
- 1 -

Video Editing Using Lenses and Semantic Zooming

A. Chris Long, Brad A. Myers, Juan Casares, Scott M. Stevens, and Albert Corbett

Human Computer Interaction Institute,

Carnegie Mellon University

Pittsburgh, PA 15213,USA

Tel: 1-412-268-7565

E-mail: chrislong@acm.org

ABSTRACT

Digital video is becoming increasingly prevalent.

Unfortunately, editing video remains difficult for several

reasons: it is a time-based medium, it has dual tracks of

audio and video, and current tools force users to work at the

smallest level of detail. Based on interviews with

professional video editors and observations of the use of

our own editor, we have developed new interaction

techniques for digital video based on semantic zooming and

lenses. When copying or cutting a piece of video, it is

desirable to select both ends precisely. However, although

many video editing tools allow zooming into a fine level of

detail, they do not allow zooming at more than one location

simultaneously. Our system provides multiple lenses on the

same timeline, so the user can see more than one location in

detail.

KEYWORDS: Digital video editing, multimedia authoring,

metadata, Silver, lenses, focus+context, zooming

INTRODUCTION

Digital video is becoming increasingly ubiquitous. Digital

video equipment is more accessible than ever, and there is

an increasing amount of video material available on the

World Wide Web and in digital libraries. As technology

and content become available, users will shift from passive

spectators to active creators of video. Forrester Research

predicts that by 2005, 92% of online consumers will create

personal multimedia content at least once a month [24].

However, although many exciting research projects are

investigating how to search, visualize, and summarize

digital video, there is little work on new ways to support the

use of the video beyond just playing it.

This is unfortunate, because video editing has several

unique challenges not found with other media. One is that

digital video is a time-based medium. This property makes

it difficult for users to browse and skim video. Users often

must linearly search their source video to find the clip they

desire.

Another challenge for editing video is that it is a dual

medium. Most “video” actually consists not just of a video

track but also an audio track. These tracks must be kept

synchronized, but the user must also be able to edit them

separately when desired, for example during transitions

from one shot to another. Further, when a shot is cut from a

video for use elsewhere, the user must be able to

disentangle overlaid audio and video.

A third problem is that the syntactic units that users want to

edit are usually shots of video and words or sentences of

audio, but current tools require users to examine video at

the individual frame level and audio using a waveform. To

perform most editing operations, such as cutting a shot, the

user must manually pinpoint specific frames, which may

involve zooming and numerous repetitions of fast-forward

and rewind operations. Finding a specific word or sentence

using a waveform is similarly tedious.

These problems make editing video a difficult, tedious, and

error-prone activity. Commercially available tools, such as

Adobe Premiere [1] and Apple iMovie [2], allow creation

of high-quality video, but they do not adequately address

the issues raised above, which makes them hard to use,

especially for novices.

To better understand video editing, we visited a video

processing studio and interviewed professional video

editors. We also examined commercial and research video

editing systems. Finally, we ran a study of subjects using

our own preliminary video editor and noticed what tasks

were most difficult [8].

To help solve the observed problems, we are developing a

new video editor as part of the Silver project. Silver stands

for Simplifying Interface Layout and Video Editing and

Reuse. The goal of Silver is to make editing of video as

Submitted for Publication



- 2 -

easy and widespread as it is today to edit formatted text

using a modern word processor. A previous version of the

Silver editor was presented earlier [8]. The current paper

describes an entirely new implementation: Silver2. The

innovations for video editing in Silver2 include a timeline

view that visualizes the video at multiple resolutions with

semantic zooming, and has the ability to provide multiple

“lenses” [6] that overlay the timeline view and allow the

user to work at multiple resolutions at the same time. The

lenses will enable users to more easily zoom in to view the

details of the two ends of a segment of video to be cut.

Silver2 can automatically place these lenses when the user

selects a region of video that will not all fit on the screen at

a frame-level resolution.

The remainder of the paper is organized as follows. First,

we discuss related work. Next, we describe the Silver2

interface. We end with conclusions and future work.

RELATED WORK

In this section, we describe different types of related work.

