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Summary

The purpose of video enhancement is to improve the subjective picture quality.

The field of video enhancement includes a broad category of research topics, such

as removing noise in the video, highlighting some specified features and improv-

ing the appearance or visibility of the video content. The common difficulty in

this field is how to make images or videos more beautiful, or subjectively better.

Traditional approaches involve lots of iterations between subjective assessment

experiments and redesigns of algorithm improvements, which are very time con-

suming. Researchers have attempted to design a video quality metric to replace

the subjective assessment, but so far it is not successful.

As a way to avoid heuristics in the enhancement algorithm design, least mean

square methods have received considerable attention. They can optimize filter co-

efficients automatically by minimizing the difference between processed videos

and desired versions through a training. However, these methods are only optimal

on average but not locally. To solve the problem, one can apply the least mean

square optimization for individual categories that are classified by local image

content. The most interesting example is Kondo’s concept of local content adap-

tivity for image interpolation, which we found could be generalized into an ideal

framework for content adaptive video processing. We identify two parts in the

concept, content classification and adaptive processing. By exploring new classi-

fiers for the content classification and new models for the adaptive processing, we

have generalized a framework for more enhancement applications.

For the part of content classification, new classifiers have been proposed to

classify different image degradations such as coding artifacts and focal blur. For

the coding artifact, a novel classifier has been proposed based on the combination

of local structure and contrast, which does not require coding block grid detection.

For the focal blur, we have proposed a novel local blur estimation method based on

edges, which does not require edge orientation detection and shows more robust

blur estimation. With these classifiers, the proposed framework has been extended

to coding artifact robust enhancement and blur dependant enhancement. With

the content adaptivity to more image features, the number of content classes can

increase significantly. We show that it is possible to reduce the number of classes

v



vi SUMMARY

without sacrificing much performance.

For the part of model selection, we have introduced several nonlinear filters to

the proposed framework. We have also proposed a new type of nonlinear filter,

trained bilateral filter, which combines both advantages of the original bilateral

filter and the least mean square optimization. With these nonlinear filters, the

proposed framework show better performance than with linear filters. Further-

more, we have shown a proof-of-concept for a trained approach to obtain contrast

enhancement by a supervised learning. The transfer curves are optimized based

on the classification of global or local image content. It showed that it is possi-

ble to obtain the desired effect by learning from other computationally expensive

enhancement algorithms or expert-tuned examples through the trained approach.

Looking back, the thesis reveals a single versatile framework for video en-

hancement applications. It widens the application scope by including new content

classifiers and new processing models and offers scalabilities with solutions to

reduce the number of classes, which can greatly accelerate the algorithm design.
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Chapter 1

Introduction

Video is one of the great inventions of the 20th century. With its rapid growth,

it has changed people’s life in many ways and after decades of development still

keeps bringing new visual experiences. Analog video was first developed for cath-

ode ray tube television systems [1], which has been used for half a century. The

evolution to digital video brings rapid advances in video technology, along which

several new technologies for video display devices such as liquid crystal display

(LCD) [10] and plasma display panel (PDP) [3] have been developed. Standards

for television sets and computer monitors have tended to evolve independently,

but advances in digital television broadcasting and recording have produced some

convergence [7]. Powered by the increased processor speed, storage capacity, and

broadband Internet access, computers can show television programs, video clips

and streaming media.

In the past televisions used to be the main video platform. The relentless

progression of Moore’s Law [23] coupled with the establishment of international

standards [62] for digital multimedia has created more diverse platforms. General-

purpose computing hardware can now be used to capture, store, edit, and transmit

television and movie content, as opposed to older dedicated analog technologies.

Portable digital camcorders and camera-equipped mobile phones allow easy cap-

turing, storing, and sharing of valuable memories through digital video. Set-top

boxes are used to stream and record live digital television signals over broadband

cable networks. Smart camera systems provide a peaceful security through in-

telligent surveillance. The ubiquitous dissemination of digital information in our

everyday lives provides new platforms for digital video and generates new chal-

lenges for video processing research.

Traditional video enhancement techniques focused on topics such as noise

reduction, sharpness and contrast enhancement in processing the analog video

signal. Since the advent of digital video and the emergence of more diverse plat-

forms, the traditional techniques have exposed their limitations. The rapid devel-

1



2 CHAPTER 1. INTRODUCTION

opment of video technology poses new challenges and asks for new solutions for

the increasing video enhancement applications.

In the following, we shall first briefly introduce recent developments in video

technology and review some trends in developments of video enhancement tech-

niques. Then we will discuss our research objective and opportunities.

1.1 Developments in video technology

The development of video processing techniques is closely coupled to the video

technology. With the advent of digital technology, the video signal can be digital-

ized into pixels and stored in a memory, which allows easy and flexible fetch and

operation on the pixels to achieve more advanced video processing. The digital

video signal contains more dimensions of data than other types of signal such as

audio. To enable real-time processing, it requires much more processing power

to cope with the ever increasing demand for better picture quality, such as higher

resolution and frame rate. Therefore, the evolution of video processing system

has been dependant on the progress of semiconductor technology and supporting

techniques such as displays.

1.1.1 Transition from analog to digital

Until recent decades, video has been acquired, transmitted, and stored in analog

form. The analog video signal is a one-dimensional electrical signal of time. It

is obtained by a scanning process which includes sampling the video intensity

pattern in the vertical and temporal coordinates [6]. Digital video is obtained by

sampling and quantizing the continuous analog video signal into a discrete signal.

For the past two decades, the world has been experiencing a digital revolution.

Most industries have witnessed a change from analog to digital technology, and

video was no exception.

Compared to analog video, digital video has many advantages. The digital

video signal is more robust to noise and is easier to use for encryption, editing

and conversion [6]. The digital video frames are stored in a memory, which pro-

vides access to neighboring pixels or frames. For video system design, it also

allows first time right design of complex processing. The video processing algo-

rithms can be mapped to a programmable platform and the design time is greatly

reduced. These advantages allow a number of new services and applications to be

introduced. For example, the TV broadcasting industry has introduced new ser-

vices like interactivity, search and retrieval, video-on-demand, and high definition

television (HDTV) [7]. The telecommunication industry has provided video con-

ferencing and videophones over a wide range of wired and wireless networks [8].
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The consumer electronics industry has seen great convenience of easy capturing

and sharing of high quality digital video through the fast development of portable

digital cameras and camcorders [9].

Although digital video has many advantages, it also shows some problems.

Since digital video requires large amounts of bandwidth and storage space, high

compression is essential in order to store and transmit it. However, high compres-

sion will cause annoying coding artifacts, which brings new challenges to design

good coding artifact reduction algorithms.

1.1.2 Developments in display technology

The cathode ray tube (CRT) has been widely used in televisions for a half century

since the invention of television [2]. As a mature technology, the CRT has many

advantages, like wide viewing angle, fast response, good color saturation, long

lifetime and good image quality [1]. However, a major disadvantage is its bulky

volume.

(A) TV in 1940 (B) TV in 2009

Figure 1.1: The cathode ray tube television in 1940 (A) and the flat panel display television in

2009 (B).

Flat panel displays with a slim profile like liquid crystal display (LCD) and

plasma display panel (PDP) are developed to solve the problem [14][4]. Besides

the slim profile, the flat panel display has many other advantages over the CRT,

such as higher resolution and no geometrical distortion. The rapid development

of flat panel displays [15] has made larger panels with a more affordable price.

Nowadays these display technologies have already replaced the CRT in the tele-

vision market. Nevertheless, these flat panel display technologies are not perfect.
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For example, PDP tends to have false contours [17] and the sample-and-hold effect

of LCD causes motion blur [18]. The imperfections of these display technologies

have led to the development of flat panel display signal processing [19]. Next

generations of flat panel display technologies like Organic light-emitting diode

(OLED) [20] and not-yet released technologies like Surface-conduction Electron-

emitter Display (SED) or Field Emission Display (FED) [21] are predicted to

replace the first generation of flat display technologies.

Compared to conventional ways of receiving information, such as books and

newspapers, electronic displays such as televisions and monitors have a constraint

that they typically have to be fabricated on glass substrates. Flexible flat panel

displays [22] that can be rolled as papers as shown in Fig. 1.2 are emerging.

Flexible displays are thin, robust and lightweight and indicate the future direction

of the display technology.

Figure 1.2: Philips flexible display.

As these flat panel displays show a nearly perfect and sharp picture, any im-

perfections in the video, such as coding artifacts, may become more visible. This

urges the needs for developing high quality video enhancement algorithms.

1.1.3 Developments in processing platforms

Moore’s law [23] predicts that the number of transistors that can be placed inex-

pensively on an integrated circuit will increase exponentially, doubling approxi-

mately every two years as shown in Fig. 1.3. The vigorous development in video



1.1. DEVELOPMENTS IN VIDEO TECHNOLOGY 5

Figure 1.3: Transistor count in processors 1997-2008 and Moore’s law. Source [24].

technology was enabled by the rapid technological progress reflected by Moore’s

law. With the restless pursuit of faster processing speed, higher resolution and

frame rate, and higher memory capacity, the demand for processing power is in-

creasing exponentially every year. The advances in semiconductor technology

predicted by Moore’s law has successfully met the increasing demand for com-

puting power.

Application-specific integrated circuit (ASICs) is the first hardware platform

for video processing. It is designed for a specific purpose and the design can

more be easily optimized so that it usually provides better total functionality and

performance. As the applications become more complex, the ASIC design or

change takes longer time and the percentage of first time right design decreases.

This leads to a higher implementation cost. Therefore, a programmable hardware
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platform which allows late software modification starts to be used for video pro-

cessing.

One of the earliest programmable hardware platform is the computer system

used by NASA to process the video taken in the space [115]. Since then, differ-

ent programmable processing hardware platforms have been developed. Due to

the inherent parallelism in the pixel operation for common video processing ap-

plications, architecture concepts, such as single instruction multiple data (SIMD)

and very long instruction word (VLIW) [25], were built to be massively parallel

in order to cope with the vast amounts of data in the general purpose processors

(GPPs).

Although GPPs have massive general-purpose processing power, they are ex-

tremely high power-consuming large devices requiring about one hundred watts.

The need for application-specific hardware with a smaller size has led to the de-

velopment of digital signal processor (DSP) and field programmable gate array

(FPGA) in the 1990s [26]. In recent decades, further development has led to

the video processing architecture of application-specific instruction-set proces-

sors (ASIPs) which combines the advantages of ASICs and GPPs, and eventually

ASIPs have brought all the necessary computing power and flexibility for real-

time image/video processing onto a single chip.

The ASIP approach has found the right balance between efficiency and flex-

ibility and is promising for the next generation of video processing hardware ar-

chitecture. For video enhancement algorithms, it is also desirable to have a single

software architecture, which not only offers high performance as dedicated solu-

tions but also is applicable for a wide range of applications.

1.1.4 Developments in application domain

Alongside the developments in hardware architectures for image/video process-

ing, there have also been many notable developments in the application of video

processing. Recently the development of smart camera systems [33][34] have

become a hot topic of research worldwide. Relevant technologies used in the con-

sumer equipments include automatic adjust of focus [35][78] and white balance

[36]. In digital video surveillance system, there has been an increasing num-

ber of more advanced technologies, such as robust face detection and recogni-

tion [40][41][42], gesture recognition[37], human behavior analysis [39], and dis-

tributed multiple camera network [38]. In the endless pursuit for a perfect picture,

research in developing high quality algorithms for processing videos obtained by

consumer digital cameras, such as super resolution [28][29], high dynamic range

imaging [30], and texture synthesis techniques [31][32]. Such techniques have

received considerable attention and are expected to progress in the future.
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Recent years also see the convergence of multiple applications towards a sin-

gle device. In the past, consumers had many individual portable electronic de-

vices to meet their needs for entertainment, information, and communication: a

mobile phone for communication, a digital camera for pictures, an MP3 player

for listening to music, a portable game console for playing games, and a note-

book computer for email and Internet surfing. However, with the introduction of

the multi-function portable electronics such as iPhone as shown in Fig. 1.4, con-

sumers now have the option of combining these technologies into a single device.

For the emerging applications in different video platforms and the convergence

of these applications, a scalable approach with a single architecture for video en-

hancement algorithms is preferred.

Figure 1.4: The convergence of multiple applications towards a single device: iPhone example.

1.2 Content-adaptivity in video enhancement

Since the invention of video, video enhancement has been a very important part of

video technology. Video enhancement consists of a broad category of techniques

to increase the video quality, such as removing noise in the video, highlighting

some specified features and improve the appearance or visibility of the video con-

tent. Looking at the developments of these video enhancement techniques, we

see that there are trends towards more and more detailed content adaptivity, from
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non-adaptivity to adaptivity, from global to more local image properties. In this

section, we will introduce such trends in some common video enhancement appli-

cations, including noise reduction, image interpolation and contrast enhancement.

1.2.1 Content-adaptivity in noise reduction

First we see the content adaptivity trend in noise reduction, which is one of the

most common video enhancement techniques. Early methods to remove noise

generally filter the video with a low pass filter which is a smoothing operation.

Usually the smoothing operation is done by setting the output pixel to the average

value, or a weighted average of the neighboring pixels [115]. The strength of

the smoothing can be adjusted according to the average noise level in the image.

Since the smoothing operation is uniformly applied on the entire image, they have

good performance at eliminating noise at flat areas. However, they also blur the

signal edge. In order to solve the problem, algorithms such as coring [45] that

can adapt themselves to the signal amplitude have been introduced. They have

a stronger smoothing effect at flat areas and a less smoothing effect at detailed

areas to preserve signal edges. Further progress in noise reduction algorithms has

brought more adaptivity to local content such as image edge and structures [127].

Adaptive filters based on local edge or structure information can have a better

performance at reconstructing image details from noisy input. Fig. 1.5 shows

example results of different noise reduction techniques, from non-adaptivity to

adaptivity and from coarse adaptivity to detailed adaptivity. Clearly more detailed

adaptivity brings more performance improvement.

1.2.2 Content-adaptivity in image interpolation

Similar trends towards content adaptivity can be also found in the development of

image interpolation techniques. Image interpolation is concerned about displaying

an image with a higher resolution, while achieving the maximum image quality.

This has been traditionally approached by linear methods, which use the weighted

sum of neighboring pixels to estimate the interpolated pixel. Because the linear

methods use a uniform filter for the entire image without any discrimination, they

tend to produce some undesired blurring effects in the interpolated images [95].

Some content-adaptive methods have been introduced to solve the problem

[97][103][102]. One category of these content-adaptive methods can be labeled as

edge directed methods. Unlike the linear methods which use a uniform weight set-

ting, they are designed to detect the edge direction and apply more optimal weight-

ing to pixel positions along the edge direction as shown in Fig. 1.6. Therefore,

better interpolation performance is achieved at the edges. Besides edge-directed
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(A) (B)

(C) (D)

Figure 1.5: Content adaptivity in noise reduction: (A) noisy input, (B) filtered by a single filter,

(C) filtered by a coring algorithm, (D) filtered by structure adaptive filters.
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methods, some classification-based methods, which depend on more general im-

age structures than edges, have been proposed by Kondo [97] and Atkins [105].

The classification-based methods use a pre-processing step to classify the image

block into a number of classes as shown in Fig. 1.7. Then the image block can

be interpolated using a linear filter that is optimized for the class. These content-

adaptive methods prove to have better performance on specific image structures

such as edges, than standard linear methods, such as bi-linear and bi-cubic inter-

polation.

(A) Linear interpolation

(B) Edge directed interpolation

Figure 1.6: Image interpolation: the central pixel value to be interpolated is determined by the

weighted sum of the neighboring pixel values. (A) linear interpolation: uniform weight setting

regardless of image content, (B) edge directed interpolation: assigning more weight to the pixels

along the edge direction.

1.2.3 Content-adaptivity in contrast enhancement

Without exceptions, there are also trends to content-adaptivity in the development

of contrast enhancement. Contrast enhancement is usually done with a grey-level

transfer curve. The transfer curve maps a pixel value in an input image to a pixel

value in the processed image. Typically the values of the transfer curve are stored
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Figure 1.7: Image structure classification proposed by Kondo: the pixel values in a local aperture

are compared with the average pixel value within the aperture. The result is a binary code which

represents the structure pattern.

in one-dimensional array and the mappings are implemented by look-up-tables

[113]. Early grey-level transformations use some basic type of pre-defined func-

tions for image enhancement, such as linear and logarithmic functions [114]. Fig.

