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ABSTRACT

We propose a powerful video denoising algorithm that exploits temporal and spatial redundancy characterizing
natural video sequences. The algorithm implements the paradigm of nonlocal grouping and collaborative filtering,
where a higher-dimensional transform-domain representation is leveraged to enforce sparsity and thus regularize
the data. The proposed algorithm exploits the mutual similarity between 3-D spatiotemporal volumes constructed
by tracking blocks along trajectories defined by the motion vectors. Mutually similar volumes are grouped
together by stacking them along an additional fourth dimension, thus producing a 4-D structure, termed group,
where different types of data correlation exist along the different dimensions: local correlation along the two
dimensions of the blocks, temporal correlation along the motion trajectories, and nonlocal spatial correlation
(i.e. self-similarity) along the fourth dimension. Collaborative filtering is realized by transforming each group
through a decorrelating 4-D separable transform and then by shrinkage and inverse transformation. In this way,
collaborative filtering provides estimates for each volume stacked in the group, which are then returned and
adaptively aggregated to their original position in the video. Experimental results demonstrate the effectiveness
of the proposed procedure which outperforms the state of the art.
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1. INTRODUCTION

The large number of practical applications involving digital videos has motivated a significant interest in denoising
solutions, and the literature contains a plethora of such algorithms (see1,2 for a comprehensive overview). At
the moment, the most effective approach in restoring images or videos exploits the redundancy given by the
nonlocal similarity between patches at different locations within the data.3 Algorithms based on this approach
have been proposed for various signal processing problems, and mainly for denoising.2–12 Among these methods,
we especially mention the BM3D algorithm,7 which represents the state of the art in image denoising. BM3D
relies on the so-called grouping and collaborative filtering paradigm: the observation is processed in a blockwise
manner and mutually similar 2-D image blocks are stacked into a 3-D group (grouping), which is then filtered
through a transform-domain shrinkage (collaborative filtering), simultaneously providing different estimates for
each grouped block. These estimates are then returned to their respective locations and eventually aggregated
into the estimate of the image. In doing so, BM3D leverages the spatial correlation of natural images both at
the nonlocal and local level, due to the abundance of mutually similar patches and to the high correlation of
image data within each patch, respectively. The BM3D filtering scheme has been applied successfully to video
denoising (V-BM3D),8 as well as to several other applications including image and video super-resolution,11–13

image sharpening,10 and image deblurring.14

In V-BM3D, groups are 3-D arrays of mutually similar blocks extracted from a set of consecutive frames of
the video sequence. A group may include multiple blocks from the same frame, naturally exploiting in this way
the nonlocal similarity. However, it is typically along the temporal dimension that most mutually similar blocks
can be found. It is well known that motion-compensated videos15 are extremely smooth along the temporal axis
and this fact is exploited by nearly all modern video-coding techniques. As shown by the experimental analysis
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in,9 even when motion is present, the similarity along the motion trajectories is much stronger than the nonlocal
similarity existing within an individual frame. In spite of this, in V-BM3D the blocks are grouped regardless
of whether their similarity is due to the tracking of motion along time or to the nonlocal spatial self-similarity
within each frame. In other words, the filtering in V-BM3D is not able to distinguish between temporal versus
spatial nonlocal similarity. We recognize it as a conceptual as well as practical weakness of the algorithm: as
simple experiments can demonstrate, increasing the number of spatially self-similar blocks in a V-BM3D group
does not lead to an improvement in the final result and instead it most often leads to a systematic degradation.

This work proposes V-BM4D, a novel video-denoising approach that, to overcome the above weaknesses,
separately exploits the temporal and spatial redundancy in the video sequence. For the sake of clarity and
because of space limitation, we present V-BM4D for denoising only, although it can be implemented for a variety
of other video filtering applications. The core element of V-BM4D is the spatiotemporal volume, a 3-D structure
formed by a sequence of blocks extracted from the noisy video following a specific trajectory (obtained, for
example, by concatenating motion vectors along time).16,17 Thus, contrary to V-BM3D, V-BM4D does not
group blocks, but mutually similar spatiotemporal volumes according to a nonlocal search procedure. Hence,
these groups are 4-D stacks of 3-D volumes and the collaborative filtering is then performed via a separable
4-D spatiotemporal transform. The transform takes advantage of the following three types of correlation that
characterize natural video sequences:

• the local spatial correlation between pixels in each block of a volume;

• the local temporal correlations between blocks of each volume;

• the nonlocal spatial and temporal correlation between grouped volumes.