We start with systems that use metadata for video editing.

Next, we discuss systems that automate the process of

video editing to some degree. Then we discuss work on

video visualizations that address the issues of scale and

time. Next, we describe previous work on lenses, followed

by zooming interfaces. We conclude with a description of

the previous version of Silver.

Metadata and Video Editing

The notion of using metadata for editing video is not new.

For example, Mackay and Davenport examined the role of

digital video in several interactive multimedia applications

and concluded that video is an information stream that can

be tagged, edited, analyzed, and annotated [20]. Later,

Davenport et al. proposed using metadata for home movie

editing assistance [11]. However, they assumed this data

would be obtained through manual logging or with a “data

camera” during filming, whereas our system creates the

metadata automatically using the Informedia digital video

library [17].

Currently, there is a large body of work on the extraction

and visualization of information from digital video (e.g.,

[14, 26]) that make a data camera unnecessary. One

example of a system that uses metadata is IMPACT [28],

which uses automatic cut detection and camera motion

classification to create a high level description of the

structure of the video. The user can organize the shots in a

tree structure and then edit the composition by moving the

branches [27]. IMPACT supports this process by

recognizing objects across multiple shots.

Automation

Several systems edit video with varying degrees of

automation. Fully automated systems may be used for news

on demand [3] or quick skimming [8], but do not really

support authoring.

The Video Retrieval and Sequencing System (VRSS) [10]

semiautomatically detects and annotates shots for later

retrieval. Then, a cinematic rule-based editing tool

sequences the retrieved shots for presentation within a

specified time constraint. Examples of cinematic rules

include the parallel rule, which alternates two different sets

of shots, and the rhythm rule, which selects longer shots for

a slow rhythm and shorter shots for a fast one.

The Hitchcock system [15] automatically determines the

“suitability” of the different segments in raw home video,

based on camera motion, brightness, and duration. Similar

clips are grouped into “piles.” To create a custom video, the

user drags segments into a storyboard and specifies a total

desired duration and Hitchcock automatically selects the

start and end points of each clip based on shot quality and

total duration. Clips in the storyboard are represented with

frames that can be arranged in different layouts, such as a

“comic book” style layout [7].

The MovieShaker system automates video editing almost

completely [25]. The user specifies multiple video clips and

a “mood” (e.g., romantic, wild), and the program combines

and edits the clips into a single video.

While automation makes editing faster, it usually involves

taking away power from the user, which is not always

desirable. In fact, user studies led to changes in Hitchcock

to give more information and control to the user [16]. Our

system does not try to automate the video processing,

instead concentrating on easing the authoring process for

people.

Visualizing Time and Scale

Video editing is difficult in part because it is hard to

visualize time. Due to the semantic and syntactic nature of

the video, where selecting a five-second piece involves

fiddling with frames in 1/30
th

of a second increments, it

becomes important to present the information at different

scales. A single scale is not sufficient to efficiently perform

all the operations needed. For example, when looking at the

individual frames at a reasonable size, at most about 2

seconds of video will fit on the screen (60 frames), yet most

video segments are likely to be many minutes or hours long

(e.g., 18,000 to 162,000 frames). The individual frame level

view is needed to make edits precisely, but more global

views are necessary to find appropriate segments and to

understand the context.

The Hierarchical Video Magnifier [21] allows users to

work with a video source at fine levels of detail while

maintaining an awareness of the context. It provides a

timeline to represent the total duration of the video source;

a second timeline shows a detail of the first one and



- 3 -

illustrates it with a frame sampling. The user can select

which portion of the top timeline that is expanded on the

next one. There is also a mechanism that can be used to add

a new timeline with a higher level of detail. Successive

timelines create an explicit spatial hierarchical structure of

the video source.

The Swim Hierarchical Browser [0] significantly improves

on this idea by using metadata. Swim displays

automatically detected shots in the higher level layers

instead of frame samples.

Lenses

The idea of a “magic lens” was introduced by Eric Bier, et.

al. [6] in 1993, and there have been many subsequent

systems that have built on this concept (e.g., [12][18][23]).

