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CMOS video cameras with high dynamic range (HDR) output are particularly suitable for driving assistance applications, where
lighting conditions can strongly vary, going from direct sunlight to dark areas in tunnels. However, common visualization devices
can only handle a low dynamic range, and thus a dynamic range reduction is needed. Many algorithms have been proposed in the
literature to reduce the dynamic range of still pictures. Anyway, extending the available methods to video is not straightforward,
due to the peculiar nature of video data. We propose an algorithm for both reducing the dynamic range of video sequences and
enhancing its appearance, thus improving visual quality and reducing temporal artifacts. We also provide an optimized version
of our algorithm for a viable hardware implementation on an FPGA. The feasibility of this implementation is demonstrated by
means of a case study.
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1. INTRODUCTION

The human visual system (HVS) can handle dynamic ranges
that are several orders of magnitude larger than those of con-
ventional acquisition and visualization devices. In order to
fill the gap between the direct observation of a scene and
its digital representation, high dynamic range (HDR) sen-
sors have recently been devised, mainly based on CMOS sen-
sors with logarithmic [1] or piecewise-linear response [2].
Moreover, some authors have recently tried to extend the dy-
namic range of current visualization devices [3–5]. However,
the problem is far from being well investigated. As a conse-
quence, the dynamic range of HDR images must be reduced
to fit the one of the visualization device at hand.

Unfortunately, a simple mapping from the original sig-
nal range to the display range generally provides somehow
poorly contrasted “flat” images, while an overstretching of
the range inevitably leads to signal saturation. Hence, we
need more sophisticated algorithms that can preserve local
contrast, while reducing the dynamic range of the scene. If
this is not trivial for still images, handling HDR video se-
quences is even more challenging, due to the temporal na-
ture of the data. In particular, real-time video processing has
applications in many different fields, such as video surveil-
lance, traffic monitoring, and driving assistance systems. In

all these applications the sensor operates in challenging out-
door environments. Lighting conditions can change signif-
icantly because of weather, presence of light sources in the
scene, and so on. In this paper, we will focus on a driving
assistance scenario.

Algorithms devised to reduce the dynamic range of still
pictures cannot be simply extended to video. Moreover, in
driving assistance applications, video processing is usually
performed on low-cost hardware; these devices are often em-
bedded in the camera box itself (e.g., smart cameras). In this
paper, we propose an algorithm which reduces the dynamic
range of video sequences to fit the one of the display [6]. In
order to cover the applications mentioned above, we propose
some simplifications and optimizations of our algorithm that
make it suitable for the implementation on low-cost hard-
ware. A case study is also presented.

2. RELATED WORK

The problem of reducing the dynamic range of still pictures
has drawn the attention of many authors. Since the Retinex
model [7] was proposed, a number of different methods
have been devised [8–16]. All these methods are tailored to
still pictures. Video sequences coming from driving assis-
tance applications present further problems to be addressed.



2 EURASIP Journal on Advances in Signal Processing

Namely, abrupt changes in the global illumination of the
scene may occur between frames, and the processing has to
be accomplished in real time.

Actually, a straightforward extension of the previous ap-
proaches to video sequences is to reduce the dynamic range
of the scene frame by frame: this is the case of Hines et
al. [17], Monobe et al. [18], Artusi et al. [19]. In particular,
the first one proposes a DSP implementation of the single
scale Retinex algorithm which is suitable for real-time appli-
cations. However, there are some parameters to be tuned by
hand in order to control the output visual appearance and
it is likely that in the presence of large illumination varia-
tions in the video sequence, the same parameter values are
not suitable for all the frames.

Hence, an automatic temporal adaptation should be bet-
ter introduced. Pattanaik et al. in [20], as well as in other
works related to visualization for computer graphics appli-
cations [21–24], a time-varying parameter is exploited, mim-
icking the HVS temporal adaptation to illumination changes.
When we go from a bright place to a dark one, it takes a few
minutes to adapt to the new luminosity. The same happens
when going from a dark place to a bright one, though in this
case the adaptation is faster and lasts few seconds. However,
this is exactly the opposite of what we want to obtain. In-
deed, when a car enters a tunnel, the processing should make
the driver see very well from the first instant, rather than
smoothly and slowly adapt to the new illumination.