1.8 shows an example of contrast stretch with a piece-wise linear transfer curve.

Another example of gamma correction is shown in Fig. 1.9. These transfer curves

are fixed for the entire image regardless of the change of image content.

(A) (B) (C)

Figure 1.8: Contrast stretch by a piece-wise linear transfer curve: (A) input image, (B) contrast

stretched version, (C) the piecewise linear transfer curve.

Further development of contrast enhancement algorithms has proposed to cal-

culate a transfer curve depending on a histogram of the image content. In these

approaches, the transfer curve depends on the histogram of the entire image. One

typical example is histogram equalization, which re-maps grey scales of the im-

age such that the resultant histogram approximates that of the uniform distribution

[117]. Content adaptivity to the entire image may not be optimal since the local

image content can change from one region to another in an image. Therefore,
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(A) (B) (C)

Figure 1.9: Gamma correction: (A) input image, (B) after gamma correction, (C) the transfer

curve for gamma correction.

local content adaptive contrast enhancement algorithms [120] [118] have been

proposed to improve the local enhancement performance. These algorithms find

transfer curves for different regions based on its neighborhood content. Fig. 1.10

(B) shows the result of histogram equalization which adapts a transfer curve to its

global content. And Fig. 1.10 (C) shows an example of local contrast enhance-

ment where the local contrast has been enhanced based on the local content.

(A) (B) (C)

Figure 1.10: Adaptive contrast enhancement (A) input image, (B) result from the global adap-

tive contrast enhancement, (C) result from the local adaptive enhancement.
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1.3 Research objective and opportunities

1.3.1 Research goal

Although video enhancement usually consists of quite diverse topics, such as

sharpness, contrast, color and resolution improvement, and noise reduction, the

common ultimate goal of video enhancement is to improve the subjective pic-

ture quality [44]. How to achieve the goal is not always trivial. Traditional ap-

proaches involve lots of iterations between subjective assessment experiments and

redesigns of algorithm improvements as shown in Fig. 1.11, which are very time

consuming. For decades researchers have been trying to design a video quality

metric to replace the subjective assessment, but so far these attempts have not

been successful. The mean square error (MSE) is often used as a metric to mea-

sure the difference between image outputs and ideal versions. However, the MSE

metric only reflects the image quality on average not locally. The optimal filter

for an edge, for instance, differs from the optimal filter for a flat area as suggested

in Fig. 1.6. Therefore, processing which is optimal on average is likely to be

sub-optimal locally. To achieve locally optimal processing, it is important to in-

clude local content-adaptivity into the least mean square optimization. The most

interesting example is Kondo’s concept of local content adaptivity [97] as it offers

a nice, generally applicable framework. Kondo’s method classifies local image

content into a number of classes and in every class a dedicated LMS optimal filter

is used for adaptive filtering.

Figure 1.11: The traditional approach to design enhancement algorithms: it has to iterate be-

tween subject assessment experiments and algorithm redesigns. Attempts to design a video quality

metric to replace the time consuming subject assessment are not successful so far.

We identify two parts in this concept, content classification and processing

model selection, which could be further generalized for a broader range of video

enhancement application.

In the content classification part, previous work has been only focused on

local structure classification. Exploration of other classifiers could be beneficial
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for many applications. As the number of classes will increase exponentially with

more included classifier, it would be desirable to achieve simplication by reducing

the number of filters without serious performance loss.

In the processing model selection part, although the linear LMS filter is always

used as the processing model and usually has a satisfactory result even though it

is not designed for different types of processing, a dedicated design is expected to

yield more effect. For contrast enhancement, it is also not clear how to apply this

training approach, but would provide an interesting application.

To generalize this concept by incorporating more new classifiers and new types

of processing models is considered to be of great importance and since it is ex-

pected to lead to synthesis of designs with an improved cost-performance and

reduced design time.

In conclusion, we aim this PhD-study at proposing (synthesizing) new clas-

sifiers and new models towards a generalized content adaptive processing frame-

work for digital video enhancement, while keeping complexity at a reasonable

level.

1.3.2 Opportunities

Our research work starts with Kondo’s method [97] for image interpolation, which

has been extended later as the structure-controlled LMS filter for other resolution

enhancement application such as de-interlacing [47][48]. The steps in Kondo’s

method are described as follows. First the local content of the input video is

classified by local structure such as using adaptive dynamic range coding as shown

in Fig. 1.7, into a number of different content classes. Then in each class, a trained

linear filter is used as shown in Fig. 1.12. The output pixel yc is calculated as:

y = W T
c X (1.1)

where Wc is the coefficient vector for class c and X is the input pixel vector which

belongs to class c.

The look-up-table is obtained through an off-line training for individual classes.

In a training procedure as shown in Fig. 1.13, original high resolution images are

used as the desired reference and then are down-scaled as the simulated input.

Before training, the input and reference image data are classified using ADRC on

the input vector. The pairs that belong to one specific class are used for training,

resulting in optimal coefficients for that class. The coefficient vector Wc is opti-

mized by minimizing the mean square error between the output yc and the desired

version dc. The mean square error MSE is:

MSE = E[(yc(t) − dc(t))
2] = E[(W T

c Xc(t) − dc(t))
2]. (1.2)
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Figure 1.12: Kondo’s method for image interpolation. The input pixel vector from a local

window first is classified by the adaptive dynamic range coding. Then the LMS filter coefficients

are fetched from a look-up-table. The high resolution pixel is the output of the LMS filtering.

Taking the first derivative with respect to the weights and setting it to zero, the

coefficients W are obtained:

W T
c = E[XcX

T
c ]−1E[Xcdc]. (1.3)

Figure 1.13: Kondo’s method to obtain optimal filter coefficients: Original high resolution

images are down-scaled to generate the simulate input and reference images for the training. The

filter coefficients are optimized for individual classes and stored in the look-up-table.

If we look at the concept of Kondo, it consists of two parts, structure clas-

sification and LMS filtering, as shown in Fig. 1.14. We can further extend the

structure adaptive LMS filtering to a more general framework of content adaptive

video processing as shown in Fig. 1.15. Then the corresponding two parts become

content classification and adaptive processing. We expect plenty of opportunities

to include more ingredients into these two parts to increase the performance and

thus widen the application scope of the framework.
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Figure 1.14: Structure controlled LMS filter.

Figure 1.15: Generalized content adaptive processing.

A first opportunity is seen to include a coding artifact classifier into the con-

tent classification part. This could be designing a classifier to distinguish coding

artifacts from real image structure regardless of the compress codec. Previous

approaches tried to use local structure and block grid position information. How-

ever reliable detection may be difficult for signals compressed by methods with a

variable transform block size such as AVC/H.264 [62].

We see another opportunity to include a focal blur estimator into the classifi-

cation part. Focal blur is another type of image degradation which often occurs

in the videos. How to estimate local blur is a challenge. With accurate local blur

estimation, one can remove the blur and restore the resolution. Blur dependant

video enhancement can be also interesting.

For the adaptive processing part, the filter so far has always been linear. From

the literature it is known that nonlinear filters such as rank order filters and bi-

lateral filters may perform better in smoothing tasks where edge preservation is

important [90][57]. Also bilateral filters have the ability to locally adapt the filter-

ing to the image content [57]. It is interesting to explore if and how these nonlinear

processing modules could be used in our proposed framework, and see how they

could improve the enhancement results.

Finally, the content adaptive processing framework always applies filtering.

In applications such as contrast enhancement, transfer curves are often used in-

stead of filtering. We will also explore the opportunity to apply the framework to

contrast enhancement by using a content adaptive transfer curve in the adaptive

processing part.
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1.4 Contributions

Based on the research objective, our research has generated the following contri-

butions in the two parts of the content adaptive video processing framework.

1.4.1 Contributions to content classification

Our first contribution in this part is the introduction of a new simple and efficient

coding artifact classifier. The two orthogonal image properties, local structure and

contrast, are proposed to distinguish real image structure and coding artifacts. Fur-

thermore the distribution of the occurrence of classes can be used for the region

quality indication. Based on the classifier, we propose video enhancement algo-

rithms which integrate sharpness and resolution enhancement. This contribution

has resulted in a patent application [134] and publications in the Proceedings of

IEEE International Conference on Consumer Electronics [129] and International

Conference on Image Processing in 2007 [131].

Our second contribution in this part is that we propose a new local blur esti-

mation method that generates consistent blur estimates for objects in an image.

First, a novel local blur estimator based on edges is introduced. It uses a Gaussian

isotropic point spread function model and the maximum of difference ratio be-

tween the original image and its two digitally re-blurred versions to estimate the

local blur radius. The advantage over alternative local blur estimation methods is

that it does not require edge detection, has a lower complexity and does not de-

grade when multiple edges are close. With the blur estimates from the proposed

blur estimator and other clues from the image, like color and spatial position, the

image is segmented using clustering techniques. Then within every segment, the

blur radius of the segment is estimated to generate a blur map that is consistent

over objects. The result has led to a patent application [135] and publications in

the Proceedings of IEEE International Conference on Image Processing in 2006

[128] and International Conference on Advanced Concepts for Intelligent Vision

Systems in 2007 [132].

Our third contribution - A major problem of content adaptive filtering is that,

with the increasing number of features, it can have an impractically large number

of classes, many of which may be redundant. For hardware implementation, a

class-count reduction technique that allows a graceful degradation of the perfor-

mance would be desirable. We propose three options, which use class-occurrence

frequency, coefficient similarity and error advantage, to reduce the number of

classes. The results show that with the proposals the number of classes can be

greatly reduced without serious performance loss. This contribution has been pub-

lished at the Proceedings of IEEE International Symposium on Consumer Elec-

tronics in 2009 [133].
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1.4.2 Contributions to model selection

In the content adaptive processing applications using the proposed framework in

the previous research, the processing model part has always been a linear filter. To

further improve the performance, we extend the model to include nonlinear filters,

such as the rank order filter, the hybrid filter and the neural network. Additionally

we propose a new type of nonlinear filter, the trained bilateral filter. The trained

bilateral filter adopts a linear combination of spatially ordered and rank ordered

pixel samples. It possesses the essential characteristics of the original bilateral

filter and the ability to optimize the filter coefficients to achieve desired effects.

This contribution has resulted in a patent application [136] and publications in the

Proceedings of SPIE Applications of Neural Networks and Machine Learning in

Image Processing conference in 2005 [126], SPIE Visual Communications and

Image Processing in 2006 [127] and IEEE Conference on Image Processing in

2007 [130].

Furthermore we introduce the proposed content adaptive processing frame-

work to contrast enhancement. We propose a trained approach to obtain the opti-

mal transfer curve for contrast enhancement, which is based on a histogram clas-

sification. A training is applied to optimize the transfer curve from a version en-

hanced by computationally intensive algorithms. Furthermore, we propose a com-

bined global and local contrast enhancement approach using separately trained

transfer curves. A global transfer curve and a local one are used to transform the

local mean and the difference between the local mean and the processed pixel,

respectively. The advantage is that it can adapt to both global and local content

and offer optimized enhancement.

1.5 Thesis outline

Besides the introduction and conclusion chapters, this thesis consists of two parts

based on the content adaptive video enhancement framework, which can be identi-

fied as: video content classification and filter model selection. Fig. 1.16 illustrates

the structure of chapters in this thesis. Chapter 2, 3 and 4 show our contribution

to the part of content classification. Chapter 5 and 6 show our contribution to the

part of model selection. The content of each chapter is summarized as follows.

Chapter 2 presents a novel classifier for coding artifacts, which is based on the

combination of local structure and contrast, which does not require coding block

grid detection. The good performance of the enhancement algorithm based on

the classifier shows the effectiveness of the classifier at distinguishing the coding

artifacts. With the help of the coding artifact classification, we are able to build

up coding artifacts reduction algorithms combined with resolution up-conversion
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Figure 1.16: Thesis outline.
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and sharpness enhancement.

In Chapter 3, we first propose a novel local blur estimation method based on

edges, which does not require edge orientation detection and shows more robust

estimation than the state-of-the-art method. Then a novel object-based blur es-

timation approach is proposed to generate a more consistent blur map, which is

used to improve the performance of content adaptive enhancement applications

such as focus restoration and blur dependent coding artifact reduction.

In Chapter 4, we propose three class-count reduction techniques, class-occurrence

frequency, coefficient similarity and error advantage for the content adaptive fil-

tering framework. In the applications of coding artifact reduction and image inter-

polation, we show that these techniques can greatly reduce the number of content

classes without sacrificing much performance.

In Chapter 5, we introduce several types of nonlinear filters for the content

adaptive processing framework. Inspired by the bilateral filter and the hybrid filter,

we propose a new type of nonlinear filter, the trained bilateral filter. It utilizes

pixel similarity and spatial information, as the original bilateral filter, but it can be

optimized to acquire desired effects using the least mean square optimization.

Chapter 6 presents a proof-of-concept for the trained approach to obtain con-

trast enhancement. In this case, a transfer curve depends on the classification of

the local and global input image content. Furthermore, a hybrid enhancement

method is introduced. The input image is divided into a local mean part and a de-

tails part by using the edge-preserving filtering to prevent the halo effect. The local

mean part is transformed using a trained global curve based on the histogram clas-

sification, and the details part is transformed by a separately trained local curve

based on the local contrast classification.

Finally, Chapter 7 summarizes the thesis and points out the future directions.



Chapter 2

Content classification in compressed

videos

The goal of the thesis is to generalize the content adaptive filtering framework.

In this chapter, we shall focus on the content classification part of the proposed

framework to extend the application area to coding artifact reduction.

Coding artifacts often occur in compressed videos when a high compression

ratio is used in the compression. They not only degrade the perceptual image

quality, but also cause problems to further enhancement in the video processing

chain. For example, coding artifacts will become more visible after sharpness

enhancement. Therefore, it is essential to detect and reduce coding artifacts be-

fore enhancing the compressed video, or ideally to integrate artifact reduction and

sharpness enhancement.

Many methods have been proposed to reduce coding artifacts. However, most

of them require the compression parameter or the bit stream information to ob-

tain satisfactory results. This is not available in most applications where differ-

ent standards are used for the compression. For the content adaptive processing

framework, designing a coding artifact classifier to the content classification part

would lead to solutions for enhancing compressed video. How to design a classi-

fier which can detect coding artifacts for different applications is still a challenge.

Furthermore, the enhancement of digital video usually includes sharpness and res-

olution enhancement. How to combine them as a system solution is also unclear.

To answer these questions, in this chapter, we propose a novel coding artifact

detection method, which uses the combination of the local structure and contrast

information. Based on the detector, we shall show that coding artifacts in different

compression standards can be nicely removed by using the proposed framework.

Additionally, we propose a combined approach to integrate sharpness and resolu-

tion enhancement. They shall show superior performance in the evaluation part of

this chapter.

21
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The rest of the chapter is organized as follows. We start with a brief intro-

duction of different coding artifact reduction techniques in Section 1. Then we

propose and analyze the novel coding artifact reduction method in Section 2. In

Section 3, we propose a coding artifact reduction method using the proposed cod-

ing artifact classification in the framework and compare it with other state-of-the-

art methods for different compress standards. Furthermore, the applications to

integration of sharpness and resolution enhancement are presented respectively in

Section 4 - 5. Finally, we draw our conclusion in Section 6.

2.1 Introduction

With its rapid development, digital video has replaced analog video and has be-

come an essential part of broadcasting, communication and entertainment area in

recent years. Consumers are enjoying the convenience and high quality of digital

video. On the other hand, digital video also shows some problems. Compared to

analog signals, digital signals in general and digital videos in particular require

large amounts of bandwidth and storage space. In order to store and transmit it, a

high compression is essential. High compression ratios can be achieved by using

coarse quantization to less important transform coefficients. However, annoying

artifacts may arise as the bit rate decreases. They even become more visible when

the digital video is enhanced.

Recently many international coding standards such as MPEG 1/2/4 [62], which

all adopt the block-based motion compensated transform, have been successively

introduced to compress digital video signal for digital broadcasting, storage and

communication. One of the most noticeable artifacts generated by these standards

is the blocking artifact at block boundaries. It results from coarse quantization and

individual block transformation [54]. On the other hand, due to imperfect motion

compensated prediction and copying interpolated pixel from possibly deteriorated

reference frames, the blocking artifacts also occur within the block. Additional

other artifacts such as ringing and mosquito noise [54] appear inside the coding

block as well.