A magic lens is a screen region that transforms the objects

underneath it. Typically, the user can move the lens to

control what object or screen region is affected, and can

often change properties of the lens. Lenses have been used

to provide various transformations and visualizations of the

content underneath and to provide alternative ways of

interacting with the underlying content [4]. Rather than just

zooming the content like a magnifying glass, many lenses

provide semantic transformations of the content to show

and allow manipulation of the underlying properties. For

example, Hudson’s debugging lenses [18] can show the

class name and extent of user interface widgets, children

widgets, etc. Our visualization is closest to the document

lens [23] because it shows the main area of interest larger,

and rather than occluding the neighboring areas, it shows

the neighboring areas smaller. This is a form of “fish-eye

view” [13], also called a “focus+context” display [23]. As

far as we know, Silver2 is the first application of lenses to

video editing.

Zooming

The Pad, Pad++, and Jazz projects [4][5] have been

researching zoomable interfaces, where the user can zoom

in and out of the content to see more detail or more context.

Often, zooming will not just change the magnification, but

may change the form and style of the content so it is

appropriate for the current zoom level. This is called

“semantic zooming” and has been used by a number of

other systems (e.g., [19][0]). Our approach is closest to

DENIM [19], in which a slider provides continuous

zooming that jumps to a different representation at various

points on the slider.

Silver Version 1

The current Silver2 system is based on experience with

building a previous version [8][22]. The earlier version,

implemented in Visual Basic, provided multiple views of

the video, including a storyboard, project, timeline,

transcript, hierarchy, and preview views. In the timeline,

interaction techniques supported sophisticated zooming and

panning. The system could automatically adjust selections

and regions that were cut and pasted based on the

underlying content of the video and audio. In user tests,

however, we found a number of problems with the system,

which the new Silver2 interface seeks to address. In

particular, users still found it tedious and difficult to get

both ends of a selection to be in exactly the right places for

edits.

SILVER2 INTERFACE

An overview of the timeline and preview views of the

Silver2 interface is shown in Figure 1. There can be

multiple simultaneous views of the same video

composition. Each view can show a different part of the

video at a different zoom level. In this example, the top

timeline shows individual frames of video. The bottom

timeline has been zoomed out to show the shot level of

Figure 1 Silver2 overview

Preview

Timeline



- 4 -

detail. A shot is a continuous segment of video from a

single camera.

Silver2 is implemented in Java using the Swing and Java

Media Framework toolkits. Silver2 uses the Informedia

digital library [8][26][29] as the source for the video clips,

and to provide the metadata about the video content. This

metadata includes where shot breaks are and the transcript

for the audio.

The remainder of this section describes details of the

Silver2 interface design. The first subsection describes

zooming, the second describes lenses, and the third

describes smart selection.

Zooming

Like other video editors, Silver2 allows the user to view

video at multiple temporal resolutions and at multiple levels

of detail. Unlike previous video systems, however, the user

can easily change both of these properties by continuously

sliding a single slider (see Figure 2). This combination of

scaling-based zooming and semantic zooming was inspired

by DENIM [19], which had a similar mechanism for

navigating website designs.

When the slider is at the bottom, the timeline displays

individual frames of video. As the slider is dragged up,

frames are left out so every nth frame is shown. As the

slider moves closer to the “Shot” tick mark than the “Frame”
mark, the view changes to show shots of video rather than

frames (see Figure 1, bottom timeline). Shots are shown in

differing amounts of detail depending on the amount of

screen space available. If there is enough space for only one

frame, a representative thumbnail frame is shown, scaled

down if it would not fit full-sized.
1

If there is space for two

frames, then the first and last frames are shown. If there is

enough space for three or more frames, then the first, last,

and thumbnail frames are shown. Gray lines are used to

connect frames within a shot and to separate shots from one

another. Each frame drawn in this view has a gray drop

shadow to indicate it represents a shot.

1
A representative frame for each shot is provided by the

Informedia digital video library.

Figure 2 The zoom slider.