The 4-D group spectrum is thus highly sparse, which makes the shrinkage more effective than in V-BM3D and
results in the superior performance of V-BM4D in terms of noise reduction.

The paper is organized as follows: Section 3 presents a formal definition of the fundamental steps of the
algorithm, while Section 4 describes the implementation aspects, with particular attention to the computation
of motion vectors; experiments are illustrated and discussed in Section 5.

2. OBSERVATION MODEL

We consider the observed video as a noisy image sequence z : X × T → R defined as

z(x, t) = y(x, t) + η(x, t), x ∈ X, t ∈ T, (1)

where y is the original video, η(·, ·) ∼ N (0, σ2) is i.i.d. Gaussian noise, and (x, t) are the 3-D spatiotemporal
coordinates belonging to the spatial domain X ⊂ Z2 and time domain T ⊂ Z, respectively. The frame of the
video z at time index t is denoted by z(X, t).

3. BASIC ALGORITHM

The aim of the proposed algorithm is to provide an estimate ŷ of the original video y from the observed data
z. According to the BM3D paradigm, the V-BM4D algorithm comprises three fundamental steps, specifically
grouping, collaborative filtering and aggregation. These steps are performed for every spatiotemporal volume of
the video.



Figure 1. Illustration of trajectory and associated volume (left), and group of mutually similar volumes (right) calculated
for the sequence Tennis corrupted by white Gaussian noise with σ = 20.

3.1 Spatiotemporal Volumes

Let Bz(x0, t0) denote a square block of fixed size N × N extracted from the noisy video z; without loss of
generality, the coordinates (x0, t0) identify the top-left pixel of the block in the frame z(X, t0). A spatiotemporal
volume is the 3-D sequence of blocks built following a specific trajectory along time. The trajectory associated
to (x0, t0) is defined as

Traj(x0, t0) =
{

(xj , t0 + j)
}h+

j=−h−
, (2)

where the elements (xj , t0 + j) are time-consecutive coordinates, each of these represents the position of the
reference block Bz(x0, t0) within the neighboring frames z(X, t0 +j), j = −h−, . . . , h+. For the sake of simplicity,
in this section it is assumed h− = h+ = h for all (x, t) ∈ X × T and the considerations concerning the general
case are postponed in Section 4.

The trajectories can be either computed from the noisy video (as shown in Section 4.1), or, when given a
coded video, they can be obtained by concatenating motion vectors. In what follows we assume that, for each
(x0, t0) ∈ X × T , a trajectory Traj(x0, t0) is given and thus the 3-D spatiotemporal volume in (x0, t0) can be
determined as

Vz(x0, t0) =
{
Bz(xi, ti) : (xi, ti) ∈ Traj(x0, t0)

}
, (3)

where the subscript z specifies that the volumes are extracted from the noisy video. The length of a volume
Vz(xi, ti) is defined as

Li = h− + h+ + 1. (4)

3.2 Grouping

Groups are stacks of mutually similar volumes and constitute the nonlocal element of V-BM4D. Mutually similar
volumes are determined with a nonlocal search procedure as in.7 Let Ind(x0, t0) be the set of indexes identifying
volumes that, according to a distance operator δv, are similar to Vz(x0, t0):

Ind(x0, t0) =
{

(xi, ti) : δv(Vz(x0, t0), Vz(xi, ti)) < τmatch

}
. (5)

The parameter τmatch > 0 controls the minimum degree of similarity among volumes; the distance δv is typically
the `2-norm of the difference between two volumes.