Many methods have been proposed to reduce the blocking artifacts in the lit-

erature. According to the domains in which these methods are applied, they could

be classified into the following three categories: (1) methods in the spatial domain,

(2) methods in the transform domain and (3) iterative regularization between both

domains.

The methods in the spatial domain are usually more popular as they do not

require DCT coefficients, which are usually not available after decoding. Early

approaches such as [51] show that the Gaussian low-pass filter with a high-pass

frequency emphasis gives the best performance. Reeves [52] proposed to apply
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the Gaussian filter only at the DCT block boundary. Such methods usually ex-

amine the discontinuity at the block boundary and then apply low-pass filtering

to remove possible artifacts. Block boundary position information is required for

these methods and reliable detection may be difficult for videos compressed by

compression methods with a variable transform block size such as in H.264 [62]

or in case of position dependent scaling. In order to alleviate the blocking ar-

tifacts not only at the block boundary but also those inside the block, an in-loop

filter which is inside the encoder loop has been adopted in the H.264 standard. The

in-loop filtering is applied on every single frame after it gets encoded, but before

it gets used as reference for the following frames. This helps avoiding blocking

artifacts, especially at low bit rates, but will slow down en/decoding. The sigma

filter [86] and the bilateral filter [57] [100] have also been reported to have good

results at removing coding artifacts including ringing and mosquito artifacts.

The second category includes approaches that try to solve the problem of ar-

tifact reduction in the transform domain. The JPEG standard [53] introduced a

method to reduce the block discontinuities in smooth areas of a digital coded im-

age. The DC values from current and neighboring blocks are used to interpolate

the first several AC coefficients of the current block. Minami [55] proposed a cri-

terion, the mean squared difference of slope (MSDS), to measure the impact of

blocking effects. In his method, the coefficients in the DCT transform domain are

filtered to minimize the MSDS. This approach was followed by Lakhani [56] for

reducing block artifacts. In their approaches, the MSDS is minimized globally and

four lowest DCT coefficients are predicted. The disadvantage of such methods is,

they can not reduce the blocking artifacts in the high frequency area. As another

approach in the transform domain, Nosratinia [63] proposed a JPEG de-blocking

technique by reapplication of JPEG compression. The algorithm uses JPEG to

re-compress shifted versions of a compressed image. By averaging the shifted

versions and the input image, the resulting artifact reduced image is obtained.

The third category includes methods that are based on the theory of projec-

tion on convex sets (POCS). In these POCS-based methods [64] [65] [66], closed

convex constraint sets are first defined to represent all knowledge on the original

uncompressed image. For instance, one set could represent the quantization range

in the DCT transform domain and another set could represent the band-limited

version of the input image, which does not contain the high frequency possibly

caused by the artifacts. Then, alternating projections onto these convex sets are

iteratively computed to recover the original image from the coded image. These

POCS-based methods are effective at removing blocking artifacts. However, they

are less practical for real time applications, because the iterative procedure in-

creases the computation complexity.

Although there have been a wide range of coding artifact reduction methods

available, most of them require the compression parameter or the bit stream in-
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formation to obtain good performance. However, this information is usually not

available for many applications where the input source can be compressed by dif-

ferent compression standards. Therefore, a post-processing algorithm that can

detect coding artifacts on spatial data and further reduce different types of coding

artifacts is essentially needed. The proposed content adaptive processing frame-

work could provide such a solution if a new classifier for coding artifact detection

can be designed and included in the framework.

2.2 Coding artifact detection

As we can see in the previous section, many coding artifact detection methods rely

on the DCT block position information, which means detection of the DCT block

position is required. Few methods attempt to detect coding artifacts regardless of

the block position. In this section, we will explore how to detect coding artifacts

through image content analysis without any compression information.

Due to the block based compression, coding artifacts usually manifest them-

selves as distinguishable luminance patterns, for instance, blocking artifacts show

a pattern of horizontal and vertical edge. For that reason, we continue to use

the adaptive dynamic range coding (ADRC) proposed in Kondo’s concept [97] to

classify the local structure and hope this information can help distinguish coding

artifacts. As shown in Fig. 1.7, the 1-bit ADRC code of every pixel is defined by:

ADRC(xi) =

{

0, if xi < xav

1, otherwise
(2.1)

where xi is the value of pixels in the filter aperture and xav is the average pixel

value in the filter aperture. We use a diamond shape filter aperture suggested in

Fig. 2.2 to balance between the performance and the complexity.

As the coding artifacts occur after compression, we measure the changes of the

ADRC class occurrence frequency in a set of randomly selected video sequences

before and after compression. Here, the occurrence frequency of a class means

how many times that class has occurred in the sequences. Fig. 2.1 shows the

ADRC patterns of the first ten classes with the largest absolute increase in the

occurrence frequency after compression in five randomly selected test sequences.

We could find some common ADRC classes shown in Fig. 2.2. It indeed seems

likely that pixels belonging to these ADRC classes can be coding artifacts.

In order to evaluate the effectiveness of using the ADRC classification to dis-

tinguish coding artifacts, we propose to simply use the common ADRC classes

shown in Fig. 2.2 as a “coding artifact detector” and measure the detector’s per-

formance using a “ground truth” map which indicates which pixels are coding

artifacts. The difference between the compressed image and its uncompressed
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ADRC patterns of the first ten classes with the largest absolute

occurrence frequency increase

Sequence A

Sequence B

Sequence C

Sequence D

Sequence E

Figure 2.1: The ADRC patterns of the first ten classes with the largest occurrence frequency

increase after compression in five randomly selected sequences.

Figure 2.2: Artifact-alike classes: the common ADRC classes which have significantly in-

creased after compression.

version shows signal loss after the compression. The masking effect in the noise

perception [60] shows that the sensitivity of the human eye to signal distortion will

decrease with local content activity. To generate the ground truth, it is then fair to

decide that, if the loss is relatively large compared to the local content activity, it

will be considered a coding artifact. The difference d(i, j) at pixel position (i, j)
between the uncompressed image X and the compressed version Xc is defined as:

d(i, j) = |Xc(i, j) − X(i, j)| (2.2)

A threshold is defined as

Tc = kA(i, j) (2.3)

where A(i, j) is the local content activity in the corresponding DCT block of the

uncompressed image and the activity is defined as the variance in the pixel values

in the block. For the factor k, 0.1 is used since it generates results which match

well with the perceived artifacts. If the difference d(i, j) > Tc, the pixel Xc(i, j)
is then considered to be a coding artifact pixel. Otherwise, it is not.

We test the artifact detector on the test material shown in Fig. 2.3. Table 2.1

shows the detection and false alarm rates for different test sequences. From the re-

sult, one can see that the detector gives a modest detection rate on average. Some

image fragments from the ground truth and detection results of the sequence Bi-

cycle are shown in Fig. 2.4. In the illustration, the ground truth artifact pixels and

the correctly detected artifact pixels are marked by blue; the pixels that are not
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(A) Bicycle (B) Hotel (C) Birds

(D) Lena (E) Boat (F) Motor

Figure 2.3: The testing material used for the evaluation.

artifacts and have been incorrectly detected are marked by red. Comparing the

ground truth in Fig. 2.4 (C) and the detection result using these ADRC classes in

Fig. 2.4 (D), one can see that most of blocking artifacts which are quite dominant

in the image have been correctly detected. However, some ringing types of arti-

facts have not been detected. Since the ringing artifacts usually appear near strong

edges, it is difficult to identify ringing artifacts with a limited filter aperture. Given

the limitation, the detector gives a reasonable good detection.

One can also notice that the false alarm rate is quite high. In the result of using

the ADRC classes in Fig. 2.4 (D), many real image edges have incorrectly been

Table 2.1: The detection and false alarm rates of using ADRC to detect artifacts.

Sequence Detection rate False alarm rate

Bicycle 65.2 10.6

Birds 78.3 12.2

Boat 68.9 21.5

Motor 50.3 16.6

Lena 64.8 19.5

Average 65.5 16.1
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(A) uncompressed (B) compressed

(C) ground truth (D) ADRC detection result

(E) ADRC+DR detection result

Figure 2.4: The artifact ground truth and the detection result: the ground truth artifact pixels

and the correctly detected artifact pixels are marked by blue; the pixels that are not artifacts and

have been incorrectly detected are marked by red.
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detected as coding artifacts, most of which are horizontal and vertical edges, since

these real image edges also have an identical ADRC pattern as these blocking ar-

tifact boundaries. The ADRC classification alone is clearly not enough to distin-

guish between the coding artifacts and the real image structures. This leads us to

consider local contrast in the classification. From the literature it is known that

the artifacts in low contrast area are more visible [59] according to human visual

system. Local structure and contrast can usually be regarded as two orthogonal

properties: local structure does not vary with local contrast, while local contrast

does not depend on local structure. Clearly, image areas with edge patterns of

different directions and high contrast are more likely to be the real image edges,

while image areas with vertical or horizontal edge patterns and low contrast sug-

gest possible coding artifacts. All of these suggest that one should combine local

structure and contrast to detect coding artifacts.

To include local contrast in the classification, we calculate the histogram of the

local contrast in the coding artifacts, which is shown in Fig. 2.5. The local contrast

is defined as the difference between the maximum and minimal pixel value in the

aperture. We can see that the coding artifacts are mainly distributed in the low

contrast area.

Figure 2.5: The histogram of the dynamic ranges in the coding artifacts.

Therefore, we add one extra bit, DR, to the ADRC code. The extra bit de-

scribes the contrast information in the aperture.

DR =

{

0, if xmax − xmin < Tr
1, otherwise

(2.4)

where Tr is the threshold value. The concatenation of ADRC(xi) of all pixels in

the filter aperture and the extra bit DR gives the class code.
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Figure 2.6: The plot of the detect and false alarm rate with the threshold used in the DR classi-

fication.

To find an optimal setting for the threshold Tr, we test different values for

the threshold and plot them with the detection and false alarm rate using the men-

tioned ADRC classes and low contrast as the new detector in Fig. 2.6. As one can

see, when the threshold is too low, the detection rate decreases since some of the

artifacts in the low contrast area are not detected; the false alarm rate decreases

because the number of detected pixels decreases. When the threshold is too high,

the detection rate remains the same, but the false alarm will increase significantly.

Overall, one can see that the threshold setting around 32 gives the best balance

between the detect and false alarm rate. Fig. 2.4 (E) shows the detection results

on the sequence Bicycle using the new detector. As one can see, the false alarms

have been greatly reduced.

From the detection and false alarm rate result, one can see that the proposed

detector does not give a perfect solution for coding artifact detection. This is due

to the limited information in the filter aperture which is relatively small for deter-

mining whether it is a coding artifact pixel. Looking at a bigger scale would likely

improve the detection performance, but that will also increase the cost. Neverthe-

less, the result has shown good indication that the combination of the ADRC and

DR classification is effective at distinguishing coding artifacts. We expect that

by including the ADRC and DR classification in the proposed processing frame-

work, the resultant filter will have a probability weighted optimal processing, i.e.,

in the content classes that have a higher probability of being coding artifacts, the

resultant filter will have a stronger artifact reduction effect.
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2.3 Application I: Coding artifact reduction

Based on the coding artifact classification, we can apply the proposed content

adaptive processing framework to remove the coding artifacts. As shown in the

block diagram in Fig. 2.7, the process is similar to Kondo’s concept except that

the classification is done by the combination of ADRC and DR. We use a dia-

mond shape aperture shown in the diagram to balance between performance and

complexity.

Figure 2.7: The block diagram of the proposed approach: the local image structure is classified

using pattern classification and the filter coefficients are fetched from the LUT obtained from an

off-line training.

The optimization procedure of the proposed method shown in Fig. 2.8 is also

similar to Kondo’s concept. To obtain the training set, we use original images as

the reference output image. Furthermore, we compress the original images with

the expected compression ratio. These corrupted versions of the original images

are our simulated input images. The simulated input and the reference output pairs

are classified using the same classification ADRC and DR on the input. Optimal

coefficients are obtained by training the filters in individual classes.

In the following experiments, we will evaluate the proposed method in the ap-

plications of JPEG de-blocking and MPEG4-AVC/H.264 de-blocking. For JPEG

de-blocking, we choose Nosratinia’s method [63] (referred as Nos) as the com-

parison, since it is one of the methods which give the best results for JPEG de-

blocking [58]. For MPEG4-AVC/H.264, we compare our proposed method with

the in-loop filter used in the standard [62]. As an alternative method which applies

in the spatial domain and does not require the block grid information, the bilateral

filter [57] [100] (referred as Bil) is also included in the evaluation. The parameter

settings for the bilateral filter are optimized for the compression level used in the

experiments: the standard deviation of the Gaussian function for photometric sim-

ilarity is set to 20 and the one for spatial closeness is set to 0.9. All the methods

are optimized by using the same training set. The test images are shown in Fig.

2.3 and they are not included in the training set.

In order to enable a quantitative comparison, we first compress the original un-

compressed test images using the same setting as in the training procedure. Then
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Figure 2.8: The training procedure of the proposed algorithm. The input and output pairs are

collected from the training material and are classified by the mentioned classification method. The

filter coefficients are optimized for specific classes.

we use the images as the simulated input images. The Mean Square Error (MSE)

can be calculated from the original uncompressed images and the processed im-

ages.

2.3.1 JPEG de-blocking

We use the free baseline JPEG software from the Independent JPEG Group web-

site 1 for JPEG encoding and decoding in the experiment. We apply the JPEG

compression at the quality factor of 20 (the quality factor has a range from 1 to

100, and 100 is the best). Table 2.2 shows the MSE comparison of the evalu-

ated methods. In term of the MSE score, one can see that the proposed method

outperforms all the other methods, especially in the sequence Bicycle, which con-

tains various image structures. The bilateral filter with the optimized parameter

also achieves a similar result as Nosranatia’s method. On average, the proposed

method shows 25 percent improvement over the input.

To enable a qualitative comparison, image fragments from the image Motor

processed by the mentioned methods are shown in Fig. 2.9. As one can see,

the bilateral filter can reduce the coding artifacts significantly in flat areas, but it

cannot suppress the artifacts in detailed areas. Nosranatia’s method can remove

the artifacts in the detailed areas, but it also loses some resolution because of

the averaging. The proposed method shows the best result. It reconstructs the

distorted details marked by a circle better than the bilateral filter because it adopts

the image structure information. The processed image by the proposed method is

the closest to the original.

1http://www.ijg.org/files/jpegscrc.v6b.tar.gz
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Table 2.2: MSE scores for JPEG de-blocking.

Mean Square Error

Sequence Input Nos Bil Proposed

Bicycle 63.5 51.0 50.7 46.4

Birds 13.8 11.1 11.7 11.1

Boat 72.3 63.7 62.1 61.9

Motor 108.9 93.9 92.9 90.2

Lena 36.9 30.4 31.5 29.2

Average 59.1 50.0 49.8 47.8

2.3.2 H.264/MPEG4 AVC de-blocking

The H.264/MPEG4 AVC compression we used for evaluation is the reference

software implementation of JM 11.0 system2. The in-loop filter is included in JM

11.0 system. The compression quality parameter QP , which has a range from

0 to 51, is set to 35. The MSE results for the sequence Hotel are shown in Fig.

2.10. We can see that the proposed method gives a better performance than the

in-loop filter in every frame. And the advantage over the in-loop filter varies with

the frames. The image fragments in Fig. 2.11 show that although the in-loop filter

can reduce most of the blocking artifacts significantly in the flat area due to its

in-loop advantage, it does not repair the corrupted edge structures marked by a

circle well which can be nicely reconstructed with the proposed post-processing

method.

2.4 Application II: Resolution up-conversion inte-

gration

Although HDTV has become a standard appliance in every household today, there

are still a lot of legacy videos in standard definition. Additionally they are com-

pressed using different compression standards. The standard definition content

has to be up-scaled to fit the resolution. However, coding artifacts will be pre-

served and enlarged after the resolution conversion. These coding artifacts will be

even more difficult to remove.