Magnified regions

Minified regions

Figure 3: Two lenses at the beginning and ends of a shot

Figure 4 Clip zoom level



- 5 -

When the slider is closest to “Clip,” the timeline shows

clips
2

of video in a similar manner to shots (see Figure 4).

The first and last frames of a clip are shown, unless the clip

is too short, in which case the first frame is shown. When

the slider is all the way at the top, the entire composition is

shown in the timeline. Connecting lines and drop shadows

are blue to distinguish clips from shots.

We assume that the user is most interested in the region in

the center of the window, so zooming keeps the view

centered on the same time, and changes both ends.

Lenses

With multiple timelines at different zoom levels, the user

can view video in fine detail and see an overview at the

same time. However, we found in our previous system that

manipulating multiple timelines to do detailed editing can

be tedious, because of the additional scrolling and zooming

that it entails.

Lenses are easier to use because they provide the detail in

the context of the whole. For example, lenses allow the

beginning and the end of a shot to be shown in detail

simultaneously on the same timeline (see Figure 3).

We assume that the user places lenses at specific points on

the timeline because those are the points of interest.

Therefore, interactions with other parts of the interface, or

other lenses, should not change a lens’s focus, its duration,

or its screen size. This principle informed our many

decisions about how the lens should behave when

interacting with the user, the surrounding timeline, and

other lenses.

For example, there are several ways a lens could magnify

its content and interact with the surrounding timeline. One

option is to behave like a magnifying glass and show the

area under its center magnified but obscure areas under its

border. Another is to avoid obscuring anything by

expanding the timeline outside of the lens. The effect of

this is to “push” the content not being viewed in the lens out

of the lens area. This option has the disadvantage that

inserting, removing, or resizing a lens would affect the

entire timeline. We chose a strategy inspired by fisheye

lenses [13][23]: the lens magnifies a central, or focus

region, and minifies regions at its edges to compensate. The

result is that the lens as a whole occupies exactly the same

screen space as the normal, lens-less view would.

More specifically, we devote a fixed fraction of the width

of each lens (in pixels) to the focus, and the rest to the

minified edge regions (currently, 80% for the focus and

10% for each edge). The zoom level of the focus is

specified by the user. The zoom levels of the edges are

2
A clip is a continuous segment of video from a single source

file.

computed so that they accommodate the amount of time

required to fit the duration of the entire lens into its width,

which depends upon the zoom level of the outside timeline.

For example, if the zoom level of the lens is only slightly

different from the timeline zoom level, the edges only need

to be slightly minifed, but if the lens is greatly zoomed in

compared to its timeline, the edges need to be greatly

minified to compensate.

Most of the time, the focus of a lens is at its center.

However, some manipulations (described below) can cause

the focus to be off-center (e.g., see Figure 6). Since we

want to keep the size and duration of the lens constant,

when the lens focus shifts, each edge must change two of

its three properties (i.e., width, zoom level, and duration).

We decided to keep the width constant, so as the focus

shifts toward one edge of the lens, that edge displays less

duration in finer detail. This behavior ensures that some

context information will always be visible next to the focus

and furthermore shows the edge in which the focus is

moving in increasing detail, which is beneficial because the

user is presumably more interested in the content in that

direction.

The behavior of a lens when its zoom level or the zoom

level of its timeline changes is determined by our desire to

maintain user decisions about lens placement and zoom

level. If the user changes the zoom level of the lens, its

focus changes to the level set by the user, and the duration

of the focus changes to whatever fits, given its size. The

position of the focus region stays centered, so like the

timeline as a whole, the lens zooms from the center. The

zoom and duration of the edges are changed so the lens as a

whole covers the same time as a lens-less timeline would.

When the zoom level of the timeline changes, the lens

focus remains constant and its edges are updated.

Another design decision was how a lens should be dragged

and resized. The naïve method would be to drag it in the

coordinates of the timeline in which it is embedded.

However, typically the lens is zoomed in to a much finer

granularity than its surrounding timeline, so moving even a

pixel or two would usually move the lens focus a great

distance. By default, we chose resize and drag to operate at

the scale of the lens focus, which allows the user to easily

make fine adjustments in the lens position or size. This

strategy has the disadvantage that the resize or move

control that the mouse started on will not stay under the

mouse as it is dragged, but we believe this tradeoff is

acceptable. If the user wishes large-scale control, a modifier

key can be used to manipulate the lens at the timeline scale,

in which case the control and mouse stay together on

screen. Lens controls are shown in Figure 5.