The group associated to the reference volume Vz(x0, t0) is then

Gz(x0, t0) =
{
Vz(xi, ti) : (xi, ti) ∈ Ind(x0, t0)

}
. (6)

In (6), we implicitly assume that the 3-D volumes are stacked along a fourth dimension, and hence the groups
are 4-D data structures. Note that since δv(Vz, Vz) = 0, every group Gz(x0, t0) contains, at least, its reference
volume Vz(x0, t0). Figure 1 shows examples of trajectories, volumes and groups.



3.3 Collaborative Filtering
In the general formulation of the grouping and collaborative-filtering approach for a d-dimensional signal,7 groups
are (d+1)-dimensional structures of similar d-dimensional elements, which are then jointly filtered. In particular,
each of the grouped elements influences the filtered output of all the other elements of the group: this is the
basic idea of collaborative filtering. It is typically realized with the following steps: firstly a (d+ 1)-dimensional
separable linear transform is applied to the group, then the transformed coefficients are shrunk, for example by
hard-thresholding or by Wiener filtering, and finally the (d+ 1)-dimensional transform is inverted to obtain an
estimate for each grouped element.

The core elements of V-BM4D are the spatiotemporal volumes (d = 3), and thus the collaborative filtering
performs a 4-D separable linear transform T4D on each 4-D group Gz(x0, t0), and provides an estimate for each
grouped volume Vz:

Ĝy(x0, t0) = T −1
4D

(
Υ (T4D (Gz(x0, t0)))

)
, (7)

where Υ denotes a generic shrinkage operator. The filtered 4-D group Ĝy(x0, t0) is composed of volumes V̂y(x, t)

Ĝy(x0, t0) =
{
V̂y(xi, ti) : (xi, ti) ∈ Ind(x0, t0)

}
, (8)

with each V̂y being an estimate of the corresponding volume Vy extracted from the original video y.

3.4 Aggregation
The groups Ĝy constitute a very redundant representation of the video, because in general the volumes V̂y overlap
and, within the overlapping parts, the collaborative filtering provides multiple estimates at the same coordinates
(x, t). For this reason, the estimates are aggregated through a convex combination with adaptive weights. In
particular, the estimate ŷ of the original video is computed as

ŷ =

∑
(x0,t0)∈X×T

(∑
(xi,ti)∈Ind(x0,t0) w(x0,t0)V̂y(xi, ti)

)∑
(x0,t0)∈X×T

(∑
(xi,ti)∈Ind(x0,t0) w(x0,t0)χ(xi,ti)

) , (9)

where we assume V̂y(xi, ti) to be zero-padded outside its domain, χ(xi,ti) : X × T → {0, 1} is the characteristic
function (indicator) of the support of the volume V̂y(xi, ti), and the aggregation weights w(x0,t0) are different
for different groups. The particular choice of the aggregation weights depends on the result of shrinkage in the
collaborative filtering: typically the weights are defined so that the sparser is the shrunk 4-D spectrum Ĝy(x0, t0),
the larger is the weight w(x0,t0). In particular, the weights can be effectively defined to be inversely proportional
to the total sample variance of the estimate of the corresponding groups.7

4. IMPLEMENTATION ASPECTS

4.1 Computation of the Trajectories
In our implementation, we construct trajectories by concatenation of motion vectors which are defined as follows.

4.1.1 Similarity criterion

Motion of a block is generally tracked by identifying the most similar block in the subsequent (and precedent)
frame. However, since we deal with noisy signals, prior information about motion smoothness can be exploited
to improve the tracking. In particular, provided a rough guess x̂i(tj) of the future (or past) location of the block
Bz(xi, ti) at the time tj = ti + 1 (tj = ti− 1), we define the similarity between Bz(xi, ti) and Bz(xj , tj), through
a penalized quadratic difference

δb
(
Bz(xi, ti), Bz(xj , tj)

)
=
||Bz(xi, ti)−Bz(xj , tj)||22

N2
+ γd ||x̂i(tj)− xj ||2 , (10)

where x̂i(tj) is the predicted position of Bz(xi, ti) in the frame z (X, tj), and γd ∈ R+ is the penalization
parameter. Whenever x̂i(tj) is not available, we consider the lack of motion as the most likely condition and we
set x̂i(tj) = xi.