Resolution up-conversion is traditionally approached by linear methods, such

as bi-linear and bi-cubic interpolations, which usually blur image details. Ad-

vanced resolution up-conversion algorithms [98][105][102] have been proposed

2http://iphome.hhi.de/suehring/tml/download/
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(A) (B) (C)

(D) (E)

Figure 2.9: Image fragments from the image Motor: (A) uncompressed original, (B) JPEG

compressed input, (C) processed by the bilateral filter, (D) processed by Nosratinia’s method, (E)

processed by the proposed method.

to be adaptive to local structure or edge orientation, which makes them capable

of preserving edges and fine details in the image content. Zhao compared the

state-of-the-art up-scaling techniques both objectively and subjectively, and con-

cluded that the structure-adaptive LMS training technique, proposed by Kondo,

performed the best [80]. However, Kondo’s method was designed for images with

little noise. When the image is compressed, coding artifacts will be preserved and

enlarged after up-scaling. These coding artifacts, e.g. blocking artifacts, will be

even more difficult to remove than those in the original low resolution image, be-

cause the coding artifacts will spread among more pixels and become not trivial

to detect after the resolution up-conversion. In the video processing chain, coding

artifacts are usually suppressed using certain low-pass filtering before applying

resolution up-conversion. Therefore, image details can be blurred by the low-pass

filtering and cannot be recovered during the resolution up-conversion.

We propose an integrated artifact reduction and resolution up-conversion ap-

proach using the proposed framework in this section. Based on the proposed

coding artifact classification, optimal LMS filters are used for estimating the high

resolution pixels. Since the classification can distinguish between coding arti-
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Figure 2.10: The MSE results of H.264 de-blocking for Hotel sequence.

facts and real image structures, we could expect that the proposed method will

reduce coding artifacts. Because the classification also includes the structure in-

formation, we hope that different image structures and fine details will be well

preserved. The optimal coefficients are obtained by a training between the high

resolution reference and the simulated degraded version.

The optimization procedure of the proposed method is shown in Fig. 2.12. To

obtain the training set for combined up-scaling and artifact reduction, we use orig-

inal images as the reference output image and the down-scaled and compressed

version as the simulated input. To get the down-scaled and compressed version,

the original images are first down-sampled using a bi-linear filter. The down-

sampled images are then compressed to introduce coding artifacts.

For the evaluation, the proposed algorithm is benchmarked against two al-

ternative solutions generated by cascading the resolution up-conversion method

proposed by Kondo [97] and the artifact reduction method proposed by Zhao [80]

in different orders. These two methods have significant advantages over other

heuristically designed filtering techniques. For a fair comparison, an ADRC code

of a 3x3 aperture is used for classification in the up-scaling. The classification

method used in coding artifact reduction proposed by Zhao is the combination

of the ADRC and the relative position of a pixel in the coding block grid. A di-

amond shape aperture with 13 pixels is used, which requires 12 bits for ADRC

and 4 bits for relative position coding. The drawback of this method is that block

grid positions are not always available, especially for scaled material. For the

cascaded method of first applying resolution up-conversion then doing coding ar-

tifact reduction, the classification of coding artifact reduction is carried out on the
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(A) (B) (C)

(D) (E)

Figure 2.11: Image fragments from the sequence Hotel: (A) original uncompressed, (B) H.264

compressed, (C) processed by bilateral filter, (D) output of the in-loop filter, (E) processed by the

proposed method.

up-scaled HD signal and the relative position of a pixel in the block grid is also

up-scaled accordingly to suit the HD signal. The coefficients of both methods are

obtained by the LMS technique.

For the cost comparison, Table 2.3 shows the numbers of coefficients that need

to be stored in look-up tables (LUT) and the numbers of additions and multipli-

cations needed for outputting every high resolution pixel for each of these three

algorithms. The proposed algorithm is much more economical than the other two

in terms of LUT size. Since the training process is done offline and only needs to

be done once, thus the computational cost is limited for all the three methods.

We test the algorithms on a variety of test sequences, which are first down-

sampled then compressed using the same setting as during the training. Fig. 2.13

shows the image fragments of these test sequences we used for the experiment.

All the test sequences are excluded from the training set. The objective metric we

use is mean square error (MSE), i.e. we calculate the MSE between the original

HD sequences and the result sequences processed on the compressed down-scaled

versions of the original sequences.

Table 2.4 shows the results of the proposed algorithm in comparison to the re-
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Figure 2.12: The training procedure of the proposed method for combined up-scaling and arti-

fact reduction.

Table 2.3: Cost comparison for the proposed integration and alternatives.

Computational cost by algorithms

Cost Zhao+Kondo Kondo+Zhao Proposed

Coefficients 4096x16x13 + 256x9 256x9 +4096x16x13 256x2x9

Multiplications 13/4+9 9+13 9

Additions 13/4+9 9+13 9

sults of first applying coding artifact reduction then up-conversion and first apply-

ing up-conversion then artifact reduction. The result of resolution up-conversion

using Kondo’s method without applying artifact reduction is also shown for refer-

ence. From the results, one can see that the proposed algorithm outperforms the

other two concatenated methods for all sequences. The results also reveal that the

order of applying up-conversion and artifact reduction affects the performance of

the concatenated method. For some sequences, applying artifact reduction first

gives better results; for other sequences, vice versa.

For a qualitative comparison, Fig. 2.14 shows fragments from the Bicycle

sequence processed by all the three methods. As one can see, the result of first ap-

plying up-conversion then artifact reduction contains more residual artifacts than

the proposed algorithm, because up-scaling makes coding artifacts spread out in

more pixels and more difficult to remove. The result of first applying artifact
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(A) Bicycle (B) Hotel

(C) Parrot (D) Teeny

Figure 2.13: The testing material used for the evaluation.

Table 2.4: MSE scores for different methods.

MSE

Sequence Kondo Zhao+Kondo Kondo+Zhao Proposed

Hotel 116.3 113.4 108.5 102.4

Parrot 36.1 32.2 35.1 31.7

Teeny 66.9 59.9 63.7 59.0

Bicycle 183.5 164.3 170.2 163.1

Average 100.7 92.5 94.4 89.0
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(A) (B)

(C) (D)

Figure 2.14: Image fragments from the sequence Bicycle: (A) simulated input, (B) processed

by the proposed method, (C) processed by Kondo + Zhao, (D) processed by Zhao + Kondo.
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reduction then resolution up-conversion is blurrier than our proposed algorithm,

because the artifact reduction step blurs some details, which cannot be recovered

by the up-scaling step.

2.5 Application III: Sharpness enhancement integra-

tion

Sharpness enhancement is another essential video enhancement usually included

in the video processing chain. To increase the perceptual quality of compressed

image, a sharpness enhancement algorithm can be applied after the artifact reduc-

tion process. However one separate step will take more time and more memory,

and will eventually increase the cost of the whole process. Here, we propose an

integrated approach combining coding artifact reduction and sharpness enhance-

ment.

To integrate with sharpness enhancement, one can train the filter to learn the

process to turn a compressed version of reference images into a sharpen version

of reference images. However, it is not clear how to obtain the optimal sharpness

enhancement. Therefore, we propose to train the filter to turn a blurred and then

compressed version of reference images to the original reference ones. We expect

that the resulting filter will have the behavior of inverting the process of blur and

compression, that is, the integrated sharpness enhancement and artifact reduction.

An isotropic Gaussian function is used to blur the reference images. Then better

sharpness enhancement can be obtained using the prior classification information.

For example, the edge will be sharpened across the direction of edge and the

coding artifacts will not be enhanced. The optimization procedure is shown in

Fig. 2.15. To obtain the training set, we blur the original images with an isotropic

Gaussian blur kernel and compress them with the expected compression ratio.

These blurred and corrupted versions of the original images are our simulated

input images. One can adjust the Gaussian blur radius to change the degree of

sharpness enhancement. The process of applying the proposed approach is similar

to the diagram shown in Fig. 2.7.

In order to obtain a subjective evaluation of the proposed method, a paired

comparison of compressed test sequences and their post-processed versions was

performed. The test set with CCIR-601 resolution includes five stills compressed

using JPEG at a quality factor of 20, and six video sequences compressed using

MPEG2 at a bit-rate of 2.5Mbit/s. Every test material and its post-processed ver-

sion were shown next to each other on an LCD screen in a randomized order.

Eighteen expert and non-expert viewers were gathered to do the paired compari-

son one by one. Each of them was asked to sit in front of the screen at a distance
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Figure 2.15: The training procedure of the proposed algorithm. The input and output pairs are

collected from the training material and are classified by the mentioned classification method. The

filter coefficients are optimized for specific classes.

of six times the screen height and select the one that he/she perceived as having

the better image quality.

The evaluation result shows that the post-processed version was chosen 329

times against 67 times for the original. An analysis of the result as proposed by

Montag [5] shows that the average image quality scale of the original has a 95

percent confidence interval (CI) of 0 ± 0.067 as the reference, and the 95 percent

CI of the image quality scale for the proposed method is 0.96 ± 0.067. This

suggests that the perceptual image quality has been significantly increased by the

proposed method. Image fragments from a compressed sequence and the post-

processed version by the proposed method are also illustrated in Fig. 2.16. As

one can see, the proposed method has great effectiveness at removing the artifacts

while enhancing the sharpness.

2.6 Conclusion

In this chapter, we have designed a new classifier suitable to distinguish coding

artifacts from image details. The classifier classifies the local image content us-

ing two orthogonal properties, local structure and local contrast. Incorporating

the new classifier for coding artifact detection into the proposed content adaptive

filtering framework leads to various video enhancement algorithms for digitally

coded videos, including artifact reduction and its integrations with sharpness and

resolution enhancement. These algorithms not only show better performance at
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(A) Compressed

(B) Processed

Figure 2.16: Image fragments from the compressed sequence Hotel (A) and the post-processed

by our proposed method (B).
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picture quality, but also feature low cost in terms of hardware implementation.

The application of combined sharpness enhancement and coding artifact re-

duction shows that it is possible to combine two opposite operations, sharpening

and smoothing, at the same time, with the help of the coding artifact classifier.

From the analysis of the proposed classification for coding artifact detection,

we see that there is a limitation of using local content information only from the

filter aperture. Looking at the local content at a bigger scale, for instance, using

local statistics of the content classes, is expected to lead to more improvements to

the detection. Such a topic is interesting for future research.

In the following chapters, we will continue to explore new classifiers for the

content classification part in the proposed framework.



Chapter 3

Content classification in blurred

videos

In the previous chapter, we have introduced a coding artifact classifier to the con-

tent classification part of the proposed content adaptive processing framework.

Besides the coding artifacts in digital videos, there is another type of signal degra-

dation, focal blur, or out-of-focus blur, which has also received considerable at-

tention in the field of video enhancement.

Focal blur in images and videos occurs when objects in the scene are placed

outside the focal plane of the camera. Due to a limited focal range of optical

lenses, or sub-optimal settings of the camera, objects may suffer from blur degra-

dation in the registered image.

Moreover, as objects may have varied distances to the lens, they are often dif-

ferently blurred in the registered image. We therefore conclude that an, accurate,

local blur estimator would promise interesting additional applications in the video

enhancement domain of this thesis.

For example, one could think of applying local blur estimation to restore dif-

ferently blurred parts of an image, resulting in an all-in-focus result. We further

expect that blocking artifacts are most visible in the out-of-focus areas. Hence,

knowledge of the local blur could also be beneficial in a blur-adaptive coding

artifact reduction application.

Many local blur estimation methods have been proposed to estimate the spa-

tially variant blur. However, they are typically based on low-level image clues

and therefore can, neither generate consistent blur estimation over objects, nor

distinguish focal blur from other non-degradation blur, for example, shading blur.

In this chapter, we propose a new local blur estimation method that generates

consistent blur estimates for objects in an image. First, a novel local blur estimator

based on edges is introduced. It uses a Gaussian isotropic point spread function

model and the maximum of difference ratio between the original image and its

43
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two digitally re-blurred versions is calculated to estimate the local blur radius. The

advantage over alternative local blur estimation methods is that it does not require

edge detection, has a lower complexity and does not degrade when multiple edges

are close.

With the blur estimates from the proposed blur estimator and other clues from

the image, like color and spatial position, the image is segmented using clustering

techniques. Then within every segment, the blur radius of the segment is estimated

to generate a blur map that is consistent over objects.

Finally, we apply the novel segmentation-based blur estimator into the pro-

posed framework, which has resulted in solutions for the two mentioned applica-

tions, all-in-focus image restoration and blur-adaptive coding artifact reduction.

The rest of this chapter is organized as follows. In Section 1, we present the

proposed blur estimation algorithm and its analysis based on an ideal edge model

and we compare it with the most relevant alternative, Elder’s method. Section 2

shows the proposed segmentation-based blur estimation. Two applications, all-

in-focus image restoration and blur dependent enhancement, and their results are

presented in Section 3. Finally, we conclude the chapter in Section 4.

3.1 Introduction

Focal blur often occurs in images or videos due to finite depth-of-field. There

are also other types of blur in images, penumbral blur and shading blur, which

have a similar appearance as focal blur [74]. Fig. 3.1 illustrates how these three

types of blur are formed. Penumbral blur is caused by a shadow that exhibits a

penumbra when the light source is not a point source. Shading blur is generated

by the smooth curved surface of an illuminated object.

Figure 3.1: Three types of blur: focal blur due to finite depth-of-field; penumbral blur at the

edge of a shadow; shading blur at a smoothed object edge. Source [74].
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These types of blur are usually modeled as Gaussian blurring [53]. There-

fore, the problem of blur estimation is to identify the Gaussian point spread func-

tion (PSF). Many techniques [72] [73] have been proposed to estimate the point

spread function of the spatially invariant blur. For local blur estimation, meth-

ods are typically based on an analysis of an ideal edge signal. In Elder’s method

[74] the blurred edge signal is convolved with the second derivative of the Gaus-

sian function and the response has a positive and a negative peak. The distance

between these peak positions can be used to determine the blur radius. Another

approach from Kim [78] is based on an isotropic discrete point spread function

(PSF) model. The one-dimensional step response along the orthogonal direction

of edge direction will be estimated and the PSF can be obtained by solving a set

of linear equations related to the step response. Both Elder’s and Kim’s method

require detection of the edge direction, which adds complexity to the algorithm.

3.2 Local blur estimation

We propose a new blur estimation method based on the difference between two

digitally re-blurred versions of an image. The insight, on which the proposed

method is based, starts from the observation that the Fourier analysis of a perfect

edge shows a fixed ratio of the energy in different frequency bands. Focal blur will

change the ratio by weakening the higher frequencies. By measuring the ratio in

the frequency bands, an estimate of the focal blur can be obtained. The two re-

blurred versions correspond to the energy in two frequency bands. That means that

the two re-blurring operations are arranged to extract mutually different portions

of the spatial spectrum of the input image. If the ratio between the energy in these

two frequency bands is relatively high, then the value of the blur measure is also

relatively high. Here, through an analysis performed on an edge model, we show

that the blur radius can be easily calculated from the difference ratio, independent

from the edge amplitude or position.

First, we analyze the blur estimation with a one dimensional (1D) signal. We

assume an ideal edge signal and a discrete Gaussian blur kernel. The edge is

modeled as a step function with amplitude A and offset B. For a discrete signal,

the edge f(x) shown in Fig. 3.2 is

f(x) =

{

A + B, x ≥ 0
B, x < 0

, x ∈ Z (3.1)

where x is the position. The focal blur kernel is modeled by a discrete Gaussian

function:

g(n, σ) = C(σ) exp
(

− n2

2σ2

)

, n ∈ Z (3.2)
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Figure 3.2: The step edge f(x), the blurred edge b(x) and its two re-blurred versions ba(x),
bb(x)

where σ is the unknown blur radius to be estimated and C(σ) is the normalization

factor. The normalization implies:

∑

n∈Z

g(n, σ) =
∑

n∈Z

C(σ) exp
(

− n2

2σ2

)

= 1 (3.3)

C(σ) admits no closed form expression, but the approximation 1√
2πσ

can be con-

sidered acceptable when σ > 0.5. Then the blurred edge b(x) will be:

b(x) =
∑

n∈Z

f(x − n)g(n, σ)

=























A
2
(1 +

x
∑

n=−x

g(n, σ)) + B, x ≥ 0

A
2
(1 −

−x−1
∑

n=x+1

g(n, σ)) + B, x < 0

, x ∈ Z (3.4)

As the convolution of two Gaussian functions with blur radii σ1, σ2 is:

g(n, σ1) ∗ g(n, σ2) = g(n,
√

σ2
1 + σ2

2) (3.5)

Re-blurring the blurred edge using Gaussian blur kernels with blur radius σa and
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σb (σb > σa), results in two re-blurred versions ba(x) and bb(x):

ba(x) =























A
2
(1 +

x
∑

n=−x

g(n,
√

σ2 + σ2
a)) + B, x ≥ 0

A
2
(1 −

−x−1
∑

n=x+1

g(n,
√

σ2 + σ2
a)) + B, x < 0

, x ∈ Z (3.6)

bb(x) =
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x
∑

n=−x

g(n,
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σ2 + σ2
b )) + B, x ≥ 0

A
2
(1 −

−x−1
∑

n=x+1

g(n,
√

σ2 + σ2
b )) + B, x < 0

, x ∈ Z (3.7)

To make the blur estimation independent of the amplitude and offset of edges,

we calculate the ratio r(x) of the differences between the original blurred edge

and the two re-blurred versions for every position x:

r(x) =
b(x) − ba(x)

ba(x) − bb(x)

=
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−x−1
∑

n=x+1

(

g
(

n,
√

σ2 + σ2
a

)
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)
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−x−1
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g
(

n,
√

σ2 + σ2
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)

− g
(

n,
√

σ2 + σ2
a

)

)

, x < 0

(3.8)

The difference ratio peaks at the edge position x = −1 and x = 0 as shown in

Fig. 3.3. So we obtain:

r(x)max = r(−1) = r(0) =

1
σ
− 1√

σ2+σ2
a

1√
σ2+σ2

a

− 1√
σ2+σ2

b

(3.9)

When σa, σb ≫ σ, we can use some approximations:

√

σ2 + σ2
a ≈ σa
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Figure 3.3: the difference ratio plot among the edge.