Since a vertical slider would be too visually disruptive on

the timeline, a horizontal one is provided to allow the user

to adjust the zoom level of the lens. In theory, one could



- 6 -

have a lens that minified its focus rather than magnifying it,

but this behavior does not seem useful. If a user tries to

zoom out a lens farther than its surrounding timeline, it

stops zooming when the inside zoom factor matches the

surrounding timeline.

Normally, the center of the lens focus is the same as the

center of the whole lens. However, when the lens is near

one end of the timeline, this policy is inadequate, because

the region near the boundary will always be in the minified

region, never in the focus. To solve this problem, when a

lens is pushed against an end of the timeline, its focus is

shifted away from the center of the lens toward the

boundary. Once the focus has shifted far enough that the

edge and focus are at the same zoom level, the edge region

is not necessary and it vanishes (see Figure 6).

Interaction between lenses was another design issue. We

discussed allowing overlapping lenses [12], but it does not

seem useful for our application, and it would be difficult to

control overlapping lenses since their controls for moving,

growing, and zooming would overlap. Instead, when a lens

is pushed against another lens, it pushes the lens, unless it is

at the end of the timeline, in which case nothing happens. If

Zoom sliderDrag handle Resize handles

Figure 5 Lens controls

Figure 6 Off-center lens focus. Notice that no left edge minified region is needed.



- 7 -

the two lenses are at the same zoom level, dragging them

together can produce a larger, zoomed, seamless view of

the timeline (see Figure 7).

These interactions of lenses with the timeline ends and with

each other mean that by suitable zooming of the timeline

and placement of lenses, we can always see both ends of a

selection in detail, no matter how near or distant they are.

The underlying content flows into and out of the zoomed

region in a smooth, natural way.

Another design decision is whether the lens should move

with the video when the timeline scrollbar is used, or if it

should “stick” to the display. Both behaviors are sometimes

useful, but we decided the lens should stay with its video.

This is more useful in the case when the lens is being used

to focus on one end of an intended edit position, so the user

can scroll and zoom to find the other end without changing

the first end. Furthermore, if the user wants the other

behavior and is surprised by this outcome, it is much easier

to recover from this result than if the lens were focused on

an interesting piece of video and scrolling the timeline

moved the video out of the lens, since then the focused area

is lost.

A lens can be created by selecting a region in the timeline

and using a menu command. However, lenses will

frequently be needed for examining shot boundaries, so

when the timeline is showing shots, a modified double-

click creates a lens that is centered on the nearest shot

boundary and zoomed in to the individual frame level.

These automatically generated lenses are initially half the

size of the screen, or less if the shot boundary is near the

end of the timeline.

Silver can also automatically generate lenses based on the

selection. This operation creates a new timeline that is

zoomed out far enough to show both ends of the current

selection and at each end of the selection a lens is created

and centered on the end. The lenses are set at the frame

level of detail and large enough to show a few frames.

Semantic Selection

Like the original Silver system [22], Silver2 has a selection

feature based on video semantics. A double-click in the

timeline selects the current “unit” of video. For example,

when the video is at the frame level of detail, a double-click

selects a frame. When it is at the shot level, a double-click

selects a shot. This interaction works through a lens as

expected. That is, if the timeline is at shot level but the lens

is at the frame level, double-clicking inside the lens selects

a frame. As with dragging and resizing the lens, the user

can use a modifier key to override the lens zoom level and

use the zoom level of the timeline.

CONCLUSIONS AND FUTURE WORK

We believe these new visualizations of video will be

helpful for detailed video editing. The semantic zoom

unifies different semantic levels of detail with traditional

magnification-based zooming, which makes it easy to

change between levels of detail.

With current tools, it is difficult to view individual frames

without getting lost in the sea of frames, but Silver2 allows

users to view details at multiple places in the same

composition, either on the same or different timelines.