Figure 2. Effect of different penalties γd = 0.025 (left) and γd = 0 (right) on the background textures of the sequence
Tennis corrupted by Gaussian noise with σ = 20. The initial positions at time t = 1 are equal in both experiments.

V-BM4D repeatedly uses the minimization of (10) to construct the trajectory (2). Formally, the motion of
Bz(xi, ti) from time ti to ti + 1 is determined by the position xj that minimizes (10)

xj = arg min
xk∈N

{
δb
(
Bz(xi, ti), Bz(xk, ti + 1)

)
< τtraj

}
, (11)

where N is a restriction in the frame z(X, ti + 1) applied by an adaptive search neighborhood (further details
are given in Section 4.1.3). Nevertheless, even though a minimizer for (10) can always be found, we interrupt
the trajectory whenever the corresponding minimum distance δb exceeds a fixed parameter τtraj ∈ R+, which
determines the minimum accepted similarity along spatiotemporal volumes, to effectively deal with occlusions
and changes of scene. Figure 2 illustrates trajectories estimated using different penalization parameters. Observe
that the penalization term is essential when tracking blocks belonging to areas covered by homogeneous texture,
in fact, as shown in the right image of Figure 2, without a position-dependent distance metric, the trajectories
would be mainly determined by noise, and, for this reason, the collaborative filtering would be less effective.

4.1.2 Location prediction

As soon as the motion of a block at two consecutive spatiotemporal locations (xi−1, ti − 1) and (xi, ti) has been
determined, we can define the motion vector (velocity) v(xi, ti) = xi−1 − xi. Hence, under the assumption of
smooth motion, we define the guess x̂i(ti + 1) as

x̂i(ti + 1) = xi + γp · v(xi, ti), (12)

where γp ∈ [0, 1] is a weighting factor of the prediction. Analogous prediction can be made for x̂i−1(ti−1), when
we look for precedent blocks in the sequence.

4.1.3 Search neighborhood

Because of the penalty term γd ||x̂i(tj)− xj ||2, the minimizer of (10) is likely close to x̂i(tj). We therefore restrict
the minimization of (10) to a spatial search neighborhood N centered at x̂i(tj). The size NPR × NPR of this
neighborhood can be adapted based on the velocity (magnitude of motion vector) of the tracked block by setting

NPR = NS ·

(
1− γw · e

− ||v(xi,ti)||
2
2

2·σ2
w

)
, (13)

where NS is the maximum size of N , γw ∈ [0, 1] is a scaling factor and σw > 0 is a tuning parameter. As the
velocity increases, NPR approachesNS accordingly to σw; conversely, when the velocity is zeroNPR = NS(1−γw).
By setting a proper value of σw we can control how fast the exponential term approaches zero, or, in other words,
how permissive is the window shrinkage with respect to the velocity of the tracked block. For instance, considering
the same velocity v for a given block and using increasing values of σw in (13), we would obtain smaller windows,
because the decay of the function would be slower.



4.2 Sub-volume Extraction

So far, the number of frames spanned by all the trajectories has been assumed fixed. However, because of
occlusions, scene changes or heavy noise, any trajectory Traj(xi, ti) can be interrupted at any time, as determined
by the parameter τtraj. Thus, if

[
ti − h−i , ti + h+

i

]
is the temporal extent of the trajectory Traj(xi, ti), we have

that
0 ≤ h−i ≤ h , 0 ≤ h+

i ≤ h, (14)

where h denotes the maximum forward and backward extent of trajectories (and thus volumes) allowed in the
algorithm.

As a result, during grouping, V-BM4D may stack together volumes having different lengths. Nevertheless,
because of the separability of the transform T4D, every group Gz(xi, ti) has to be composed of volumes of equal
length. Thus, in the current implementation of grouping we consider, for each reference volume Vz(x0, t0), only
volumes Vz(xi, ti) such that ti = t0, h−i ≥ h−0 and h+

i ≥ h+
0 . In this case, V-BM4D extracts from Vz(xi, ti) the

sub-volume with temporal extent [t0−h−0 , t0 +h+
0 ], denoted as EL0

(
Vz(xi, ti)

)
. There are obviously many other,

less restrictive, possibilities for extracting sub-volumes of length L0 from longer volumes, however, the one we
implemented aims at limiting the complexity while maintaining a high correlation within the grouped volumes.