√

σ2 + σ2
b ≈ σb

which we use to simplify Equation 3.9:

r(x)max ≈
1
σ
− 1

σa

1
σa

− 1
σb

=
(σa

σ
− 1) · σb

σb − σa

(3.10)

or

σ ≈ σa · σb

(σb − σa) · r(x)max + σb

(3.11)

Equation 3.9 and 3.11 show that blur radius σ can be calculated from the

difference ratio maximum r(x)max and the re-blur radii σa, σb, independent of

the edge amplitude A and offset B. The identification of the local maximum of

difference ratio r(x)max not only estimates the blur radius, but also locates the

edge position, which implies the blur estimation does not require a separate edge

detection.

For the blur estimation in images, i.e. two dimensional (2D) signals, we use

a 2D isotropic Gaussian blur kernel for the re-blurring. As any direction of an

isotropic Gaussian function is a 1D Gaussian function, the proposed blur estima-

tion is also applicable. Using 2D Gaussian kernels for the estimation avoids de-

tecting the angle of the edge or gradient, as required in Elder’s and Kim’s method.

This helps to keep the complexity low.

In the simplest version, we implement the algorithm in a block-based manner

to obtain a blur map on a block-grid of a natural image. As shown in the block

diagram in Fig. 3.4, the difference ratios are calculated pixel-wise using the orig-

inal image and its two re-blurred versions. Then, in every block the maximum of
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the difference ratio is used to determine the blur radius in the block. A block size

of 8 × 8 pixels has been used. Finally we assign the estimated blur radius to all

pixels within the block.

Figure 3.4: The block diagram of the proposed block based blur estimation.

For the evaluation, we test the proposed method on some synthetic and natural

images, and we compare that with Elder’s methods since this is considered state-

of-the-art [75]. For the synthetic images, we use multiple step edges blurred by a

1D Gaussian blur kernel, with the blur radius increasing linearly along the edge

from 0.1 to 5, as shown in Fig. 3.5. About one percent Gaussian noise is added

to simulate sensor noise. Different distances between neighboring step edges D
have been used.

Pixel position

0 10 20 30 40 50

Pixel position

10 20 30 40 50

D=50 pixels D=20 pixels

Figure 3.5: Synthetic images used in the test of the blur estimation algorithms.

We use the optimal settings for both methods and the results are shown in Fig.

3.6. As one can see, when the distance between neighboring edges is relatively

large (D = 50 pixels) both methods can reliably estimate a wide range of blur

radii. When the distance between neighboring edges becomes relatively small

(D = 20 pixels), Elder’s method suffers considerably from the interference of

neighboring edges and the estimation is very unreliable while the propose method

demonstrates clearly better estimates.
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Figure 3.6: Estimated blur radius on the synthetic images for Elder’s method and the proposed

method.

For natural images, we use the image Lena for the test. This image is shot with

a soft-focus technique and objects in this image have been differently blurred.

Blur estimation results of Elder’s method and the proposed method have been

illustrated in grey images (Fig. 3.7). Both methods are implemented in a block-

based manner. In the blur estimation results, the darker areas indicate a larger

blur radius, while the lighter areas indicate a smaller blur radius. We can see that

the differently blurred background of the image Lena has been estimated more

accurately by the proposed method than by Elder’s method. Note that Lena’s face

and shoulder show strong shading blur. Both methods can estimate the blur radius

but they cannot distinguish the shading blur from the focal blur.

3.3 Object blur estimation

As shown in the previous section, the local blur estimation is based on the edge

signal in the image. This means that reliable blur estimation only exists at the

edges. From the results in Fig. 3.7, we see that the generated blur map is very in-

consistent. It is often desirable to obtain a consistent blur estimation over objects

to allow more stable restoration or enhancement. Another weakness of the pro-

posed method is that the smooth transition on the surface of in-focus objects, such

as shading blur, is typically estimated to have a large blur radius although there is

no degradation. To alleviate these problems, we propose three approaches to im-

prove the consistence of the blur map. We shall first describe the three proposals

in the following subsections and then analyze their performance.
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(A) (B) (C)

Figure 3.7: Estimation results: the darker areas indicate a larger blur radius, while the lighter

areas indicate a smaller blur radius. (A) input image Lena, (B) result of Elder’s method, (C) result

of the proposed method.

3.3.1 Spatial-temporal neighborhood approach

A solution to an analogous problem can be found in the literature on motion esti-

mation [71]. In the paper, reliable motion estimates are available only at certain

detailed places, but not in homogeneous areas and along the edge direction. That

problem is quite similar to the problem described here. In [71] an image is scanned

in a block-based manner. It is assumed that objects are bigger than blocks and that

there is a high probability that the motion vector of an unknown block is the same

as one of the neighboring blocks. The neighboring blocks that have been updated

in the current iteration are called spatial neighbors and the others are called tem-

poral neighbors, since they are available from the previous frame or the previous

iteration.

A similar approach [70] can be attempted to estimate the blur in low contrast

areas. After the blur has been estimated for every location, it is proposed to scan

through the image, updating the blur estimate of the processed block from a set

of candidates. The candidates are shown in Fig. 3.8 if the image is scanned

from top-left to bottom-right, where blocks marked by S are considered spatial

neighbors (from the current iteration) and blocks marked by T are considered

temporal neighbors (from the previous iteration or frame).

The block in the center is the one to be processed and the blur values from this

block and its neighboring blocks together form the candidate set. The processed

block is updated with the value from the candidate which has the best similarity

with the processed block. This similarity can be expressed by means of weight-

ing factors. For the weights, we propose to use the luminance amplitude of a

current block and the difference in average chrominance between the processed
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Figure 3.8: Spatial-temporal neighborhood.

block and the neighboring block. Since the most reliable estimates are available

at edge positions, the amplitude of a block should be a good indication for the

reliability of that block. Additionally, it is assumed that neighboring blocks from

the same object have the similar chrominance values and that neighboring blocks

from different areas have different chrominance values.

Let A(bi, bj) denote the amplitude of the luminance signal in a block, where

bi, bj are the horizontal and vertical position of the block, respectively. For the

amplitude, we use the difference between the maximum and minimum luminance

value of all the pixels in the block. Let U(bi, bj) and V (bi, bj) denote the average

chrominance values in the block. Furthermore, let {U(bi + bk, bj + bl), V (bi +
bk, bj + bl) : bk, bl = −1, 0, 1.} be the chrominance values in the neighboring

blocks. The chrominance similarity weight UV (bk, bl) is defined as:

UV (bk, bl) = 1−|U(bi + bk, bj + bl) − U(bi, bj)|
Umax − Umin

· |V (bi + bk, bj + bl) − V (bi, bj)|
Vmax − Vmin

(3.12)

where Umax, Umin, Vmax, Vmin are the maximum and minimum chrominance value

in the current frame, respectively. As we can see, the similarity weight has a range

between 0 and 1. A value close to 1 indicates a high similarity and a value close

to 0 indicates a low similarity.

Let σ(bi, bj)t denote the blur estimate in the block at iteration t. Then the

candidates of the blur estimates are defined as:

C( ~D) =
(

σ(bi − 1, bj − 1)t σ(bi − 1, bj)t σ(bi − 1, bj + 1)t

σ(bi, bj − 1)t σ(bi, bj)t−1 σ(bi, bj + 1)t−1

σ(bi + 1, bj − 1)t−1 σ(bi + 1, bj)t−1 σ(bi + 1, bj + 1)t−1

)

.(3.13)

The vector ~D indicates which value is given to the processed block. This vector

is calculated from the candidate set CS:

CS =
(

UV (−1,−1)A(−1,−1)t UV (−1, 0)A(−1, 0)t UV (−1, 1)A(−1, 1)t

UV (0,−1)A(0,−1)t UV (0, 0)A(0, 0)t−1 UV (0, 1)A(0, 1)t−1

UV (1,−1)A(1,−1)t−1 UV (1, 0)A(1, 0)t−1 UV (1, 1)A(1, 1)t−1

)

.(3.14)
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The vector ~D is chosen with respect to the maximum in the candidate set:

~D = arg max
(bk,bl)

CS (3.15)

And the blur estimate of the processed block is updated according to the candidate

pointed by the displacement vector:

σ(bi, bj)t = C( ~D) (3.16)

The amplitude of the processed block is also updated with the amplitude of the

chosen candidate block. Because the reliability of the block decreases with the

distance from the original block a weighting factor is used to decrease the relia-

bility of this block. The updated amplitude is then set by:

A(bi, bj) = k · A( ~D) (3.17)

where k is the weight to decrease the reliability and it has been set to k = 0.7
during the experiments.

3.3.2 Propagating estimates approach

When applying the spatial-temporal approach to real images it is not enough to

scan only from left to right and back, because the assumption, that at every point

on the edge of an area a correct blur estimate is available, does not always hold.

Therefore a method propagating estimates in different directions has been pro-

posed [70]. The idea behind the method is that the reliable estimation will be

propagated into a objects more times than outside the object.

The propagating estimates approach starts with creating an edge map of the

input image, which indicates where there are accurate blur estimates. The edge

map E(bi, bj) is defined as:

E(bi, bj) =

{

255, if A(bi, bj) ≥ Ath

0, else
(3.18)

where Ath is a certain threshold to define strong edges. Eight scan directions are

used to create different blur maps according to:

σ1(bi, bj) =

{

σ(bi, bj − 1), if E(bi, bj) = 0 and UV (0,−1) ≤ th
σ(bi, bj), else

(3.19)

σ2(bi, bj) =

{

σ(bi, bj + 1), if E(bi, bj) = 0 and UV (0, 1) ≤ th
σ(bi, bj), else

(3.20)
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σ3(bi, bj) =

{

σ(bi + 1, bj − 1), if E(bi, bj) = 0 and UV (1,−1) ≤ th
σ(bi, bj), else

(3.21)

σ4(bi, bj) =

{

σ(bi + 1, bj + 1), if E(bi, bj) = 0 and UV (1, 1) ≤ th
σ(bi, bj), else

(3.22)

σ5(bi, bj) =

{

σ(bi − 1, bj + 1), if E(bi, bj) = 0 and UV (−1, 1) ≤ th
σ(bi, bj), else

(3.23)

σ6(bi, bj) =

{

σ(bi − 1, bj − 1), if E(bi, bj) = 0 and UV (−1,−1) ≤ th
σ(bi, bj), else

(3.24)

σ7(bi, bj) =

{

σ(bi − 1, bj), if E(bi, bj) = 0 and UV (−1, 0) ≤ th
σ(bi, bj), else

(3.25)

σ8(bi, bj) =

{

σ(bi + 1, bj), if E(bi, bj) = 0 and UV (1, 0) ≤ th
σ(bi, bj), else

(3.26)

The result is eight different blur maps, where the estimated blur values at

edge positions are propagated in different scanning directions. From these eight

different blur maps a final blur map needs to be constructed. The blur value of the

processed block was assumed valid if all the blur maps had the same value and

was discarded otherwise. With eight different scanning directions, this method

would only work if all the surrounding edges would have exactly the same blur

value, which is not the case in real images. Therefore, a median filter is proposed

to find the dominant estimate and remove outliers due to incorrect propagations.

Then the final blur estimate is:

σ(bi, bj) = median(σ1(bi, bj), σ2(bi, bj), ..., σ8(bi, bj)) (3.27)

3.3.3 Segmentation-based blur estimation

The previous two approaches both use the propagation of the reliable estimation.

The third approach is based on an object segmentation. The block diagram of

the proposed segmentation-based blur estimation approach is shown in Fig. 3.9.

Firstly the local blur estimation is performed on the input image and the blur

radius on the block level is obtained. Then image features such as blur radius,

luminance chrominance, pixel position, are extracted from the image to compose

a six-dimensional feature space. A spatially constrained K-means clustering is

performed in this six-dimensional feature space. After the convergence of the

K-means clustering, the blur radius within every segment is estimated and that

results in a segmentation-based blur map.
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Figure 3.9: The block diagram of the proposed segmentation based blur estimation algorithm.

K-means clustering

We choose the conventional cluster approach K-means because of its good per-

formance and limited complexity. For a brief review of conventional K-means

algorithm [84], we suppose that the observation vectors are {Xn : n = 1, ..., N}.

The task for the K-means algorithm is to partition the vectors into K groups with

means {µk : k = 1, ..., K} such that the total intra-cluster distance is minimized.

Every vector is assigned with a cluster label to indicate to which cluster it belongs.

We use l(·) to denote the labeling function that maps the feature vector Xn to the

cluster number k, denoted as l(n) = k. The clustering consists of the following

steps:

1. Specify the number of clusters K according to the requirement and initialize

the labels randomly.

2. Apply iterative steps to update the mean vector µt
k in every cluster, and the

labels where t is the iteration number.

Calculate the mean vector:

µt
k =

∑

l(n)t−1=k

Xn/N
t−1
k (3.28)

where Xn is the feature vector and Nk is the number of vectors that belongs to the

cluster k.

Update the labels with respect to the minimal distance from the mean vector:

l(n)t = arg min
k

D(Xn, µk). (3.29)

where D(Xn, µk) is the Euclidian distance between Xn and µk.

3. Repeat step 2 until the clustering converges. Convergence, here, means the

labels do not change compared to the labels from the previous iteration.

The disadvantage of K-means is that one has to specify the number of clusters

before the clustering. Using a higher number of K will result some over segmen-

tation. However, it is not a problem for the blur estimation. We expect that the

over segmented regions will have a similar blur radius and they will merge into a

single region in the final result.
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(A) (B)

(C) (D)

Figure 3.10: Segmentation results using different features: in the segmentation, different color

indicates individual segments. (A) the input image (B) using only color information, (C) using

color and spatial information, (D) using color, spatial and blur information.

Features

In the K-means clustering, the feature selection is crucial for the successful seg-

mentation. Conventional K-means methods use only color information as fea-

tures. We believe that the spatial consistency is an essential attribute of objects

in sequences. We therefore introduce spatial information into the feature space

to achieve a more consistent segmentation. In addition, we also consider the blur

radius as an important feature for the object segmentation in images. Eventually,

the feature vector that we use includes three components of color information in

YUV space, two components of position information and one component of blur

radius from the mentioned local blur estimation.

For convenience, we use X(m), m = 1, ..., 6 to denote the individual features

of a pixel, which horizontal and vertical coordinates in the image are i and j,

respectively. Then the three color features are the pixel values y(i, j), u(i, j) and

v(i, j) in YUV space, respectively.

X(1) = y(i, j). (3.30)

X(2) = u(i, j). (3.31)

X(3) = v(i, j). (3.32)
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To include the spatial information, we add the horizontal and vertical coordinates

of the pixel, i and j, in the feature vector:

X(4) = i. (3.33)

X(5) = j. (3.34)

Finally, the blur radius σ(i, j) at the pixel position is also used as an additional

feature.

