.48 30.07|0.36 32.37|0.46

15

bpp 0.0865 0.1326 0.4470 0.0318 0.1184 0.0812 0.2039 0.1333

V-BM4D 30.06|1.89 28.48|1.49 25.15|0.58 36.13|0.82 28.73|1.01 31.10|0.90 28.48|0.85 31.16|0.79

Mplayer 29.65|2.39 28.03|1.52 24.68|0.68 35.59|0.90 28.30|1.10 30.36|0.98 27.89|0.83 30.12|0.95

Compr. 29.48|1.78 27.97|1.39 24.67|0.63 35.41|0.81 28.18|1.03 30.27|0.90 27.83|0.71 30.00|0.98

20

bpp 0.0661 0.0943 0.3058 0.0280 0.0852 0.0625 0.1453 0.0985

V-BM4D 28.66|3.03 27.24|2.07 23.34|0.95 35.02|1.21 27.42|1.73 29.85|1.38 26.96|1.38 29.52|1.26

Mplayer 28.31|3.76 26.82|2.12 22.90|1.12 32.93|1.58 27.04|1.96 29.12|1.55 26.42|1.42 28.60|1.56

Compr. 28.11|2.71 26.76|1.93 22.88|1.02 34.21|1.21 26.90|1.73 29.03|1.37 26.35|1.16 28.43|1.58

25

bpp 0.0546 0.0710 0.2225 0.0257 0.0679 0.0523 0.1121 0.0846

V-BM4D 27.63|4.19 26.34|2.55 22.07|1.38 34.31|1.54 26.47|2.53 29.01|1.87 25.93|1.96 28.32|1.78

Mplayer 27.30|5.09 25.96|2.57 21.63|1.64 33.66|1.70 26.11|2.95 28.25|2.13 25.38|2.04 27.35|2.18

Compr. 27.07|3.63 25.85|2.38 21.62|1.49 33.45|1.57 25.98|2.45 28.10|1.86 25.27|1.66 27.22|2.20

30

bpp 0.0477 0.0604 0.1697 0.0244 0.0584 0.0480 0.0921 0.0676

V-BM4D 26.84|5.38 25.59|2.99 21.08|1.86 33.25|1.90 25.72|3.53 28.30|2.33 25.06|2.57 27.40|2.34

Mplayer 26.51|6.31 25.26|3.02 20.65|2.24 32.80|2.08 25.38|4.20 27.57|2.68 24.55|2.70 26.54|2.88

Compr. 26.28|4.59 25.11|2.77 20.64|1.99 32.39|1.97 25.25|3.31 27.37|2.31 24.41|2.19 26.35|2.88

As explained in Section V, the spectrum coefficients of the

group can be treated differently along the temporal dimension

to attenuate video temporal artifacts such as flickering. In Fig-

ure 10 we show the enhancement results of V-BM4D applied

to the video Miss America corrupted by white Gaussian noise

with σ = 10 using two settings for the sharpening parameter

α. In the former experiment a fixed α{DC,AC} = 1.25 is

used to sharpen the whole spectrum of the groups, while in

the latter different values of α are used in the temporal DC

and AC planes. In particular, the temporal DC coefficients

are sharpened using αDC = 1.25, and the temporal AC are

sharpened using the halved value αAC = 0.625. By using

different values of α, V-BM4D significantly attenuates the

flickering artifacts without compromising the effectiveness of

neither the sharpening nor the denoising. In Figure 10, the

flickering artifacts of the non-uniform intensities within the

temporal difference in the background are clearly visible when

the sequence is processed using αDC = αAC. In contrast, the

sequence processed using a modified values of α exhibits a

better temporal consistency as demonstrated by the smooth

background in the temporal difference, yet maintaining excel-

lent enhancement and noise reduction properties.

TABLE IV
COLOR DENOISING PERFORMANCE OF V-BM3D AND V-BM4D IN TERMS

OF PSNR (DB) AND MOVIE INDEX [46] (THE LOWER THE BETTER)
VALUES ARE REPORTED IN THE LEFT AND RIGHT PART OF EACH CELL,

RESPECTIVELY. IN ORDER TO ENHANCE THE READABILITY OF THE

RESULTS, EVERY MOVIE INDEX HAS BEEN MULTIPLIED BY 103 . THE

TEST SEQUENCES ARE CORRUPTED BY WHITE GAUSSIAN NOISE WITH

DIFFERENT VALUES OF STANDARD DEVIATION σ.