In the grouping, the distance operator δv is the `2-norm of the difference between time-synchronous volumes
normalized with respect to their lengths

δv
(
Vz(x0, t0), Vz(xi, ti)

)
=
∣∣∣∣Vz(x0, t0)− EL0

(
Vz(xi, ti), t0

)∣∣∣∣2
2
/L0, (15)

thus providing larger weight to the volumes belonging to groups having sparser representation in T4D domain.

4.3 Two-Stage Implementation with Collaborative Wiener Filtering

The general procedure described in Section 3 is implemented in two cascading stages, both composed of the
grouping, collaborative filtering and aggregation steps.

4.3.1 Hard-thresholding stage

In the first stage, volumes are extracted from the noisy video z, and groups are then formed using the simi-
larity measure δv-operator (15), and the predefined threshold τht

match. Collaborative filtering is realized by hard
thresholding in 4-D transform domain each group Gz(x, t):

Ĝht
y (x, t) = T ht−1

4D

(
Υht

(
T ht

4D (Gz(x0, t0))
))
, (x, t) ∈ X × T, (16)

where T ht
4D is the 4-D transform and Υht is the hard-threshold operator with threshold σλ4D.

The outcome of hard-thresholding stage, ŷht, is obtained by aggregation of all the estimated groups Ĝht
y (x, t).

The weights wht
(x0,t0) in the aggregation (9) are inversely proportional to the number Nht

(x0,t0) of non-zero coeffi-

cients of the corresponding hard-thresholded group Ĝht
y (x0, t0):

wht
(x0,t0) =

1
Nht

(x0,t0)

. (17)

4.3.2 Wiener filtering stage

In the second stage, new trajectories Trajŷht are extracted from the basic estimate ŷht, and the grouping is
performed on the new volumes Vŷht . Volume matching is still performed through the δv-distance, but using a
different threshold τwie

match. The set of volume indexes Indŷht(x, t) resulting from similarity search are used to
construct two sets of groups Gz and Gŷht , composed by volumes extracted from the noisy video z and from the
estimate yht, respectively.



Table 1. Parameter settings of V-BM4D for the first (hard-thresholding) and the second (Wiener-filtering) stage. The
parameters γd, τtraj and τmatch vary according to the noise, as shown in Figure 3.

Stage N NS NG h M λ4D γp γw σw Nstep γd τtraj τmatch

Hard thr. 8 11 19 4 32 2.7 0.3 0.5 1 6 γd(σ) τtraj(σ) τmatch(σ)
Wiener filt. 7 27 8 Unused 4 0.005 1 13.5

Collaborative filtering is hence performed using an empirical Wiener filter in T wie
4D transform domain, whose

shrinkage coefficients are computed from the energy of the 4-D spectrum of the basic estimate group Gŷht

W(x0, t0) =

∣∣T wie
4D

(
Gŷht(x0, t0)

)∣∣2∣∣T wie
4D

(
Gŷht(x0, t0)

)∣∣2 + σ2
, (18)

Shrinkage is realized as element-by-element multiplication between the 4-D transform coefficients of the group
Gz(x0, t0) extracted from the noisy video z and the Wiener coefficients W(x0, t0). Subsequently, we obtain the
group of volumes estimates by inverting the 4-D transform as

Ĝwie
y (x0, t0) = T wie−1

4D

(
W(x0, t0) · T wie

4D (Gz(x0, t0))
)
. (19)

The global final estimate ŷwie is computed by the aggregation (9), using the weights

wwie
(x0,t0) = ||W(x0, t0)||−2

2 . (20)

5. EXPERIMENTS

In this section we present the experimental results obtained with a C/MATLAB implementation of the V-
BM4D algorithm, and we compare it against V-BM3D∗, as it represents the state of the art in video denoising.
Observations z are obtained by synthetically adding Gaussian noise to greyscale image sequences, according to
(1). The denoising performance is measured using the PSNR as a global measure for the whole processed video:

PSNR = −10 log10

255−2|X||T |
∑

(x,t)∈X×T

(
y((x, t))− ŷ(x, t)

)−2

 , (21)

where |X| and |T | stand for the cardinality of X and T , respectively.