X(6) = σ(i, j). (3.35)

In order to show the effectiveness of features we selected, we show an ex-

ample in Fig. 3.10. In the example we perform segmentation using different

features. The conventional approach which uses the color information generates

a noisy segmentation result (Fig. 3.10 (B)). With the spatial information used as

an additional feature, the segmentation result becomes more consistent (Fig. 3.10

(C)). And with the blur radius, the segmentation result becomes more accurate. As

the result, the person who is in focus now can be extracted from the background

(Fig. 3.10 (D)).

Segmentation blur estimation

After the segmentation, the blur radius within every segment is estimated. In

the focused image of an object, a larger blur radius is measured where there is a

smooth transition or a flat area on the object surface. The focal blur caused by the

optical lens will add a similar amount of blur to every location inside the object

boundary. This suggests that the minimal blur radius in the object is caused by

the focal blur. Therefore, we propose to assign the blur radius of the segmentation

with the minimal blur radius in the segmentation.

3.3.4 Post-processing the final blur map

In order to make the final blur map smoother, we propose to use a bilateral filter

for post-processing. The weights for the bilateral filter include the chrominance

similarity weight as defined in Equation 3.12 and the spatial weight proposed in

the original bilateral filter. The bilateral filter is then defined as

σ(i, j) =

∑

k,l

σ(i + k, j + l) · UV (k, l) · S(k, l)

∑

k,l

UV (k, l) · S(k, l)
(3.36)

S(k, l) = exp[−(k2 + l2)/2σ2
s ] (3.37)
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(A) (B)

(C)

Figure 3.11: The test image used for the evaluation. (A) the all-in-focus image, (B) the ground

truth blur map, (C) synthetically blurred image as the simulated input.

where S(k, l) is the spatial weight and σs is the standard deviation of the Gaussian

function for the spatial weight.

3.3.5 Experimental results

Results on synthetically blurred images

To evaluate the performance of these mentioned estimation approaches, we use

an all-in-focus test image shown in Fig. 3.11 (A), which contains various objects.

Manually we generate a ground truth blur map shown in Fig. 3.11 (B), which

contains the actual synthetical blur value for every pixel position. Based on the

ground truth, we synthetically blur the test image to generate a simulated input

image shown in Fig. 3.11 (C).

In order to have a quantitative evaluation, we also calculate the mean square
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error between the estimated blur maps and the ground truth, as shown in Fig. 3.12.

Additionally, we use the average sum of absolute differences between blur values

at each pixel position and those at its neighboring pixel positions to indicate the

smoothness of the blur estimation. The sum of absolute difference SAD(i, j) at a

pixel position (i, j) is defined as:

SAD(i, j) =
∑

k,l

|σ(i + k, j + l) − σ(i, j)| (3.38)

Then the smoothness of the estimate SM is defined as:

SM =

∑

i,j

SAD(i, j)

N
(3.39)

where N is the total number of the pixels. As we can see, a smaller value of SM
means a smoother result.

The results of these proposed methods, including blur maps, MSE and SM

scores, are shown in Fig. 3.12. From the results, we can see that the edge-based

estimation can already give a very good indication about the actual blur. However,

it only appears at the edges. It also generates a noisy result with the smoothness

SM = 20.39. The spatial-temporal neighborhood approach can fill objects partly

with the correct blur values and the overall result is still not very consistent and

satisfactory (see the part marked by a rectangle in Fig. 3.12 (B)). The propagation

approach improves the performance by filling blur values in some parts inside the

objects. However, it generates some wrong propagations at the background area

between those focused objects (see the part marked by a rectangle in Fig. 3.12

(C)). The segmentation-based approach has a very consistent blur estimation and

generates the smoothest result with the lowest smoothness score SM = 4.46.

The estimated result matches very well with the actual objects, comparing to the

ground truth. This is also reflected in the MSE score. The segmentation-based

approach shows the best MSE score at 4.46 and the edge-based approach produces

the worst MSE score at 9.24.

Results on natural images

We also test the proposed method on a variety of natural images, including images

from compressed MPEG-2 videos and JPEG photo galleries. The images contain

different objects, such as flowers, animals, buildings etc. Most of them have com-

plex contents in both focused and unfocused areas. Some of the estimation results

are shown in Fig. 3.13 and Fig. 3.14. We do not have the ground truth for these

images, therefore, only SM scores are used for indicating the smoothness of the

results.
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(A) Edge-based approach (B) Spatial-temporal neighborhood approach

MSE=9.24 SM=20.39 MSE=5.81 SM=11.52

(C) Propagating estimates approach (D) Segmentation-based approach

MSE= 5.01 SM=8.35 MSE=4.46 SM=6.89

Figure 3.12: The results from different approaches applied on the test image. (A) the edge-

based approach, (B) the spatial-temporal neighborhood approach, (C) the propagating estimates

approach, (D) the segmentation-based approach.
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(A) (B) (C)

I

II

SM=3.72 SM=4.48 SM=6.35

III

SM=6.85 SM=7.89 SM=8.92

IV

V

SM=0.66 SM=2.89 SM=1.41

Figure 3.13: Segmentation and blur estimation results from: (I) input image, (II) blur map of

the spatial-temporal neighborhood approach, (III) blur map of the propagating estimates approach,

(IV) segmentation result, (V) blur map of the segmentation-based approach.
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For the smoothness score, the segmentation-based method generates much

smoother results than the other two propagation-based methods. For the blur map

results, we can see that the two propagation-based methods generate wrong prop-

agations at the background area. Due to more robust estimation within segments

rather than the propagation, the segmentation-based method shows better estima-

tion. We see that in most of the results the amount of focal blur has been correctly

estimated. In general, the results from the segmentation-based method match well

with the perceived region or object segmentation. For instance, the main bodies of

the flowers in Fig. 3.13 (A), the horse in Fig. 3.13 (B), and the boat in Fig. 3.13

(C) are all clearly extracted and discriminated from the background. And also in

Fig. 3.14 (D) and Fig. 3.14 (E) the same type of objects with different blur has

been separated due to the added blur information in the feature space. Although

these input sequences or images are compressed and exhibit some coding arti-

facts, this does not have any impact on the blur estimation because the proposed

estimation uses re-blurring which makes the estimation more robust.

In the segmentation results, we can see there are some over segmentation prob-

lems. However, these have been partly solved by the blur estimation. By assign-

ing the segmentation blur, the segments with the same blur radius are merged to-

gether into one region. For instance, the over-segmented background in Fig. 3.13

(C) and Fig. 3.14 (E). We also see that the over segmentation is not completely

solved in Fig. 3.13 (C). It suggests that the segment blur estimation can be further

improved. Although the segmentation results are not precise in the pixel level

and not the actual object segmentation, they reflect the basic component regions

which compose semantic objects or scenes. All reasonable results in the test im-

ages indicate that the segmentation and blur estimation are very useful for various

applications, such as image layer separation, 2D to 3D video conversion. With

specific prior knowledge, the desired semantic objects or scenes can be obtained

with these segmentation results easily.

The segmentation based approach has shown the best result among these al-

ternative methods. In the following sections, we will use it in our proposed frame-

work to provide solutions for two applications, focus restoration and blur depen-

dant enhancement.

3.4 Application I : Focus restoration

As objects with varied distances to the camera are differently blurred in the im-

age, it could be interesting to estimate the blur and restore an all-in-focus image.

The demand for such a technique is emerging in many applications, such as dig-

ital camera and video surveillance. The technique potentially enables the use of

algorithms running on relatively cheap DSP chips instead of expensive optical
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parts.

In this section, we propose an all-in-focus image restoration based on our

segmentation-based blur estimation. Many image restoration techniques [79] use

an iterative approach to remove the blur, because they do not need to determine

the inverse of a blur operator. However, for real-time applications, iterative ap-

proaches are less suitable. Therefore, the LMS filter approach in the proposed

framework, regarded as an approximation to the inverse of the blur operation, is

more attractive. In order to simultaneously restore the fine structure and eliminate

the sensor noise, we include local image structure, contrast information and blur

radius into the content classification part.

3.4.1 Proposed approach

Fine structures and sensor noise have distinguishable luminance patterns and con-

trast in natural images. We continue to use adaptive dynamic range coding (ADRC)

to classify local image structure. One can see that the fine structures such as edges

have regular patterns while the noise shows chaotic patterns. Similar to the con-

trast classification in Chapter 2, we use 1 bit DR to classify high and low contrast.

The threshold for DR is determined by the level of the sensor noise. To combine

the blur radius into the classification, we quantize the local blur radius σ obtained

from the blur map into a binary RB as:

RB = round(
σ

Q
) (3.40)

where Q is a predefined quantization step. The concatenation of ADRC code, DR
and RB gives the final binary classification code.

The diagram of the proposed focus restoration is shown in Fig. 3.15. The

local image content within a 5 × 5 filter aperture centered at the output pixel is

first classified by ADRC, DR and local blur radius at the central pixel position.

An LMS filter is used to calculate the output pixel with filter coefficients obtained

from the look-up-table (LUT). The filter aperture slides pixel by pixel over the

entire image. To avoid an impractical number of classes, we apply ADRC on

pixels only in the central 3×3 aperture, that is, we use 8 bits structure information.

The training procedure of the proposed approach is shown in Fig. 3.16. To ob-

tain the training set, we use all-in-focus images as the target images. Furthermore

we blur the original image with a Gaussian kernel with a range of blur radii and

later add Gaussian noise to simulate the sensor noise at an expected level. These

blurred and corrupted versions of the original images are our simulated input im-

ages. Before training, the simulated input and the target image pairs are collected

pixel by pixel from the training material and are classified using ADRC, DR and
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Figure 3.15: The block diagram of the proposed algorithm.

blur radius on the input. The pairs that belong to one specific class are used for

the corresponding training, resulting in optimal filter coefficients for this class.

Figure 3.16: The block diagram of the proposed algorithm.

3.4.2 Experimental results

For an objective evaluation, we use some all-in-focus images as the test images,

which are not included in the training images. Similar to the training procedure,

we blur the test image with a Gaussian kernel with a range of blur radiuses and

later add Gaussian noise. Then we apply our proposed method to the synthetically

blurred images to get the restored version. The MSE scores between the original

images and the restored versions are used for the evaluation. Here, we compare

our proposed method with and without estimating the blur radius. Additionally,

we investigate different numbers of bits used for the blur classification.
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Figure 3.17: Comparison of the MSE scores from the synthetically blurred images and the

restored versions: from left to right for each image, the columns show the MSE scores from the

synthetically blurred image, the restored version using the proposed method without and with blur

estimation.

The MSE comparison is shown in Fig. 3.17. From left to right for each test

image, the columns show the MSE scores from the synthetically blurred image,

the restored version using the proposed method without blur estimation and the

restored version using the proposed method with different numbers of bits for the

blur classification. As one can see, the restoration using the proposed method

without blur estimation produces lower MSE scores than the blurred inputs. The

proposed method further improves the MSE scores with the blur classification.

In terms of performance and complexity, we see that using 2 or 3 bits for blur

classification could be optimal for the implementation.

To demonstrate the performance of the proposed method on real-world im-

ages, we used an image taken by a consumer digital camera as shown in Fig.

3.18, which is not included in the training images. The image shows three objects

that are differently blurred. The restored image is shown in Fig. 3.18. Fig. 3.19

shows the blur map estimated by the proposed method. From the estimated blur

map, one can see that different blur levels can be clearly discriminated. In the re-

stored image, the focus has been mostly brought back to those differently blurred

objects by the proposed restoration. We also see that due to some incorrect blur

estimation in the blur map, there are some blurred areas between focused and

un-focused objects, which have not been restored. It suggests that in the future re-

search, the accuracy of the blur map should be further improved. Additionally, we

compare the proposed method with and without blur estimation. Fig. 3.20 shows
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Figure 3.18: Top: the test image with differently blurred objects taken by a digital camera.

Bottom: the restored all-in-focus image.
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Figure 3.19: The blur map used for focus restoration.

(A) (B) (C)

Figure 3.20: Image fragments from both focused and unfocused parts in the restored image:

(A) the test image, (B) restored by the trained filter without blur estimation, (C) restored by the

proposed approach.
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image fragments from both focused and unfocused parts in the test image. One

can see that the focus part in the test image has been detected with a small blur

radius so that the proposed method does not apply much restoration. The result

from the proposed method without blur estimation shows incorrect restoration and

causes some overshoots at edges. For the unfocused part, the proposed approach

with blur estimation also demonstrates better restoration than that without blur

estimation.

3.5 Application II : Blur dependent coding artifacts

reduction

For digitally coded images or videos, coding artifacts are more visible in smooth

areas [59], for example, out of focus areas. Therefore, strong coding artifact re-

duction is encouraged in these areas. For other areas like smooth transitions in the

focused part, modest coding artifact reduction is more likely appreciated to avoid

over-smoothing effects. We expect that using the additional blur information, bet-

ter artifact reduction and sharpness enhancement can be achieved. In Chapter 2,

we have presented an approach for simultaneous artifact reduction and sharpness

enhancement. However, the classification only considers the local structure and

contrast. Therefore, to further improve the enhancement, we add the blur infor-

mation to the content classification.

3.5.1 Proposed approach

To combine the blur radius into the classification, we quantize the local blur radius

σ obtained from the blur map into a binary RB as the previous section. The

concatenation of ADRC code, DR and RB gives the final classification code.

The training procedure is similar to the enhancement mentioned in Chapter

2. To obtain the training set, we use high quality images as the reference output

images. Then we blur the original images with a small blur radius to introduce

the sharpness enhancement and then compress them to generate coding artifacts.

These blurred and corrupted versions of the original images are our simulated

input images. The proposed segmentation based blur estimation is applied on the

input images to obtain the blur map.

3.5.2 Experimental results

To show the performance of the algorithm, we use the test images in Fig. 3.13

- Fig. 3.14. These images are blurred and compressed using JPEG compression
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Table 3.1: MSE scores of different enhancement.

Mean Square Error

Image input enhancement Proposed Proposed Proposed Proposed

in chapter 2 1bit RB 2bit RB 3bit RB 4bit RB
(A) 35.0 30.7 29.3 29.1 28.9 28.8

(B) 81.7 65.7 63.9 63.1 62.6 62.4

(C) 49.3 38.7 37.1 36.7 36.4 36.3

(D) 19.1 15.7 14.3 14.1 13.8 13.8

(E) 21.3 16.9 16.0 15.8 15.6 15.5

Average 41.2 33.5 32.1 31.8 31.5 31.4

as in the training procedure. Then we apply the proposed enhancement with and

without blur estimation on the simulated input images. Then the MSE between

the original and the enhancement version can be used for the evaluation. Sim-

ilar to the evaluation in the application of focus restoration, we also investigate

different numbers of bits used for the blur information. In addition to the MSE

score, we also used the BIM metric proposed by Wu [101] for the evaluation. The

BIM metric measures the blockiness of compressed images or sequences. Value

BIM = 1 refers to no blockiness at all and the larger the BIM value is, the more

blockiness in the content.

The comparison of the MSE scores from the proposed enhancement with and

without blur estimation is shown in the Table 3.1. We can see that with blur

estimation the proposed approach can achieve a better MSE score. Because the

artifacts in the large blurred area cause a numerically small error, the improvement

on the MSE score is not that significant. For the BIM scores in Fig. 3.21, we see

that including the blur information clearly improves the artifact reduction. Given

both the MSE and BIM scores, we can see that the optimal number of bits for BR
is 3.

To have a qualitative comparison, the result of the test image in Fig. 3.13(A)

is shown in Fig. 3.22. We can see that the image has been well enhanced by

the proposed method. The coding artifacts have been greatly smoothed and the

flower in focus is nicely enhanced. In order to show the effectiveness of the blur

estimation, image fragments from both focused and unfocused parts from the re-

sults of the proposed enhancement with and without blur estimation are shown in

Fig. 3.23. The proposed enhancement has shown a better ability to remove the

blocking artifacts in the unfocused part and has a better sharpness enhancement in

the focused part.
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Figure 3.21: The BIM scores of different enhancement methods.

3.6 Conclusion

In this chapter, we have first presented a novel robust, low-cost blur estimation

algorithm based on image edges. The maximum of the difference ratio between

an original image and its two re-blurred versions has been proposed to identify

the edges and estimate the local blur radius in the original image. The proposed

method has been shown to have robust estimation, especially for the interference

from neighboring edges.