Lenses can be easily pushed together and separated again,

as the users’ needs demand.

There are many areas for future improvement in Silver2:

• To include transcripts of the audio in the timeline.

• To allow semantic zooming of the transcript, using

coarse levels of detail based on sentences and speaker

changes.

Figure 7 Adjacent lenses create a larger, zoomed, seamless view



- 8 -

• To allow the text and video to be zoomed at different

levels of detail simultaneously, to address the problem

of differences in scale between audio and video.

• To provide intuitive selection and editing operations,

such as modern word processors provide for text. For

example, drag-and-drop, cut, and paste.

• To change how lenses interact. The current interaction

(i.e., one lens pushing another) may not be ideal. We

would like to experiment with other techniques, such

as having a lens “steal” time from its neighbor when

dragged next to it.

• To evaluate Silver2 with users.

We believe the framework Silver2 provides will enable

editing that is easier to use than professional tools, yet more

powerful than current simple consumer tools.

ACKNOWLEDGMENTS

The authors would like to thank Rishi Bhatnagar, Laura

Dabbish, and Dan Yocum for their work on previous

versions of Silver.

The Silver Project is funded in part by the National Science

Foundation under Grant No. IIS-9817527, as part of the

Digital Library Initiative-2. Any opinions, findings and

conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect those

of the National Science Foundation.

REFERENCES

1. Adobe Systems Incorporated. Adobe Premiere.

http://www.adobe.com/products/premiere/main.html.

2. Apple Computer, Inc. iMovie. http://www.apple.com/

imovie/.

3. Ahanger, G. and Little, T. D. C. “Automatic Composition

Techniques for Video Production.” IEEE Transactions on

Knowledge and Data Engineering, 10(6):967-987, 1998.

4. Bederson, B., Hollan, J.D., Perlin, K., Meyer, J., Bacon,

D., and Furnas, G., “A Zoomable Graphical Interface for

Exploring Alternate Interface Physics.” Journal of Visual

Languages and Computing, 1996. 7(1): pp. 3-31.

5. Bederson, B.B., Meyer, J., and Good, L. “Jazz: an

extensible zoomable user interface graphics toolkit in

Java,” in UIST'2000: Proceedings of the 13th annual ACM

symposium on User interface software and technology.

2000. San Diego, CA: pp. 171-180.

6. Bier, E.A., Stone, M.C., Pier, K., Buxton, W., and DeRose,

T.D. “Toolglass and Magic Lenses: The See-Through

Interface,” in Proceedings SIGGRAPH'93: Computer

Graphics. 1993. 25. pp. 73-80.

7. Boreczky, J., Girgensohn, A., Golovchinsky, G., and

Uchihashi, S. “An Interactive Comic Book Presentation for

Exploring Video.” CHI Letters: Human Factors in

Computing Systems (SIGCHI), 2(1):185–192, April 2000.

8. Casares, J. Myers, B, Long, A. C., Bhatnagar, R. Stevens,

S., Dabbish, L., Yocum, D. and Corbett, A. “Simplifying

Video Editing Using Metadata,” in Proceedings of

Designing Interactive Systems (DIS 2002), London, UK,

June 2002 (to appear).

9. Christel, M., et al., “Techniques for the Creation and

Exploration of Digital Video Libraries.” Chapter 8 of

Multimedia Tools and Applications, B. Furht, ed. Kluwer

Academic Publishers. Boston, MA. 1996.

10. Chua, T. and Ruan, L. “A video retrieval and sequencing

system.” ACM Transactions on Information Systems,

13(4):373–407, 1995.

11. Davenport, G., Smith, T.A., and Pincever, N. “Cinematic

Primitives for Multimedia.” IEEE Computer Graphics &

Applications, 11(4):67–74, 1991.

12. Fox, D. “Composing magic lenses,” in Proceedings

SIGCHI'98: Human Factors in Computing Systems. 1998.

Los Angeles, CA: pp. 519 - 525.

13. Furnas, G.W., “Generalized fisheye views,” in Proceedings

of CHI'86 Conference on Human Factors in Computing

Systems, 1986, ACM. Boston. pp. 16-23.