Another solution is to filter the frames in the time do-
main, averaging the current frame with the previous ones if
certain conditions occur. Wang et al. [25] recognize the im-
portance of performing temporal filtering to avoid flash and
flickering effects as well as color shifts. Bennett and McMil-
lan [26] also use a temporal filtering to enhance dark videos,
extending the bilateral filtering of Durand and Dorsey [9] in
the temporal direction. In both approaches, motion detec-
tion precedes the temporal filtering, in order to avoid mo-
tion blurring. However, both algorithms require a high com-
putational time and are not suitable for implementation on
low-cost hardware for real-time applications.

Focusing on the application, as far as we know, there is
few literature about video enhancement for driving assis-
tance. Andrade et al. [27] develop an algorithm for night
driving assistance, but they tackle the problem of reducing
the effect of glares (e.g., caused by the lights of an incom-
ing car) rather than the general enhancement of the original
video.

We propose an algorithm for dynamic range reduction
which accounts for global illumination changes and pre-
serves the temporal consistency, similar to the works of Wang
et al. and Bennett and McMillan. In addition to this, we pro-
pose a fast and low-cost implementation for real-time driv-
ing assistance applications. Like in the two approaches men-
tioned above, motion blurring should be prevented. How-
ever, motion estimation would require excessive computa-
tional time and resources. Thus, we model motion as a local
illumination change, and we temporarily smooth out only
the global illumination changes. Moreover, in the hardware
implementation, with the aim of using less memory and of

speeding up the computation, we use a subsampled version
of the frame, following the idea of Artusi et al. [19] and Du-
rand and Dorsey [9].

3. THE ALGORITHM

In this section, we introduce the algorithm we designed for
the control of HDR video sequences. Moreover, we discuss
the tuning of its parameters. We show that once the camera
is chosen, the parameters can be set according to its charac-
teristics and do not need to be tuned by the user during the
processing.

3.1. Algorithm description

Similar to many other dynamic range reduction techniques,
our algorithm is based on the Retinex theory [7]. The theory
states that an input image I(x, y) can be considered as the re-
sult of the point-by-point product of the illumination L(x, y)
of the scene and the reflectance R(x, y) of the objects:

I(x, y) = L(x, y)R(x, y). (1)

In Retinex-like approaches, the L(x, y) and R(x, y) compo-
nents are estimated from the available I(x, y) data. Then, they
are suitably modified (in the HDR case, the dynamic range of
the illumination component is usually reduced, while the re-
flectance is enhanced). Finally, the components are reassem-
bled to yield the output image I′(x, y). Equation (1) is in-
tended for a linear input. However, some sensors (mainly
with CMOS technology) have a logarithmic output [28], that
is, the output signal is proportional to the logarithm of the
incident light. Hence, they can provide an extremely high dy-
namic range. Since in our application these sensors are used,
the hypotheses of (1) are replaced by

log I(x, y) = log L(x, y) + log R(x, y). (2)

When dealing with video sequences, several further issues
arise. In particular, we have to take into account large varia-
tions in the global illumination of the scene between consec-
utive frames. In order to obtain a more uniform appearance
of the sequence, we extract the global illumination from the
scene and smooth out its abrupt temporal variations.

A block scheme of our complete algorithm is shown in
Figure 1. We estimate the illumination component L(x, y) =

̂log L(x, y) using an edge-preserving lowpass filter. The re-
flectance R(x, y) is obtained by difference between the in-
put I(x, y) = log I(x, y) and the illumination R(x, y) =

I(x, y) − L(x, y). The illumination component for the tth
frame L(x, y) is separated into local (LL(x, y)) and global
(LG(x, y)) illuminations. LL(x, y) is intended to contain the
local illumination variations in the scene (due to objects in
motion, e.g., the lights of a car traveling in the opposite di-
rection). LG(x, y) should represent the global sensation of il-
lumination, that is, the “measure” that human beings use to
judge if a picture is lighter or darker than another one.
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In more detail, with this objective in mind we first com-
pute L(x, y) as Marsi et al. in [11] using a recursive rational
filter:

L(x, y) =
1

Sv(x, y) + Sh(x, y) + 1

·

{
κ
[
L(x, y − 1)Sv + L(x − 1, y)Sh

]

+
[(
Sv(x, y) + Sh(x, y)

)
(1− κ) + 1

]

· I(x, y)
}

,

(3)

where I(x, y) is the value of the pixel in position (x, y) in
the input image I , κ is the recursion coefficient. Sh and Sv
are the edge sensors in the horizontal and vertical directions,
respectively,

Sh(x, y) = Ts

/[(
log

δ1 + I(x − 1, y)

δ1 + I(x + 1, y)

)2

+ δ2

]
,

Sv(x, y) = Ts

/[(
log

δ1 + I(x, y − 1)

δ1 + I(x, y + 1)

)2

+ δ2

]
,

(4)

where δ1, δ2 are two small constants that prevent illegal op-
erations, and Ts is a coefficient used to trigger the sensor re-
sponse. The edge-preserving feature of the filter is important
to avoid halo artifacts, as already noticed [9, 10].

Then, we extract the global illumination LG(x, y) apply-
ing a linear narrowband lowpass filter to L(x, y). The local il-
lumination is computed as LL(x, y) = L(x, y)− LG(x, y). We
use only the global illumination channel LG(x, y) for tempo-
ral filtering.

The amount of temporal smoothing is controlled by a pa-
rameter α, in the range [0,αmax]. It determines the influence
of the previous frames on the current one:

L̃G(t) =
(
1− α(t)

)
· LG(t) + α(t) · LG(t − 1), (5)

where α(t) denotes α at the tth frame. Here, LG(t) and
LG(t−1) are the global illuminations of the current and of the
previous frames, respectively. Although they are functions of
(x, y) and not only of (t), we omit it in the notation of (5)
for the sake of simplicity. At the beginning of the sequence,
we set α(0) = 0. When a sharp variation occurs, α(t) is set to
a high value. Conversely, if there is small variation between
LG(t) and LG(t − 1), α(t) becomes smaller and smaller. We
use the following formula:

α(t) =

⎧⎪⎪⎨
⎪⎪⎩

αmax if
(
µ(t)− µ(t − 1)

)2
> τ,

α(t − 1)

ρ
otherwise,

(6)

where µ(t) and µ(t − 1) are the mean gray values of the cur-
rent and previous frames, respectively. The effects of the dif-
ference between neighboring frames can be tuned by means
of the threshold τ. The parameter ρ > 1 is related to the speed
of adaptation to the current illumination.

The corrected global illumination, L̃G in (5), is added
back to the local illumination LL. The resulting illumination
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Figure 1: Block diagram of the proposed algorithm.

channel LGL (the sum of the global and local illuminations,
as shown in Figure 1) is remapped by:

L̃(x, y) =
LGL(x, y)− µ

σ
· r + m, (7)

where µ and σ are the mean and standard deviation of the
pixel distribution in LGL. The parameters r and m are de-
termined experimentally to fit the display range and mean

values. Finally, the corrected illumination L̃(x, y) and re-
flectance channels are recombined as

Ĩ(x, y) = L̃(x, y) + γR(x, y), (8)

where γ is a constant which provides an enhancement of the
details.

3.2. Color processing

The algorithms till now proposed in this paper are used to
process gray-level images; however it is possible to extend
them to color images too. It is well known that a color im-
age needs at least 3 values to univocally define every pixel,
and several color spaces have been proposed in the literature
(RGB, YCbCr, HSV, YUV, Lab, etc.) for this purpose. Each of
these color spaces presents different characteristics and pe-
culiarities and it is far from being trivial to select the most
suitable one for our purposes. Actually, it is not even obvi-
ous which kind of processing is required in the case of color
images. Without claiming to have an answer to this point, we
address some issues and hypotheses, trying to suggest some
solutions.