The transforms employed in the collaborative filtering are similar to those in:7,8 in the hard-thresholding
stage T ht

4D is a 4-D separable composition of 1-D biorthogonal wavelet in both spatial dimensions, 1-D DCT in
the temporal dimension, and 1-D Haar wavelet in the fourth (grouping) dimension while, in the Wiener filtering
stage, T wie

4D uses a 2-D DCT for the spatial dimension. Note that, because of the Haar transform, the cardinality
M of each group must be a power of 2. In order to reduce the complexity of the grouping phase, we restrict
the search of similar volumes within a NG ×NG neighborhood centered around the coordinates of the reference
volume, moreover, to lighten the computational complexity of the grouping, a step of Nstep ∈ N pixels in both
horizontal and vertical directions separates each processed volume. Notwithstanding the trajectory of every
possible volume in the video must be computed beforehand, because any volume is a potential candidate element
of every group.

The two stages share some of the parameters such as: the search neighborhoods for the trajectory calculation
NS , the temporal extent h, the weights γp of (12) and γw, σw of (13), while the block size N , the grouping
window NG, the group size M , and the processing step Nstep are different, and λ4D is used in the first stage
only. Observe that we restrict the volumes contained in the groups to be the largest power of 2 smaller than or
equal to the minimum value between the original cardinality of the groups and M itself.

∗Matlab code at http://www.cs.tut.fi/∼foi/GCF-BM3D/.
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Figure 3. Parameters depending on σ in the hard-thresholding stage. The functions are the quadratic polynomials
approximation of the optimum parameters obtained from the Nelder-Mead simplex direct search algorithm applied on a
set of test sequences corrupted by white Gaussian noise having different values of σ. The functions are built such that
their coefficients maximize the average PSNR of the test sequences along each value of σ. In particular we use Salesman,
Tennis, Flower Garden Miss America, Coastguard, Foreman, Bus, and Bicycle.

(a) Original y (b) Noisy z (c) Result yht of the first
stage

(d) Result ywie of the
second stage

Figure 4. Visual comparison of the sequence Coastguard corrupted by white Gaussian noise with standard deviation
σ = 40, denoised after the first and second stage of V-BM4D.

The parameters involved in the motion estimation and in the grouping, that is γd, τtraj and τmatch, vary with
σ. Intuitively, in order to compensate the effects of the noise, the larger σ is, the larger the thresholds controlling
blocks and volumes matching become. The behavior of such parameters w.r.t. σ is determined following an
empirical approach. First we compute the parameters that maximize the V-BM4D restoration performance
(PSNR) on a set of sequences, where σ is known. Then the restoration performance is maximized using the
Nelder-Mead simplex direct search algorithm18,19 in a multivariate space, thus finding the optimum value of the
triplet (γd, τtraj, τmatch) for eight test video corrupted by i.i.d. white Gaussian noise having eight different value
of σ, ranging from 5 to 70. Subsequently, we approximate the behavior of the three parameters as a function of
σ using a quadratic polynomial for each variable in the domain (γd, τtraj, τmatch) maximizing the total PSNR of
the test sequences. The resulting fit is

γd(σ) = 0.0005 · σ2 − 0.0059 · σ + 0.0400, (22)

τtraj(σ) = 0.0047 · σ2 + 0.0676 · σ + 0.4564, (23)

τmatch(σ) = 0.0171 · σ2 + 0.4520 · σ + 47.9294. (24)

The above functions are shown in Figure 3: experimentally they were found to be a good approximation of the
optimum (γd, τtraj, τmatch). Note that during the second stage such parameters can be considered constants
independent of σ, because in the processed sequence ŷht the noise is considerably lower than in the observation
z; this is evident when looking at the second and third image of Figure 4. Moreover, since in this stage the
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Figure 5. Frame-by-frame PSNR output of Tennis (top) and Bus (bottom) denoised by V-BM4D (thick line), and V-BM3D
(thin line). The sequences are corrupted by i.i.d. white Gaussian noise with standard deviation σ = 20.