To generate more consistent blur estimation and discriminate focal blur from

other types of non-degradation blur, we have proposed a new segmentation-based

blur estimation method. The spatial constraints and blur information have been

introduced to the feature space to achieve a more robust and accurate object seg-

mentation and blur estimation, which has been tested on a variety of images. Es-

timating the segment blur also alleviates the over-segmentation problem. Further

we have applied the proposed segmentation based blur estimation to the proposed

framework, which results solutions to two applications, focus restoration and blur

dependent coding artifact reduction. The experiment results have shown that the

proposed blur estimation is very useful and brings significant improvement to

these applications.
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Figure 3.22: Blur dependant enhancement on the image at Fig. 3.13(A). Top: the input com-

pressed image. Bottom: the enhancement image with the proposed blur depend enhancement.
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(A) (B) (C)

Figure 3.23: Image fragments from both focused and unfocused part from the enhancement re-

sult of on the image at Fig. 3.13: (A) the simulated input image, (B) the result of the enhancement

without blur estimation, (C) the result of the proposed enhancement.
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Chapter 4

Class-count Reduction

In the previous chapters, we have introduced different classifiers into the con-

tent classification part of the proposed content adaptive enhancement framework,

which has demonstrated superior performance for many video enhancement ap-

plications. The content classification starts with the local structure classification

for resolution enhancement, such as edge direction and adaptive dynamic range

coding for luminance patterns. However, only local structure classification is not

enough for classifying image content in many other applications. We have seen

in the application to coding artifact reduction, the combination of local struc-

ture and local contrast classification is necessary for good performance. Adding

more classifications such as local variance further improves the performance. In

the application to focus restoration, including robust local blur classification can

adaptively enhance differently blurred parts in an image.

We expect that more content classification will be explored in the future. As

a convenient and scalable algorithm design, incorporating more features in the

classification widens the scope of the proposed framework for more possible ap-

plications and improves the overall performance, but also leads to an explosion of

the class-count (the number of the filters), many of which may be redundant.

For hardware implementation, it would be desirable to have some class-count

reduction techniques in which users could specify the number of classes to al-

low a graceful degradation of the performance. Early approaches like Atkins’

method of resolution synthesis [105] provide a way to obtain a flexible number of

classes from the image structure. However, it is originally designed only for fea-

ture classification in resolution enhancement and is computationally expensive. In

this chapter, we propose three class-count reduction techniques, class-occurrence

frequency, coefficient similarity and error advantage, which are based on our pro-

posed framework and are generally applicable for different content classifications.

The results show that with these techniques the number of classes can be greatly

reduced without serious performance loss.

75
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The rest of this chapter is organized as follows. We begin with a brief review

about two classification based filtering approaches in Section 1. In Section 2,

three different class-count reduction techniques are presented. The evaluation

of the techniques in the applications of resolution up-scaling and coding artifact

reduction are shown in Section 3. Finally, in Section 4, we draw our conclusions.

4.1 Introduction

The classification based filtering was first proposed by Kondo’s method [97] for

image interpolation, where only the image structure such as edge direction or lu-

minance pattern is used for the classification. In this thesis it has been extended to

a more general framework for more applications, such as coding artifacts and blur

dependant enhancement. The usual scheme in such methods is that, an input pixel

vector X consisting of N pixel values from the local image content within a filter

aperture is first classified by image features, such as local structure and contrast,

and a LMS optimal linear filter for that class is used to estimate the output pixel

ŷ with filter coefficients from a look-up-table (LUT). The LMS filter coefficients

are determined in an off-line training using simulated input and reference output

images. The filtering process can be defined as:

ŷ =
M

∑

j=1

L(j, X)W T
j X. (4.1)

L(j,X) =

{

1, if X belongs to class j
0, otherwise

(4.2)

where Wj is the filter coefficient vector for class j and L(j, X) is a function indi-

cating whether vector X belongs to class j.

Such content adaptive filtering techniques can be categorized as hard classi-

fication based methods since the classification result is always 1 or 0. Instead of

hard classification, some methods like Atkins’ method [105] use soft classifica-

tion, that is, the probability of a given input vector x belonging to a certain class

as the classification output. In Atkins’ method, the input vectors are modeled as

a Gaussian mixture with M classes, where every class corresponds to a multi-

variate Gaussian model with a parameter θ. The expectation maximization (EM)

algorithm [83] is applied to compute the maximum likelihood (ML) estimates of

the Gaussian model parameters θ. The probability of a given input vector X be-

longing to class j, p(j|X), is computed with the parameters θ. In every class, a

probability-weighted LMS algorithm is used to estimate the corresponding high

resolution pixels. Final high resolution pixel estimates are computed as a weighted
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average of the estimates for all classes, where the weights are the probabilities of

the input vector belonging to every class.

The derivation of Atkins’ method starts with the following assumptions:

Assumption 1:

The input pixel vectors X is modeled as a multivariate Gaussian mixture. That

is, the probability density function pX(X) is:

pX(X) =
M

∑

j=1

πjpX|j(X|j), pX|j(X|j) ∼ N (µj, σj) (4.3)

where j is the mixture class index; πj is the probability of cluster j; pX|j(X|j) is

a multivariate Gaussian density; µj is a N dimensional mean vector and σj is a

N × N covariance matrix. The Gaussian density pX|j(X|j) is:

pX|j(X|j) = (2π)−M/2|σj|−1/2exp(−1/2(X − µj)
T σj(X − µj)) (4.4)

It is found [105] that choosing the covariance for all the classes to be σ2I , where

I is the identity matrix, improves the performance. Therefore, Equation 4.4 be-

comes

pX|j(X|j) = (2π)−M/2|σ2I|−1/2exp(
−1

2σ2
||X − µj||2) (4.5)

Assumption 2:

Given the input low resolution pixel neighborhood and the context class, the

high resolution pixel is multivariate Gaussian. Given the input vector X , the class

distribution is independent of the high resolution and low resolution pixels.

By these assumptions, the minimal MSE estimate [82] will be:

ŷ =
M

∑

j=1

(AjX + βj)pj|X(j|X). (4.6)

According to Bayes’ rule, the posterior probability pj|X(j|X) will be:

pj|X(j|X) =
πjpX|j(X|j)

M
∑

j=1

πjpX|j(X|j)
(4.7)

By inserting Equation 4.7 into Equation 4.6, the equation of optimal image inter-
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polation is obtained:

ŷ =
∑M

j=1(AjX + βj)
πjpX|j(X|j)

M
∑

j=1

πjpX|j(X|j)

=
∑M

j=1(AjX + βj)
πjexp(

−1

2σ2
||X − µj||2)

M
∑

j=1

πjexp(
−1

2σ2
||X − µj||2)

(4.8)

The output pixel is computed as a combination of the output of all M filters. In

practice, it is more computationally efficient to combine the filter coefficients first.

Let

Aj′ =
M

∑

j=1

Aj

πjexp(
−1

2σ2
||X − µj||2)

M
∑

j=1

πjexp(
−1

2σ2
||X − µj||2)

(4.9)

βj′ =
M

∑

j=1

βj

πjexp(
−1

2σ2
||X − µj||2)

M
∑

j=1

πjexp(
−1

2σ2
||X − µj||2)

(4.10)

Then Equation 4.8 becomes:

ŷ = Aj′X + βj′. (4.11)

In Atkins’ method, the number of classes can be selected independently from

the filter aperture. In the hard classification based methods that we used through-

out this thesis, however, they are often directly related. For instance, the number

of ADRC classes and filter coefficients increases exponentially with the number of

pixels in the aperture. Every bit added for additionally coding the contrast, blur, or

grid position, further doubles the class count. A flexible number of classes, as in

Atkins’ method, would be desirable. Therefore, the goal is to design an algorithm

that uses hard classification and allows a flexible number of classes.

4.2 Class-count reduction techniques

As one can see in the previous section, the disadvantage of using hard classifica-

tion in the proposed framework is that it can introduce a large number of classes.
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Table 4.1: The contributions from the occurrence frequency sum of the first n most frequently

occurring classes to all the content classes in an image database.

n 64 128 256 512 1024 2048

Contribution 78.52% 87.96% 93.06% 96.32% 98.46% 99.59%

With such a large number, the method may not be efficient, i.e., there may be

some redundancy in the classes. In this section, we explore three clustering tech-

niques all capable to reduce the total number of classes, namely, class-occurrence

frequency, coefficient similarity and error advantage. These techniques all use a

similar scheme as follows. First one or more content classes will be clustered in a

class-cluster. In every class-cluster an optimal linear filter is used. Every content

class is assigned with a class-cluster label to indicate to which class-cluster it be-

longs. We use f(·) to denote the labeling function that maps the content class k to

the class-cluster number j.

The filtering process is shown in Fig. 4.1. First the input vector from the local

image content will be classified into content classes using different features, then

the label look-up-table (LUT) is used to find out which class-cluster the content

class belongs to. Then the corresponding filter is chosen for computing the output.

Figure 4.1: The block diagram of the class-reduced algorithm: the input vector is first pre-

classified using the content classification, then the content class is used to get the cluster number

from the label LUT. Finally, the filter coefficients for the cluster are used for the processing.

4.2.1 Class-occurrence frequency (CF)

One way to reduce the number of classes is to merge the classes which are less

important for the perceived image quality. The importance of a class is likely

reflected to how often it occurs in an image. Here, we use how many times a class

has occurred as the occurrence frequency of that class. Then we could count

the occurrence frequency of every content class and hope that it can tell how

important the content class is for the perceived image quality. For instance, in the
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application of coding artifact reduction application mentioned in Chapter 2, there

are 8192 classes with the classification of local structure and contrast. However,

the contribution from every class is not equal. We would expect that some classes

will occur in a natural image much more frequently than others. We then count the

occurrence frequency of every class and list the contributions from the occurrence

frequency sum of the first n (n=64, 128, 256, 512, 1024, 2048) most frequently

occurring classes to all the content classes in an image database as shown in Table

4.1. We see that the first 2048 most frequently occurring classes already count

for more than 99 percent of all the content. There are so many classes that rarely

occur in the content.

We would expect that if we merge the rarely occurring classes, the overall

performance will suffer little. Suppose Xk denotes all the input vectors in content

class k. We sort the input vectors X1, X2, ..., Xk to X[1], X[2], ..., X[k] from high

to low by the occurrence frequency. The M least frequent content classes will be

merged into a cluster. For the most popular classes, each will remain as a separate

cluster. The labels will be:

f(i) =

{

[i], if [i] < M
M, otherwise

(4.12)

In this reduction technique, only one cluster includes more than one content

classes. Therefore, in the hardware implementation, a number of comparators

can be used instead of the more expensive label LUT. Fig. 4.2 shows a block

diagram of using such comparators. M − 1 comparators contain the class codes

C[1], C[2], ..., C[M−1] which are sorted by its occurrence frequency. Once the input

pixels are classified by different content classifications, the class code will be

compared with the M −1 most frequently occurring class codes. The comparison

results are combined to a binary code to address the coefficient LUT.

Figure 4.2: The block diagram of using comparators for class-count reduction: M − 1 parallel

comparators which contain the class codes sorted by their occurrence frequencies are used.
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4.2.2 Coefficient similarity (CS)

Another possible way to reduce the class-count is to examine the similarity be-

tween the filter coefficients obtained from the training in every content class. The

filter coefficients directly show the filtering behavior and classes with similar co-

efficients can be merged likely with limited effect on the performance. The simi-

larity, here, is indicated by the Euclidian distance between coefficient vectors. We

propose to use the K-means algorithm [84] to cluster the classes.

The clustering consists of the following steps:

1. Specify the number of clusters M according to the requirement and initial-

ize the labels randomly.

2. Apply iterative steps to update the mean vector µi
j in every cluster and all

the labels, where i is the iteration number and j is the cluster number.

Calculate the mean vector:

µi
j =

∑

f(k)i−1=j

Wk/N
i−1
j (4.13)

where Wk is the coefficient vector from the content class k and Nj is the number

of content classes that belongs to the cluster j.

Update the labels with respect to the minimal distance from the mean vector:

f(k)i = arg min
j

D(Wk, µj). (4.14)

where D(Wk, µj) is the Euclidian distance between Wk and µj .

3. Repeat step 2 until the clustering converges. Convergence, here, means the

labels do not change compared to the labels from the previous iteration.

4.2.3 Error advantage (EA)

As we can see, the content adaptive methods try to minimize the mean square error

(MSE) between the output image and the target images, in every class. These two

mentioned class-count reduction techniques so far are based on heuristics, i.e., the

classification they employ does not guarantee the minimization of the total intra-

cluster MSE. To achieve just that, we propose a third technique that clusters the

content classes with respect to the error advantage of cluster LMS filters. Thus,

the minimal total MSE can be achieved given a fixed number of clusters and a

particularly bigger set of classes.

Atkins’ method classifies the local content of the low resolution image by

assuming the input vector is a multivariate Gaussian. However, that assumption

is not very strong. We expect that if the classification is performed without the

reference data, it mat not be optimal for fitting the image data into linear models.
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In contrast, we propose to include the reference images to improve the clustering,

which should lead to better processing results.

Therefore, a clustering scheme illustrated in Fig. 4.3 to minimize the total

intra-cluster MSE is proposed. The clustering scheme consists of the following

steps:

Figure 4.3: The clustering procedure of the proposed error advantage approach. The input and

output pairs are collected from the training material and are pre-classified into a number of content

classes. The EM algorithm is used to cluster the content classes to minimize the intra-cluster LMS

error.

1. Build the training set. The vector pairs that consist of input and reference

pixels are collected from the simulated input and reference images, respectively.

Sk denotes the collection of all the vector pairs whose input vectors belong to

content class k. Specify the number of clusters M according to the requirement

and initialize the labels randomly.

2. Apply the Expectation Maximization iterations [83] to the content classes

to update LMS filter coefficients CW i
j of all the clusters and cluster labels f(·)i,

where i is the number of iterations. The total intra-cluster MSE will decrease after

every iteration until the clustering converges.

M-step: Obtain the cluster LMS filter coefficients CW i
j by the LMS algorithm

using the labels f(·)i−1 as in Equation 1.3.

CW i
j = (

∑

f(k)i−1=j

Sk,xSk,x)
−1

∑

f(k)i−1=j

Sk,xSk,y (4.15)

where Sk,x and Sk,y denote all input vectors and reference vectors from the content

class k, respectively.



4.3. ALGORITHM COMPLEXITY ANALYSIS 83

E-step: Evaluate the coefficient vector CW i
j on every content class and update

the labels of content classes with respect to the minimal error.

f(k)i = arg min
j

E[(Sk,y − CW iT
j Sk,x)

2] (4.16)

3. Repeat step 2 until the labels no longer change compared to the labels from

the previous iteration.

Comparing to the coefficient similarity approach, the iteration here involves

much more calculations to evaluate all the cluster coefficients on the whole train-

ing set. Therefore, higher computation load and more training time is expected

for the error advantage approach.

4.3 Algorithm complexity analysis

In order to have some indication of the implementation cost of these classification

based algorithms (original Kondo’s method, Atkins’ method and the proposed

method), we perform a modest complexity analysis in this section.

As we can see from previous sections, all these three algorithms share a similar

block diagram. First an input pixel vector x consisting of N pixel values from the

local image content within a filter aperture is classified. Next, filter coefficients

from the off-line training will be fetched to compute the output pixel. The calcu-

lation of the current output pixel does not depend on the previous output pixel, or

every output pixel can be calculated without other output pixels. This means they

are all equally suitable for pipeline processing and these three algorithms have the

same degree of data parallelism. For the input pixel buffer size, the pixel vector is

the only data needed from the input image. Therefore, all these three algorithms

have the same pixel buffer size, which depends on the filter aperture size.

A further common part of all these three algorithms is that they have only one

linear filter for every pixel in the end. Therefore, we could compare the cost to

obtain the filter coefficients for each case. For Kondo’s method, the ADRC class

code is computed first, which consists of N comparisons and 2N bit operations.

Then N coefficients for a given class are fetched from the coefficient look-up-

table. For the proposed method, the operations are similar, except that an extra

fetch from the label look-up-table is needed. For Atkins’ method, all cluster pa-

rameter (µ) and filter coefficients (A, β) need to be fetched for classification. The

calculation of the posterior probability (Equation 4.7) includes N ×M additions,

3N × M multiplications and M exponential operations. The combination of the

filter coefficients includes N × M additions and (N + 1) × M multiplications.