The main difficulty is that like with many other enhance-
ment algorithms, the final goal cannot be formally defined.
Actually, even in monochromatic images, the final target is
not objectively defined; in such a case, however, usually it has
been assumed that the aim is to improve the subjective qual-
ity, that is, the ability to distinguish the image details without
altering any other possible information. Extending this ap-
proach to color images, we can assume that a constraint is
to avoid any alteration in the color domain; for instance, in
the case of the RGB space, the constancy of the proportion
between the three channels should be guaranteed. Moreover,
it is mandatory that none of the processed signals exceeds
its regular range, to avoid generating a saturation, and con-
sequently a partial information leakage. Furthermore, a less
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important constraint could be to limit the computational ef-
fort avoiding to replicate the same processing on each color
component, rather processing just a single channel.

Within the mentioned constraints, the solution we pro-
pose as an extension of the previous algorithms to color im-
ages is quite simple, but effective. Assuming to work in the
well-known RGB space, we first define a monochromatic
channel Vi:

Vi = max
(
Ri,Gi,Bi

)
, (9)

where Ri, Gi, Bi are the three input RGB components, respec-
tively. The algorithms proposed in the previous section are
applied to Vi, obtaining as a result the output Vo. To con-
vert this information back into the RGB space, we apply the
following equations:

Ro = Vo
Ri

Vi
, Go = Vo

Gi

Vi
, Bo = Vo

Bi

Vi
, (10)

where Ro,Go,Bo are, respectively, the three output values in
the RGB color space.

In such a way, all the three assumptions adopted before
are guaranteed. However, there could be some drawbacks.
For example, if the input image is not well white-balanced, as
it often happens especially in dark images, the proposed solu-
tion emphasizes the dominant color with a consequently loss
of pleasantness in the final image. A solution to such a prob-
lem has been addressed by Fattal et al. [10]: in their paper,
they propose a similar approach, but the equations which
map the output signal to the RGB space are a generalization
of (10), that is,

Ro = Vo

(
Ri

Vi

)s
, Go = Vo

(
Gi

Vi

)s
, Bo = Vo

(
Bi

Vi

)s
,

(11)

where s is a suitable value in the range [0, 1] (they propose
0.5). This solution is useful to desaturate the dominant color,
but may alter the original hues; indeed, when Vi coincides
with Vo, the RGB output components differ from the input
ones. A most straightforward solution, useful to compensate
a badly white-balanced image, is to apply the algorithm sep-
arately to each RGB channel. In such a case the output image
appears quite natural and pleasant, but in fact the original
color has been modified, and consequently a part of the orig-
inal information is altered.

A different solution, very simple to implement, comes
when the input video is coded through its luminance and
crominance components. In such a case, the emphasis could
be applied only to the luminance signal while the crominance
could be maintained inhaltered. Even if this solution is very
straightforward, it presents many negative aspects: the hue of
the original colors is altered, and in particular under certain
conditions, a saturation of the primary RGB component can
occur. Moreover, in the case the original image is dark and
the crominance signal is weak, the processed image will also
be poor in chrominance and will appear grayish and unpleas-
ant.

3.3. Algorithm parameters

With reference to the different blocks in Figure 1, the param-
eters involved in the algorithm are the following.

(i) κ, Ts are coefficients for the illumination estimation
[11] in blocks “nonlinear lowpass;” the first parameter,
which has values in [0, 1], defines the amount of recur-
sion of the filter: the lowpass effect is strong when κ is
close to 1. The second one is a threshold for the edge
sensors, which is responsible for the edge-preserving
feature of the filter. Our experiments showed that κ
and Ts depend only on the resolution of the acquired
video: a small frame size will usually present sharp
edges, and on the other hand will not require a strong
lowpass effect, thus the smaller the frame size is the
higher the Ts constant and the farther from 1 is κ.

(ii) αmax is parameter for the temporal filter in block “tem-
poral lowpass;” this is usually set to a value close to
1, in order to have a strong influence of the previous
frames in case a change in the global illumination is
detected.

(iii) τ is threshold for α in block “temporal lowpass”: it de-
termines the amount of change in illumination which
activates the temporal filtering.