σ

Video: Tennis Coastg. Foreman Bus

Res.: 240×352 144×176 288×352 288×352

Frames: 150 300 300 150

5
V-BM4D 39.98|0.01 41.13|0.01 41.38|0.01 40.21|0.01

V-BM3D 39.45|0.01 40.18|0.01 40.56|0.01 39.07|0.01

10
V-BM4D 36.42|0.04 37.28|0.03 37.92|0.05 36.23|0.05

V-BM3D 36.04|0.04 36.82|0.03 37.52|0.04 34.96|0.07

20
V-BM4D 32.88|0.17 33.61|0.13 34.62|0.15 32.27|0.20

V-BM3D 32.54|0.18 33.39|0.14 34.49|0.16 31.03|0.32

40
V-BM4D 29.52|0.70 30.00|0.42 31.30|0.44 28.32|0.70

V-BM3D 29.20|0.82 29.99|0.63 31.17|0.56 27.34|1.32

D. Color Filtering

The proposed V-BM4D algorithm can be extended to color

filtering using the same approach of the Color-BM3D image

denoising algorithm [10], [21]. We consider the denoising

of noisy color videos, such as a RGB videos, having each
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Original frame Noisy frame V-BM3D V-BM4D

Fig. 11. Comparison of V-BM3D and V-BM4D color denoising perfor-
mances. The test sequences (from top to bottom, Foreman, Tennis, Bus and
Coastguard) have been corrupted by white Gaussian noise with standard
deviation σ = 40.

channel independently corrupted by white Gaussian noise with

variance σ2.

The algorithm proceeds as follows. At first, the RGB

noisy video is transformed to a luminance-chrominance color

space, then, both the motion estimation and the grouping are

computed from the luminance channel only, as this usually

has the highest SNR and carries most of the significant infor-

mation. In fact, image structures do not typically vary among

different channels, and the results of the motion estimation

and the grouping on the luminance can be directly reused

in the two chrominance channels as well. Once the groups

are formed, each channel undergoes the collaborative filtering

and aggregation independently, and three individual estimates

are produced. Eventually, the final RGB estimate is produced

by inverting the color space transformation. Such approach is

a reasonable tradeoff between the achieved denoising qual-

ity and the required computational complexity. Figure 11

compares the denoising performances of V-BM4D against

the state-of-the-art V-BM3D filter, on the color sequences

Foreman, Tennis, Bus, and Coastguard, corrupted by white

Gaussian noise having standard deviation σ = 40. As a

subjective assessment, V-BM4D better preserves fine details,

such as the face and the background building in Foreman,

the background texture in Tennis, the leaves in Bus and

the grass in Coastguard. From an objective point of view,

as reported in Table IV, V-BM4D performs better than V-

BM3D in every experiment, with PSNR gains of up to 1.5dB.

The MOVIE index confirms the superior performances of V-

BM4D, especially when the observations are corrupted with

high level of noise.

VII. COMPLEXITY

In our analysis the complexity of the algorithm is measured

through the number of basic arithmetic operations performed;

other factors that may also influence the execution time, such

as the number of memory accesses or memory consumption,

have not been considered.

Each run of V-BM4D involves the execution of the hard-

thresholding stage (whose complexity is Cht
V-BM4D), of the

Wiener-filtering stage (whose complexity is Cwie
V-BM4D), and two

runs of the motion estimation algorithm (whose complexity is

TABLE V
SUMMARY OF THE PARAMETERS INVOLVED IN THE COMPLEXITY

ANALYSIS.

Parameter Notes

T Total number of frames in the video.

n Number of pixels per frame (i.e. #X).

N Size of the 2-D square blocks.

h̄ Temporal extent of the volumes in V-BM4D, size of the
temporal search window in V-BM3D, corresponding to
(2NFR + 1) in [11].

NS Size of the motion estimation window.

M Size of the groups, that is the number of grouped volumes
in V-BM4D or the number of grouped blocks in V-
BM3D.

NG Size of the window used in the grouping.

Nstep Processing step (refer to Section VI for further details).

C(m,p,n) Numeric operations required by a multiplication between
matrices of size m×p and p×n (i.e. the cost of a linear
transformation).