14. Gauch, S., Li, W., and Gauch, J. “The VISION Digital

Video Library.” Information Processing & Management,

33(4):413–426, 1997.

15. Girgensohn, A., Boreczky, J., Chiu, P., Doherty, J., Foote,

J., Golovchinsky, G., Uchihashi, S., and Wilcox, L. “A

semi-automatic approach to home video editing.” CHI

Letters: Symposium on User Interface Software and

Technology (UIST), 2(2):81–89, 2000.

16. Girgensohn, A., Bly, S., Shipman, F., Boreczky, J. and

Wilcox, L. “Home Video Editing Made Easy—Balancing

Automation and User Control.” In Human-Computer

Interaction INTERACT '01. IOS Press, 464–471, 2001.

17. Hauptmann, A. and Smith, M. “Text, Speech, and Vision

for Video Segmentation: The Informedia Project.” In

AAAI Symposium on Computational Models for

Integrating Language and Vision, Cambridge, MA, Nov.

10–12, 1995.

18. Hudson, S., Rodenstein, R., and Smith, I. “Debugging

Lenses: A New Class of Transparent Tools for User

Interface Debugging,” in Proceedings UIST'97: ACM

SIGGRAPH Symposium on User Interface Software and

Technology. 1997. Banff, Alberta, Canada: pp. 179-187.

19. Lin, J., Newman, M.W., Hong, J.I., and Landay, J.A.

“DENIM: finding a tighter fit between tools and practice

for Web site design,” in Proceedings of CHI'2000: Human

Factors in Computing Systems. 2000. The Hague, The

Netherlands: pp. 510-517.

20. Mackay, W.E. and Davenport, G., “Virtual Video Editing

in Interactive Multimedia Applications.” Communications

of the ACM, 32(7):832–843, 1989.

21. Mills, M., Cohen, J., and Wong, Y. “A Magnifier Tool for

Video Data,” in SIGCHI '92 Conference Proceedings of

Human Factors in Computing Systems. 1992. Monterey,

CA: ACM. pp. 93–98.



- 9 -

22. Myers, B., Casares, J., Stevens, S., Dabbish, L., Yocum, D.

and Corbett, A., “A multi-view intelligent editor for digital

video libraries”, in Proceedings of the first ACM / IEEE

joint conference on digital libraries, 2001, pp. 106–115.

23. Robertson, G.G. and Mackinlay, J.D. “The document lens,”

in Proceedings UIST'93: ACM SIGGRAPH Symposium on

User Interface Software and Technology. 1993. Atlanta,

GA: pp. 101-108.

24. Schwartz, J., Rhinelander, T. and Dorsey, M., “Personal

Rich Media Takes Off”, The Forrester Report, Forrester

Research Inc., October 2000.

25. Sony Electronics, Inc. MovieShaker.

http://www.ita.sel.sony.com/jump/movieshaker/ms.html.

26. Stevens, S.M., Christel, M.G., and Wactlar, H.D.,

“Informedia: Improving Access to Digital Video.”

Interactions: New Visions of Human-Computer Interaction,

1994. 1(4): pp. 67–71.

27. Ueda, H. and Miyatake, T. “Automatic Scene Separation

and Tree Structure GUI for Video Editing,” in Proceedings

of ACM Multimedia '96. 1996. Boston:

28. Ueda, H., Miyatake, T., Shigeo Sumino and Akio

Nagasaka. “Automatic Structure Visualization for Video

Editing,” in Proceedings of INTERCHI'93: Conference on

human factors in computing systems. 1993. Amsterdam:

ACM. pp. 137–141.

29. Wactlar, H.D., et al., “Lessons learned from building a

terabyte digital video library.”, IEEE Computer, 1999.

32(2): pp. 66–73.

Zhang, H., et al. “Video Parsing, Retrieval and Browsing: An

Integrated and Content-Based Solution,” in ACM

Multimedia 95: Proceedings of the third ACM

international conference on Multimedia. 1995. San

Francisco, CA: pp. 15–24.