Table 2. Comparison between the PSNR (dB) outputs obtained from the proposed V-BM4D algorithm (top number
in each cell), and the V-BM3D algorithm tuned with its default parameters8 (bottom number in each cell). The test
sequences are corrupted by i.i.d. Gaussian noise with zero mean and three different standard deviations σ.

σ
Video: Salesm. Tennis Fl. Gard. Miss Am. Coastg. Foreman Bus Bicycle
Res.: 288×352 240×352 240×352 288×360 144×176 288×352 288×352 576×720

Frames: 50 150 150 150 300 300 150 30

10 V-BM4D 37.30 35.22 32.81 40.09 35.54 36.94 34.26 37.66
V-BM3D 37.21 34.68 32.11 39.61 34.78 36.46 33.32 37.62

20 V-BM4D 33.79 31.59 28.63 37.98 31.94 33.67 30.26 34.10
V-BM3D 34.04 31.20 28.24 37.85 31.71 33.30 29.57 34.18

40 V-BM4D 30.35 28.49 24.60 35.47 28.54 30.52 26.72 30.10
V-BM3D 29.93 27.99 24.33 35.45 28.27 29.97 26.28 30.02

trajectories and the grouping are determined from the basic estimate ŷht, there is no a straightforward relation
with σ, the standard deviation of the noise corrupting the observation z.

The comparison against V-BM3D8 is carried out using the set of parameters reported in Table 1. Table
2 compares the denoising performance in terms of PSNR of the two algorithms, applied to a set of standard
video sequences corrupted by white Gaussian noise with increasing standard deviation σ = {10, 20, 40}, which
is assumed known. Further details concerning the original sequences, such as the resolution and number of
frames, are shown in the header of the table. As one can see, V-BM4D outperforms V-BM3D in nearly all the
experiments, with PSNR improvement of up to 1 dB. It is particularly interesting to observe that V-BM4D
handles effectively the sequences characterized by rapid motion and frequent scene changes, especially under



Original frame Noisy frame V-BM3D V-BM4D

Figure 6. Visual comparison of the sequences, from top to bottom, Bus, Flower Garden and Tennis corrupted by white
Gaussian noise with standard deviation σ = 40, denoised by the proposed algorithm V-BM4D and the V-BM3D algorithm.

heavy noise, as Tennis, Flower Garden, Coastguard and Bus. In particular, Figure 5 shows that as soon as the
sequence presents a significant change in the scene, the denoising performance decreases significantly for the two
algorithms, but, in these situations, V-BM4D requires much less frames to recover high PSNR values, as shown
by the lower peaks at frame 30 and 90 of Tennis and around frame 75 of Bus.

Figure 6 offers a visual comparison of the performance of the two algorithms. As a subjective quality
assessment, V-BM4D better preserves the textures, without introducing significant artifacts in the restored
video: this is clearly visible in the tree leaves of the Bus sequence.

6. DISCUSSION AND CONCLUSIONS

Experiments show that V-BM4D outperforms V-BM3D in terms of measured performance (PSNR), and of visual
appearance (Figure 6), thus achieving state-of-the-art results in video denoising. In particular, V-BM4D can
restore much better than V-BM3D fine image details, even in sequences corrupted by heavy noise (σ = 40):
this difference is clearly visible in the processed frames shown in Figure 6. Moreover, the comparison between
V-BM3D and V-BM4D highlights that the temporal correlation is a key element in video denoising, and that it
has to be adequately handled when designing nonlocal video restoration algorithms. We wish to remark that the
computational complexity in V-BM4D is obviously higher than in V-BM3D, mainly because V-BM4D processes
higher-dimensional arrays. Thus, V-BM4D can be a viable alternative to V-BM3D especially in applications
where the highest restoration quality is paramount. Ongoing work addresses the parallelization of V-BM4D,
leveraging GPU hardware.
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