CCT). Hence, the V-BM4D overall complexity is:

CV-BM4D = 2CCT + Cht
V-BM4D + Cwie

V-BM4D. (15)

Differently, V-BM3D does not require any motion estimation,

and thus its complexity (CV-BM3D) is given by the sum of

the complexity of its hard-thresholding (Cht
V-BM3D) and Wiener-

filtering (Cwie
V-BM3D) stages:

CV-BM3D = Cht
V-BM3D + Cwie

V-BM3D. (16)

Table V shows a comprehensive summary of the parame-

ters involved in the complexity analysis, as well as a brief

description of their role in the algorithm. To provide a fair

comparison, we assume that in V-BM4D the number of

blocks in any spatiotemporal volume (referred as h̄) coincides

with the size of temporal search window NFR in V-BM3D;

similarly, we assume that the number of grouped volumes in

V-BM4D (referred to as M ) corresponds to the number of

grouped blocks in V-BM3D.

A. Computation of the Trajectory

The computation of the trajectory requires searching for the

most similar block within an adaptive search window of size

NS×NS once for each of the preceding and following frames,

i.e. h̄− 1 times. Computing the ℓ2 distance between a pair of

blocks consists in 3N2 operations, as it requires two additions

and one multiplication for each of the corresponding pixel.

Since a trajectory is constructed for each pixel in every frame

of the video, the total cost is

CCT = nT (h̄ − 1)N2
S

(
3N2

)
. (17)

B. Hard-Thresholding Stage

In the hard-thresholding stage, for each processed block

according to Nstep, at most M similar volumes are first

extracted within a search window of size NG × NG, then

stacked together in a group, and finally transformed by a

separable 4-D transform. Observe that the hard-thresholding,

which is performed via element-wise comparison, requires one

arithmetical operation per pixel. Eventually, the basic estimate

is obtained by aggregating the inverse 4-D transform of the
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filtered groups. Thus, we obtain:

Cht
V-BM4D =

n

N2
step

T
(

N2
G3h̄N2

︸ ︷︷ ︸

Grouping

+ 2
(

2Mh̄C(N,N,N) + MC(h̄,h̄,N2) + C(M,M,h̄N2)

)

︸ ︷︷ ︸

Forward and Inverse Transformations

+ Mh̄N2
︸ ︷︷ ︸

Thresholding

+ Mh̄N2
︸ ︷︷ ︸

Aggregation

)

, (18)

where the symbol C(·,·,·) stands for the cost of a matrix

multiplication operation, as explained in Table V, and the

factor 3 in the grouping complexity is due to the computation

of the ℓ2 distance between two 3-D volumes of size N×N×h̄.

The cost of the is the sum of four matrix multiplications, one

for each dimension of the group, as this is linear and separable

In V-BM3D, the grouping is accomplished by predictive-

search block-matching [11]: briefly it performs a full-search

within a NG × NG window in the first frame to extract the

NB best-matching blocks, then, in the following h̄ frames, it

inductively searches for other NB best-matching blocks within

windows of size NPR × NPR (with NPR ≪ NG) centered

at the position of the previous NB blocks. Furthermore, since

the fourth dimension is missing, the algorithm performs a 3-D

transform of the M blocks of each group. The complexity of

this stage is:

Cht
V-BM3D =

n

N2
step

T
( (

N2
G + NBh̄N2

PR

)
3N2

︸ ︷︷ ︸

Grouping

+ 2
(
2MC(N,N,N) + C(M,M,N2)

)

︸ ︷︷ ︸

Forward and inverse transformations

+ MN2
︸ ︷︷ ︸

Thresholding

+ MN2
︸ ︷︷ ︸

Aggregation

)

. (19)

C. Wiener-filtering Stage

The complexity of the Wiener-filtering stage can be ex-

pressed as that of hard-thresholding stage in (18), with the

exception that the transformation involves two groups having

equal size, and that the coefficients shrinkage (performed via

element-wise multiplication) involves the computation of a set

of weights, which requires 6 arithmetic operations per pixel:

Cwie
V-BM4D =

n

N2
step

T
(

N2
G3h̄N2

︸ ︷︷ ︸

Grouping

+ 4
(

2Mh̄C(N,N,N) + MC(h̄,h̄,N2) + C(M,M,h̄N2)

)

︸ ︷︷ ︸

Forward and Inverse Transformations

+ 6Mh̄N2
︸ ︷︷ ︸

Shrinkage

+ Mh̄N2
︸ ︷︷ ︸

Aggregation

)

. (20)