(iv) ρ is in block “temporal lowpass;” this parameter de-
termines how fast the temporal filtering ends its effect
after a global illumination change is detected; it can be
set by taking into account the camera frame rate.

(v) r, m are in block “normalize;” they are related to the
display; in practice, good results are obtained with
most displays by setting m to the mean luminance
value and r to half the range of the display.

(vi) γ is multiplicative coefficient for detail enhancement
in block “gamma;” it has integer values in [1, 10], it
can be set according to the camera characteristics; it is
set to 1 in case of strongly noisy camera, in order to
avoid enhancing the noise contained in the reflectance
component; otherwise it can be set to higher values.

4. HARDWARE IMPLEMENTATION

We chose to tailor our implementation to FPGAs since they
allow a flexibility close to that of DSPs, while guaranteeing
adequate performances compared to ASICs. In this section,
we present a number of simplifications to our algorithm that
make it more suitable for the implementation on an FPGA.

As a first simplification, the background illumination is
decimated before temporal filtering. We observed indeed that
full resolution is not needed, since the background illumina-
tion contains only the lowest frequencies of the input frame.
By working at low resolution, we can store the background
illumination channel in its downsampled version. This turns
out to be a significant memory saving. After temporal filter-
ing, the signal is interpolated.

The algorithm for estimating the illumination of the
scene that was presented in Section 3 is rather burdensome
to be implemented on the FPGA. In real-time video applica-
tions, where the quality of the image sequence is usually low,
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the horizontal and vertical edge sensors can be replaced by
two binary operators with the following expressions:

Sh(x, y) −→

⎧⎨
⎩
∞ if

∣∣I(x − 1, y)− I(x + 1, y)
∣∣ < ε,

0 otherwise,

Sv(x, y) −→

⎧⎨
⎩
∞ if

∣∣I(x, y − 1)− I(x, y + 1)
∣∣ < ε,

0 otherwise,

(12)

where ε is a threshold parameter, to be set according to the
environment where the CMOS sensor camera will operate.
According to the resulting binary values of Sh and Sv, we per-
form different operations to estimate the illumination:

(i) vertical smoothing (Hv) if

Sv(x, y) −→ ∞∧ Sh(x, y) −→ 0; (13)

(ii) horizontal smoothing (Hh) if

Sh(x, y) −→ ∞∧ Sv(x, y) −→ 0; (14)

(iii) plus-shaped smoothing (Hp) if

Sh(x, y) −→ ∞∧ Sv(x, y) −→ ∞; (15)

(iv) no operation otherwise.

The illumination for the tth frame is estimated as

L(x, y) = I(x, y)⊗H(x, y), (16)

where H(x, y) is chosen among Hh, Hv, and Hp according to
the values of Sv(x, y) and Sh(x, y), and ⊗ denotes convolu-
tion. The mask sizes of the filters Hh, Hv, and Hp are 1×N1,
N1 × 1, and N1 ×N1, respectively.

The global illumination LG is estimated from the illumi-
nation component L using a lowpass filter with mask size N .

Prior to the temporal smoothing, the new frame is dec-
imated in the horizontal and vertical directions by a factor
s. Hence, the resized frame is s × s times smaller than the
full-resolution frame. The downsampling factor s is selected
with respect to the frame size of the camera. After temporal
smoothing, the output frame is interpolated back using two
linear interpolators, one for each direction. The mask size of
the two linear interpolators is s.

5. SIMULATION RESULTS

We tested both our full algorithm and the simulation of
its hardware implementation. Sequence 1 was acquired by
means of a sensor belonging to the Pupilla family [1], while
Sequence 2 by means of an Ethercam [29] with a different
sensor [2]. The cameras are mounted on the rear mirror
of a car. The frame sizes are 125 × 86 for Sequence 1 and
160×120 for Sequence 2, and the frame rate is 24 frame/s for
both sequences. The input dynamic range of the cameras is
10 bits/pixel. The output dynamic range we want to obtain is
8 bits/pixel.