Analogously, in V-BM3D the complexity of Wiener-filtering

TABLE VI
SCALABILITY OF THE V-BM4D DENOISING ALGORITHM. THE TEST

SEQUENCE IS Tennis, CORRUPTED BY WHITE GAUSSIAN NOISE HAVING

σ = 25. THE PARAMETERS M , NG , AND NSTEP = 6 HAVE BEEN USED IN

BOTH THE HARD-THRESHOLDING AND WIENER-FILTERING STAGE. TWO

DIFFERENT MOTION ESTIMATION STRATEGIES HAVE BEEN EMPLOYED: A

FAST DIAMOND SEARCH [47] MODIFIED IN ORDER TO INCORPORATE THE

PENALTY TERM DESCRIBED IN SECTION III-A2 INTO THE BLOCK

MATCHING, AND THE ONE PROPOSED IN SECTION III-A. THE TIME

REQUIRED TO FILTER A SINGLE FRAME, AND (IN PARENTHESIS) THE TIME

SOLELY SPENT DURING THE MOTION ESTIMATION ARE REPORTED IN THE

LAST COLUMN.

Mot. est. M NG PSNR 1 / fps

Mod. [47]
1 1 29.88 3.07 (2.8)
1 19 29.88 7.36 (2.8)
32 19 30.17 14.57 (2.8)

Sec. III-A
1 1 30.07 22.42 (22.1)
1 19 30.07 26.76 (22.1)
32 19 30.32 33.99 (22.1)

stage is

Cwie
V-BM3D =

n

N2
step

T
( (

N2
G + NBh̄N2

PR

)
3N2

︸ ︷︷ ︸

Grouping

+ 4
(
2MC(N,N,N) + C(M,M,N2)

)

︸ ︷︷ ︸

Forward and Inverse Transformations

+ 6MN2
︸ ︷︷ ︸

Shrinkage

+ MN2
︸ ︷︷ ︸

Aggregation

)

. (21)

D. Comparative Analysis

The complexities of V-BM3D and V-BM4D scale linearly

with the number of processed pixels, thus both algorithms are

O(n). However, it is worth carrying out a deeper analysis since

different multiplying factors may have a remarkable impact on

the final cost of the two algorithms. In this comparison we as-

sume that V-BM3D and V-BM4D share the same parameters.

In this manner, we can analyze the complexities by comparing

the corresponding terms of the cost expansions (18) and (19).

At first, we observe that costs of the grouping can be neglected

since they are similar in both algorithms. Differently, in V-

BM4D the coefficients shrinkage (in the Wiener stage) and the

aggregation (in both the Wiener and hard-thresholding stages)

require exactly h̄ times more operations than in V-BM3D. We

can easily compare the complexity of the transformation, as in

V-BM4D it involves the additional dimension corresponding

to the spatiotemporal volumes. Therefore we can conclude

that the overall cost due to the transformation is more than

h̄ times the corresponding cost in V-BM3D. An analogous

inference can be made also for the costs of the Wiener-

filtering stage given in (20) and (21). In conclusion, we can

state that in these conditions, V-BM4D is at least h̄ times

computationally more demanding than V-BM3D. However, V-

BM4D is also burdened by the motion-estimation step, whose

cost is expanded in (17). Let us observe that this cost can

be entirely eliminated when the input video is encoded with

a motion-compensated algorithm, such as MPEG-4 or H.264,

since the motion vectors required to build the spatiotemporal

volumes can be directly extracted from the encoded video.

Table VI reports the PSNR values and the corresponding

seconds per frame required by V-BM4D to process the video
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Tennis (CIF resolution) on a single 3GHz core. We use

different settings to quantify the computational load of the

grouping and the filtering, by modifying in both stages the

size of the search window NG and the number of grouped

volumes M , respectively. Then, we analyze two different

motion estimation strategies, specifically the predictive search

described in Section III-A and the fast diamond search algo-

rithm presented in [47] modified to incorporate the penalty

term described in Section III-A2 into the block matching.

Finally, we fix Nstep = 6 in both stages to keep the average

frame-per-second (fps) count unbiased. All the remaining V-

BM4D parameters are set as in Table I. The speed-ups induced

by the fast motion estimation algorithm (∼8x), the smaller

search window (∼15x), or the smaller group size (∼2.5x),

correspond to marginal PSNR losses, thus demonstrating the

good scalability properties of the proposed V-BM4D. Note

that, when the nonlocality features are disabled (i.e. M = 1
and NG = 1) the motion estimation does not need to be

performed for every block in the video, because only one block

every Nstep in both spatial directions is actually processed

during the filtering. Thus, by skipping the motion estimation

of the useless blocks, it is possible to achieve an additional

speed-up of ∼12x that allows V-BM4D to process nearly 4 fps

without affecting the final reconstruction quality.