The sequences present some critical scenes, such as back-
lights and direct sunlight on the camera lens. Moreover, the
sunlight is periodically obscured by trees on one side of the
road. This leads to annoying flashing effects due to sudden
illumination variations. Both the mean luminance and the
mean contrast change abruptly.

Figure 2 shows three consecutive frames of one sequence,
where the flashing effect is visible: notice the abrupt illumi-
nation change in the second frame where a tree blocks direct
sunlight on the sensor. The columns show, respectively, lin-
ear remapping, the result of the frame-by-frame multiscale
Retinex [30], and the result of our algorithm. Clearly, the in-
put sequence has low contrast and presents flashes. Our algo-
rithm remarkably reduces this effect. Illumination variations
are smoother but the local contrast is still well exploited.
The multiscale Retinex produces good results in the central
frame, but too bright images in the first and last frames. This
is due to the frame-by-frame processing, according to which
the same algorithm parameters need to be used for all the
frames, as noticed in Section 2.

Experiments have also been carried out for the simula-
tion of the hardware implementation described in Section 4.
Figure 3 shows a comparison between the histogram equal-
ization and the hardware implementation of our algorithm.
The quality of the latter is still better than the quality of
the histogram equalization. In the hardware implementa-
tion, in order to limit the circuit complexity, we have been
forced to use filters with a smaller impulse response and a
larger bandpass with respect to the software version. The
consequence is that the improved details in the hardware
version are more concentrated in the high-frequency re-
gion. Actually, the visual quality of the processed scene is
the most important result, especially in the time domain.
Since this aspect cannot of course be appreciated in this pa-
per, the sequences are available for download at the address
http://www.units.it/videolab.

Figure 4 shows the results for color sequences. As noticed
in Section 3.2, the processing on the RGB color space pro-
vides better results than the processing in the YCbCr space,
due to the fact that the considered frame is dark and the
chrominance values are low.

Table 1 shows the parameters we used in the experiments.
The same parameter values are used for both Sequence 1 and
Sequence 2; this fact proves that the proposed method is ro-
bust.

5.1. Hardware resources estimation

As a case study, we evaluate the feasibility of the implemen-
tation of the proposed algorithm on a commercial FPGA, the
characteristics of which are reported in Table 2. Some imple-
mentation choices are strictly related to the specific FPGA
employed. In case another model is used, the implementa-
tion can be further improved to fit the features of the used
FPGA.

In the following, the resources needed for the implemen-
tation are discussed in some more detail.

http://www.units.it/videolab
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Table 1: Parameters for the case study implementation, assuming
that the input image range is between 0 and 1.

κ 0.7

Ts 2 · 10−4

ε 0.12

s 4

N 5

N1 3

r 0.21

m 0.5

αmax 0.95

τ 0.4

ρ 1.1

γ 6

Figure 2: Three consecutive frames from Sequence 1: the high dy-
namic range camera is mounted on the rear mirror of a car. A
part of the car can be recognized on the left. In the center, there
is the road. On the upper right part, the trees at the road border
can be recognized, with the sunlight passing through the trees. The
scene presents difficulties related to the low quality, low resolution,
and residual fixed pattern noise of the sensor (after the on-chip
calibration). The left column shows a linear remapping of the in-
put. The central column shows the results of the multiscale retinex
[30] (obtained using the software PhotoFlair in the “High Contrast
Mode”). The right column shows the result of the proposed algo-
rithm. Note that the dark flashes (sequences of dark, bright, dark
frames) present in the original sequence are removed by our algo-
rithm.

The edge-preserving smoothing for the estimation of the
illumination L is performed by a pair of 3-tap filters, one for
each direction. A filter is activated when the corresponding
edge sensor is inactive (i.e., no edge is detected). This block is
implemented using 2 MAC 3 tap FIR filters. Two frame lines
are stored in the block RAM (BRAM) memory.

The lowpass filter for LG calculation is a 5×5 filter, imple-
mented by means of 5 MAC 5-tap FIR filters. These filtering
structures can perform 5 operations (sums and multiplica-

Figure 3: Single frame from Sequence 2: input frame (upper left),
histogram equalization (upper right), our algorithm (bottom left),
simulation of the hardware implementation of our algorithm (bot-
tom right). Notice that our algorithm yields a better visual quality
than a simple global operator as histogram equalization. In partic-
ular, the details are better rendered, and this is true even with the
simplified version for the hardware implementation.