VIII. DISCUSSION

As anticipated in the introduction, a severe limitation of V-

BM3D lies in the grouping step, because it does not distinguish

between the nonlocal and temporal correlation within the

data. The improved effectiveness of V-BM4D indicates the

importance of separately treating different types of correlation,

and of explicitly accounting the motion information. In what

follows we analyze how the PSNR provided by the two

algorithms change when a temporal-based or nonlocal-based

grouping is encouraged by varying the parameters that control

the grouping strategy (both int the hard-thresholding and

Wiener-filtering stage), i.e. (M ,h) in V-BM4D and (NB ,NFR)

in V-BM3D. In these experiments we consider two videos:

Salesman and Tennis, being representative of a static and a

dynamic sequence, respectively.

We recall that for a given pair (M ,h) V-BM4D builds

volumes having temporal extent up to 2h+1 and stacks up to

M of such volumes in the grouping step. In this analysis,

we consider the pairs (M ,h) = (1,7), which yields groups

composed of a single volume having temporal extent 15,

and (M ,h) = (16,0), which yields groups composed of 16

volumes of extent having temporal extent 1. These settings

correspond to a temporal-based grouping strategy in the former

case, and to a nonlocal-based grouping strategy in the latter.

The results reported in Table VII show that, although the

temporal-based groups have a smaller number of blocks than

the nonlocal-based groups, they yield a PSNR improvement

of about 17% in Salesman and 13% in Tennis with respect to

the basic configuration (M ,h) = (1,0). In contrast, the PSNR

improvement inducted by nonlocal-based groups is only about

4% in Salesman and 3% in Tennis. Note that the size of the

groups in V-BM4D can be reduced down to one, somehow

resembling V-BM3D, without suffering from a substantial

loss in terms of restoration quality. As a matter of fact, the

PSNR values shown in Table VII when M = 1 are only less

than 0.2dB worse than the corresponding results reported in

Table II, obtained using bigger values of M . Interestingly, the

sequence Salesman shows a regular loss in performance for

every h ≥ 3 as the dimension of the groups M increases, thus

manifesting that in stationary videos the nonlocality actually

worsen the correlation properties of the groups.

To reproduce the nonlocal-based grouping strategy in V-

BM3D, we increase the parameter NB , controlling the number

of self-similar blocks to be followed in the adjacent frames,

and further we set ds = 0 to give no preference towards

blocks belonging to different frames (i.e. blocks having the

same coordinates of the reference one [11]). Additionally we

fix the maximum size of the groups to N2 = 16, so that

bigger groups can be formed as NFR and/or NB increase. We

stress that the group composition in V-BM3D is not known

when NB × NFR > N2, since the number of potential block

candidates is greater than the maximum size of the group,

and such candidates are unpredictably extracted from both

the nonlocal and temporal dimension. Figure 12 illustrates

the V-BM3D denoising performance. Similarly to V-BM4D,

the graph shows a consistent PSNR improvement along the

temporal dimension (i.e. as NFR increases), and an almost

regular loss along the nonlocal dimension (i.e. as NB becomes

larger).

This analysis empirically demonstrates that, 1) in our

framework, the nonlocal spatial correlation within the data

does not dramatically affect the global PSNR of the restored

video, although it becomes crucial in sequences in which the

temporal correlation can not be exploited (e.g., having frequent

occlusions and scene changes), and 2) a grouping based only

on temporal-correlated data always guarantees, both in V-

BM4D and V-BM3D, higher performance than a grouping

that only exploits nonlocal spatial similarity. Additionally,

if the volumes are composed by blocks having the same

spatial coordinate (i.e. zero motion assumption, or equivalently

γd = ∞), the denoising quality significantly decreases: in the

case of Flower Garden and σ = 25, the PSNR loss is ∼2.5dB.

IX. CONCLUSIONS

Experiments show that V-BM4D outperforms V-BM3D both

in terms of objective (denoising) performance (PSNR, MOVIE

index), and of visual appearance (as shown in Figure 6 and

11), thus achieving state-of-the-art results in video denoising.