Figure 4: Single frame from Sequence 2, color results: input frame
(upper left), histogram equalization (upper right), our algorithm in
RGB (bottom left), our algorithm in YCbCr (bottom right).

tions) per clock cycle. This is obtained thanks to an FPGA
DCM that increases the filter inner clock frequency with re-
spect to the external frequency. MAC n-tap FIR can be re-
alized either using block RAMs (BRAMs) or the distributed
RAM in the CLBs; we choose the latter solution. The 5 FIR
filters require to store four frame lines into the BRAMs.

The previous frame must be stored for temporal filter-
ing. It is downsampled to 1/4 in both directions (1/16 mem-
ory) and stored in a BRAM memory. We do not account for
the downsampling block since its requirements are negligi-
ble. The interpolation block performs a weighted sum of four
input pixels in the downsampled frame. The weights depend
on the position of the pixel in the upsampled frame. This
block is thus implemented by means of six multiplier blocks
and some additional LUTs.
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Table 2: Features of the commercial FPGA used.

System gates 1 M

Logic cells 17 280

CLBs 1 920

Distributed RAM (bits) 120 K

Block RAM (bits) 432 K

Dedicated multipliers 24

DCMs 4

Maximum user I/O 391

Table 3: Total resources needed by the proposed algorithm and re-
sources available on the selected hardware.

Resources Slice FF BRAM Multipliers

Total 890 1362 20 16

Available 7680 7680 24 24

The normalization block requires the evaluation of some
global frame parameters, such as the mean and luminance
values of the illumination channel. This requires the cur-
rent (full-sized) frame to be stored in the BRAM memory.
The emphasizing of the details is a simple multiplication by a
constant. It is implemented using a single multiplier. Finally,
adder blocks are required to recombine signals.

Table 3 shows a comparison between the overall required
resources and the available resources on the FPGA. We em-
ploy less than 50% of the available flip flops and slices, and
less than 85% BRAMs and multipliers.

Our input stream has a frame rate of 24 frame/s, and
the frame is 125 × 86 pixels wide. The resulting pixel rate
is then 258 K pixels/s. Taking into account that some filters,
such as the MAC FIRs 5-taps, require 5 clock ticks to process
a pixel, the minimum required clock frequency is 1, 3 MHz.
The entire system has been developed using a pipeline ar-
chitecture with a clock frequency synchronized on the input
pixel rate. The bottleneck of the system is in the FIR filters
implemented using the MAC 5-tap structure. The maximum
clock frequency of these filters has been tested to be approxi-
mately 213 MHz in a Xilinx xc2v250-6 part [31].

In the case the frame size of the sequence to be acquired
and processed in real time is larger, the most critical resource
to take into account for the implementation of the algorithm
is the BRAM memory, which is mostly needed by the tempo-
ral filtering and the normalization blocks. A different FPGA
should thus be selected, either belonging to the same low-end
family, or to a high-end family. A QCIF format sequence can
be processed in real time using a higher-performance FPGA
model belonging to the same commercial low-cost low-end
FPGA family as the one considered here. If the most power-
ful FPGA belonging to the same low-cost low-end family is
used, a sequence with frame size up to a quarter PAL can be
processed in real time by our algorithm.

6. CONCLUSIONS

We have presented an algorithm to reduce the dynamic range
of HDR video sequences while preserving local contrast. The
global illumination of the previous frames is taken into ac-
count. Experimental data show that our algorithm behaves
well even in extreme lighting variations.

A possible hardware implementation has also been pro-
posed. We studied the feasibility of an implementation on
a low-cost FPGA architecture. The implementation on an
FPGA allows to perform the compression of dynamic range
on an integrated system that is embedded in the video cam-
era box and has low power consumption. Our study shows
that the resources needed by our system do not exceed the
capabilities of the hardware.
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