In particular, V-BM4D can restore fine image details much

better than V-BM3D, even in sequences corrupted by heavy

noise (σ = 40): this difference is clearly visible in the pro-

cessed frames shown in Figure 6. However, the computational

complexity of V-BM4D is obviously higher than V-BM3D,

because of the motion-estimation step and the need to process

higher-dimensional data. Our analysis of the V-BM4D and V-

BM3D frameworks highlights that the temporal correlation

is a key element in video denoising, and that it represents

an effective prior that has to be exploited when designing

nonlocal video restoration algorithms. Thus, V-BM4D can
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TABLE VII
PSNR (DB) OUTPUTS OF V-BM4D TUNED WITH DIFFERENT SPACE (M ) AND TIME (h) PARAMETERS COMBINATIONS. RECALL THAT THE TEMPORAL

EXTENT IS DEFINED AS 2h + 1. THE TEST SEQUENCES Salesman AND Tennis HAVE BEEN CORRUPTED BY WHITE GAUSSIAN NOISE WITH STANDARD

DEVIATION σ = 20.

M Video
h

0 1 2 3 4 5 6 7 8

1
Salesm. 29.22 32.22 33.12 33.54 33.78 33.93 34.03 34.10 34.16

Tennis 28.04 30.38 31.04 31.33 31.48 31.56 31.61 31.64 31.65

2
Salesm. 29.70 32.19 32.90 33.20 33.37 33.45 33.50 33.52 33.52

Tennis 28.42 30.54 31.15 31.42 31.55 31.62 31.65 31.67 31.67

4
Salesm. 30.08 32.32 32.92 33.14 33.22 33.24 33.22 33.18 33.13

Tennis 28.63 30.62 31.18 31.42 31.52 31.56 31.57 31.56 31.53

8
Salesm. 30.35 32.51 33.11 33.36 33.46 33.49 33.48 33.45 33.40

Tennis 28.74 30.65 31.21 31.44 31.55 31.60 31.61 31.60 31.57

16
Salesm. 30.47 32.65 33.29 33.57 33.72 33.79 33.82 33.81 33.80

Tennis 28.78 30.66 31.21 31.45 31.56 31.63 31.65 31.66 31.65

TABLE VIII
PSNR (DB) OUTPUTS OF V-BM3D TUNED WITH DIFFERENT SPACE (NB ) AND TIME (NFR) PARAMETERS COMBINATIONS. THE SIZE OF THE 3-D

GROUPS HAS BEEN SET TO N2 = 16 IN BOTH WIENER AND HARD-THRESHOLDING STAGES; ADDITIONALLY WE SET THE DISTANCE PENALTY TO ds = 0.
THE TEST SEQUENCES Salesman AND Tennis HAVE BEEN CORRUPTED BY WHITE GAUSSIAN NOISE WITH STANDARD DEVIATION σ = 20.

NB Video
NFR

1 3 5 7 9 11 13 15 17

1
Salesm. 29.21 30.83 32.43 32.39 33.43 33.46 33.48 33.46 33.96

Tennis 27.89 29.29 30.42 30.40 30.93 30.94 30.94 30.93 31.04

3
Salesm. 29.50 32.06 32.53 32.99 33.24 33.37 33.51 33.64 33.75

Tennis 28.13 29.78 30.29 30.39 30.61 30.70 30.79 30.87 30.96

7
Salesm. 29.84 31.90 32.43 32.78 33.04 33.20 33.36 33.50 33.61

Tennis 28.31 29.64 30.07 30.27 30.51 30.62 30.72 30.82 30.91

11
Salesm. 30.15 31.83 32.39 32.75 33.02 33.18 33.34 33.49 33.60

Tennis 28.45 29.58 30.03 30.25 30.50 30.61 30.71 30.81 30.90

15
Salesm. 30.15 31.81 32.38 32.75 33.02 33.18 33.34 33.48 33.59

Tennis 28.45 29.56 30.02 30.25 30.50 30.60 30.71 30.81 30.90
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Fig. 12. PSNR (dB) surface plot of the V-BM4D and V-BM3D restoration performance for the sequence Salesman and Tennis reported in Table VII and
Table VIII.

be a viable alternative to V-BM3D especially in applications

where the highest restoration quality is paramount or when the

separation of the four dimensions is essential.

V-BM4D can be also used as a joint denoising and sharp-

ening filter, as well as a deblocking filter providing ex-

cellent performance on both objective and subjective visual

quality. Additionally, by exploiting the separability of the

4-D transform, spatiotemporal artifacts (such as flickering)

can be alleviated by acting differently on different transform

coefficients. Furthermore, we remark that V-BM4D can be

extended to color data filtering in each of its applications,

namely denoising, deblocking and sharpening.
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