Table 4.2 lists the complexity comparison of obtaining coefficients for the fi-

nal linear filter per output pixel for all the algorithms. In addition, it also shows
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Table 4.2: Algorithm complexity analysis.

Algorithm Kondo’s Atkins’ Proposed

Fetch operations N (2N + 2) × M N + 1
Comparison operations N 0 N

Bit operations 2N 0 2N
Multiplication operations 0 4N × M 0

Addition operations 0 2N × M 0
Exponential operations 0 M 0

Coefficient numbers N × 2N (2N + 2) × M N × M + 2N

the total number of coefficients for every algorithm. From the table, we can see

that the proposed method has a similar complexity with Kondo’s method, while

Atkins’ method has a much higher complexity. Atkins’ method is computation-

ally far more expensive because the probabilities need to be calculated and the

final filter coefficients are mixed on-the-fly, where the filter coefficients for the

proposed and Kondo’s methods are directly available in the pre-obtained LUT. In

terms of the number of coefficients, the proposed method is the lowest, given the

fact that the setting N > 9, M < 100 is usually used. This also suggests that the

filter coefficients of the proposed method can more likely be stored in the cache

of a processor in order to speed up the process.

4.4 Experimental results

In this section, we will evaluate these three class reduction techniques, class-

occurrence frequency (referred to as CF), coefficient similarity (referred to as CS)

and error advantage (referred to as EA), in the applications of coding artifacts

reduction and image interpolation.

4.4.1 Application to coding artifact reduction

We start with the application of simultaneous coding artifact reduction and sharp-

ness enhancement proposed in Chapter 2. In that application, we conclude that

ADRC classification alone is not enough to distinguish between the coding arti-

facts and real image structures. Therefore, one extra classification describing the

contrast information in the filter aperture is added. Here we use the same filter

setting as in Chapter 2. The filter aperture is a diamond shape consisting of 13

pixels. An extra classification bit is used for the local contrast classification. The

total number of classes is 8192.
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In the experiment, we use a training set including about 2000 high resolution

(1920 by 1080) frames. For the evaluation, we use some test sequences shown in

Fig. 4.4, which are not included in the training set. The test sequences are first

blurred, then compressed, as in the training, to generate the simulated input se-

quences. Then the proposed method in Chapter 2 with all these three class-count

reduction techniques is evaluated using these sequences. For a fair comparison,

we use the same number of clusters for these three class-count reduction tech-

niques. An attractive number for hardware implementation, M = 32, is chosen

for the experiment. For reference, we also include a fixed LMS filter which uses

no classification.

(A) Bicycle (B) Lena

(C) Birds (D) Boat (E) Motor

Figure 4.4: The testing material used for the evaluation in coding artifact reduction.

Table 4.3 shows the MSE comparison of the evaluated methods. In terms of

the MSE score, one can see that these three reduction techniques can reduce the

number of classes by a factor of 256 with a modest increase of the MSE, compared

to the MSE increase by using the fixed LMS filter. Among these three techniques,

EA achieves the lowest MSE score, which is expected, as it aims at minimizing

the MSE. Fig. 4.5 shows image fragments from the original sequence Bicycle, the

simulated one, the processed ones by the original method without and with these

reduction techniques. These three reduction techniques degrade the performance

of the proposed method without class reduction only little, while CS and EA show

better performance at suppressing the ringing artifacts than OF.
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(A) Original (B) Simulated input (C) Without reduction

(D) using CF (E) using CS (F) using EA

(G)Fixed filter

Figure 4.5: Image fragments from the results in the sequence Bicycle: (A) original, (B) simu-

lated input, (C) without reduction, (D) using occurrence frequency, (E) using coefficient similarity

, (F) using error advantage, (G) fixed filter.
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Table 4.3: MSE scores of evaluated methods in coding artifact reduction.

Mean Square Error

Sequence No reduction CF CS EA Fixed

Class No. 8192 32 32 32 1

Bicycle 76.9 88.0 87.0 85.1 97.7

Birds 15.7 17.0 16.5 16.9 19.8

Boat 87.5 91.1 90.7 90.2 96.5

Lena 40.4 43.0 42.6 42.3 46.0

Motor 141.6 150.2 149.1 148.0 157.5

Average 72.4 77.9 77.2 76.5 83.5

Table 4.4: MSE scores of evaluated methods in image interpolation.

Mean Square Error

Sequence No reduction CF CS EA Fixed Atkins’

Class No. 4096 100 100 100 1 100

Bicycle 41.4 47.0 45.6 45.2 65.4 49.8

Birds 20.3 20.4 20.3 20.2 22.4 22.1

Boat 55.1 57.7 56.9 56.9 63.2 59.3

Lena 78.1 82.6 81.5 81.4 90.2 83.1

Motor 52.4 53.1 52.8 52.7 53.1 52.7

Average 49.4 52.2 51.4 51.2 58.9 53.4

4.4.2 Application to image interpolation

For image interpolation, we apply these three class-count reduction techniques

to Kondo’s method. For the evaluation, we use some test sequences shown in

Fig. 4.6, which are not included in the training set. The test sequences first are

down-scaled two times to generate the down-scaled version as the simulated in-

put. Then Atkins’ method, original Kondo’s method and the proposed class-count

reduction methods are evaluated using these sequences. For a fair comparison, we

use the same number of clusters for the proposed method and Atkins’ method and

the same aperture for the proposed methods and Kondo’s method. Since Atkins’

method performs best at the cluster number M = 100 [105], we use the same

number here. Similar to the coding artifact reduction application, we also include

a fixed filter for reference.

Table 4.4 shows the MSE results of the evaluated methods. One can see that
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(A) Bicycle (B) Lena

(C) Football (D) Siena (E) Tokyo

Figure 4.6: The testing material used for the evaluation in image interpolation.

the proposed method outperforms Atkins’ method in terms of the MSE score,

while it is far less computationally expensive for both the classification and ob-

taining the filter coefficients. Fig. 4.7 shows image fragments from the original

high resolution sequence Bicycle and processed ones by all the methods. All these

three proposed methods render the lines in different directions correctly where

Atkins’ method produces some staircase artifacts. Among them, EA and CS pro-

duce slightly smoother results at reconstructing the lines than CF. They show more

or less the same interpolation quality as the original Kondo’s method, though the

LUT size had been reduced nearly by a factor of 40 and only one extra fetch

operation is needed.

4.5 Conclusion

The proposed content adaptive processing concept offers a convenient and scal-

able video enhancement algorithm design at the possible cost of an exploding

number of content classes. In this chapter, we have proposed three alternative

class-count reduction techniques, class-occurrence frequency, coefficient similar-

ity and error advantage for the proposed filtering framework. In the applications

of coding artifact reduction and image interpolation, it has been shown that these

techniques can greatly reduce the number of content classes without sacrificing
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(A) (B) (C)

(C) (D) (F)

(G) (H)

Figure 4.7: Image fragments from the results in the sequence Bicycle: (A) original, (B) down-

scaled version, (C) original Kondo’s method, (D) using occurrence frequency, (E) using coefficient

similarity , (F) using error advantage, (G) Atkins’ method, (H) fixed filter.



90 CHAPTER 4. CLASS-COUNT REDUCTION

much performance and are promising for applications using the proposed frame-

work with a large number of features. Among them, the coefficient similarity and

error advantage approach produce the best result. Taking the cost into considera-

tion, the class-occurrence frequency approach seems to be the choice.

The reduction technique of using error advantage offers an MSE-optimal way

to cluster or classify the content classes. This could be interesting for further

research to find such an optimal classification on the raw pixel data for video

enhancement. For instance, the classification on the input pixels still need to be

classified first by using ADRC, which is not yet proven to be optimal, and a look-

up-table is then used for the labeling, where a function that directly maps the input

vector to the cluster number is more desirable. Finding such a function merits

further attention.



Chapter 5

Nonlinear filtering

The proposed content adaptive processing framework includes two main parts,

content classification and model selection. In the previous chapters, we have pro-

posed new classifiers in the content classification part to extend the framework for

more applications. So far in the thesis, the processing model in the framework

has always been a linear filter. In this chapter, we try to answer the question what

nonlinear filters could add to our results.

From the literature it is known that order statistics filters and bilateral fil-

ters may perform better in smoothing tasks where edge preservation is important

[90][91][57]. Bilateral filters have the ability to locally adapt the filtering to the

image content. It is unclear, however, how bilateral filters can be tuned to optimal

adaptation given a filtering application like coding artifact reduction. Also it is

interesting to see if the content classification, like the types we have used in the

previous chapters, can still add to such an inherently adapting filter.

Like the bilateral filter and the linear filter, a neural network can be used as a

neural filter which also inherently adapts to the local image content and already

combines linear and nonlinear ingredients. It is, therefore, interesting to answer

the question if the neural filter can profit from additional content classification and

if it is the ultimate trained nonlinear filter, or not.

To answer the above questions in this chapter, we will study four different cat-

egories of nonlinear filters: order statistics filters, hybrid filters, neural filters, and

bilateral filters with and without various forms of classification in different en-

hancement applications including image de-blocking, noise reduction, and image

interpolation.

The chapter is organized as follows. We begin with an introduction about the

nonlinear filters in Section 1. According to the way the nonlinear filters introduce

nonlinearity, they can be classified into four categories. Four representative filters

from these categories are reviewed and discussed in Section 2. Although these

nonlinear filters are designed to adapt to the input content, there is no explicit

91
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content adaption as we described in previous chapters. In order to investigate

the additional performance improvements with the content adaption, we apply

these filters in the proposed framework of content adaptive filtering in Section 3

and an intensive evaluation of these nonlinear filters in different video processing

applications are provided in Section 4. Finally, we draw our conclusion in Section

5.

5.1 Introduction

The earliest and most widely used nonlinear filter probably is the median filter

[85]. In the median filter, the median value in the filter window is the output of

the filter. It shows good performance at removing impulsive noise and preserving

edges [87]. In fact the median filter uses the order statistics information and the

noisy values are regarded as outliers so that they can be removed. The further re-

search about the median filter has led to a category of nonlinear filters which pro-

duce outputs based on the rank ordered observations, such as order statistic (OS)

filters[90, 91]. Such filters based on only order statistics have some advantages

over linear filters. They are robust in environments with impulsive interference

and they can track signal discontinuities without introducing smooth transitions,

as linear filters do. However, the rank order information alone is not sufficient

in many applications. To incorporate both the spatial order and rank order in-

formation, many generalizations of rank-order filters have been proposed. Good

examples among them are combination filters [92, 93], permutation filters [94, 95]

and hybrid filters [96]. Different from the combination filters and the permutation

filters which exhibit high complexity, the hybrid filter is relatively simple. The

hybrid filter directly combines a linear filter and an OS filter. It exploits both the

spatial and rank information in the image content and is proposed to realize the

advantages of the OS filters in edge preservation and reduction of impulsive noise

components while retaining the ability of the linear filter to suppress Gaussian

noise.

With the introduction of the neural network to image processing, another type

of nonlinear filters, the neural filter, has also been proposed [106, 108]. The neural

filter is essentially a multi-layer feed forward neural network. The neural network

takes the neighboring pixels from an image as the input and outputs the processed

pixels. Rather than using the linear combination of the input pixel samples, a

nonlinear transfer function at the hidden unit is applied to the weighted sum of

the inputs. The flexibility of the neural network can be increased by using more

hidden units or hidden layers. Because of its universal approximation property,

the neural network can provide a better function approximation by a supervised

learning. With the more flexible nonlinear model, the neural filter has shown
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better performance than the linear filter [89].

The third category of nonlinear filters includes edge-preserving smoothing

methods which utilize pixel similarity information. The early approaches includ-

ing the sigma filter [86] and the fuzzy filter [99], give the weights of input pixels

according to their value differences from the central pixel value. More recently

the bilateral filter [57] has received considerable attention in areas of image pro-

cessing and computer vision. Unlike the sigma filter and the fuzzy filter of which

the coefficients are determined by the pixel value difference, the bilateral filter

adjusts its coefficients to the spatial closeness and photometric similarity of the

pixels. Due to this adaptivity, it has shown good performance at edge-preserving

smoothing for image processing applications, such as noise reduction and digital

coding artifact reduction [59]. For a linear filter, its coefficients can be adjusted

to achieve desired effects by a supervised learning and the least mean square op-

timization. However, this is not trivial for the bilateral filter. In order to solve

that problem, we proposed a new type of filter, the trained bilateral filter [130].

The trained bilateral filter adopts a linear combination of spatially ordered and

rank ordered pixel samples, which has been proposed in a hybrid filter. Different

from the hybrid filter where the similarity had been heavily quantized, the rank

ordered pixel samples in the proposed method are further transformed to reflect

the photometric similarity of the pixels. Consequently, the trained bilateral filter

possesses the essential characteristics of the original bilateral filter. On the other

hand, the design of the proposed bilateral filter makes it feasible to optimize the

filter coefficients. That is, the optimal coefficients for the combined pixel samples

can be obtained by the least mean square optimization as for the linear filters.

5.2 Nonlinear filters

In this section, we choose four representative nonlinear filters from the mentioned

categories in the previous section, the order statistics filter which only uses the

rank order information, the hybrid filter which combines the rank order and spatial

information, the trained bilateral filter which adopts both the spatial and similarity

information and the neural filter which introduces the nonlinear transfer function.

The definitions and properties of these filters are then reviewed.

5.2.1 Order statistic filter and hybrid filter

Linear filters estimate the output by using a weighted sum of the observation

samples in the spatial order. They have good performance at eliminating Gaus-

sian noise, but they also blur the signal edge [88]. Order statistics filters that

are based on rank order information have been introduced to solve the problem.
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Such filters track signal discontinuities so that they can provide better edge pre-

serving. However, using the rank order information alone has a limitation in

many applications. The limitation can be explained by a simple example. Con-

sider the observation vectors X1 = (181, 183, 182, 85, 77, 76, 180, 185, 190) and

X2 = (181, 183, 182, 180, 185, 190, 85, 77, 76), which are observations in a 3 × 3
aperture of a line and an edge in an image, respectively. Although these vec-

tors have very distinct and different patterns, their corresponding sorted vectors

are identical: Xr = (76, 77, 85, 180, 181, 182, 183, 185, 190). Clearly, rank order

based filters fail to exploit the spatial context within the filter aperture. To in-

corporate both the spatial order information and the rank order information, the

hybrid filter is proposed to combine a linear filter and an OS filter so that it can

realize the advantages of both filters.

Let us start with the definition of a linear filter. Let X = (x1, x2, ..., xn)T

be an observation containing n samples arranged by the spatial or temporal order

in which the samples are observed. Xr is the sorted observation vector Xr =
(x(1), x(2), ..., x(n))

T where x(i) is the ith largest sample in X , so that x(1) ≤ x(2) ≤
· · · ≤ x(n). Let the observation vector X be the input to the filter. For the linear

filter, we have

y = W T X (5.1)

where y is the output of the linear filter and W is an N × 1 vector of coefficients

for the linear filter. Consequently, the linear filter only takes consideration of the

spatial position of the pixel samples.

Then for an OS filter, we have

yr = W T
r Xr (5.2)

where yr is the output of the OS filter and Wr is an N × 1 vector of coefficients

for the OS filter.

By concatenating X and Xr we can obtain an extended vector Xh which con-

tains spatial ordered and rank ordered samples.

Xh = (x1, x2, ..., xn, x(1), x(2), ..., x(n))
T (5.3)

The hybrid filter is a linear combination of both spatial ordered and rank ordered

samples as shown in Equation 5.4.

yh = W T
h Xh (5.4)

where yh is the output of the hybrid filter and Wh is a 2N×1 vector of coefficients

for the hybrid filter.

As one can see from Equation 5.4, if the coefficients for the spatial ordered

samples or the rank ordered samples are constrained to be zero, the hybrid filter

becomes equal to the OS filter or the linear filter, respectively.
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The optimization of the hybrid filter can be accomplished in a similar fashion

as for the linear filter. Suppose the output of the hybrid filter yh(t) = W T
h Xh(t) is

used to estimate the desired signal d(t). The optimal filter coefficients are obtained

when the mean square error between the output and desired signal is minimized.

The mean square error MSE is:

MSE = E[(yh(t) − d(t))2] = E[(W T
h Xh(t) − d(t))2]. (5.5)

Taking the first derivative with respect to the weights and setting it to zero, we

obtain [127]:

W T
h = E[XhX

T
h ]−1E[Xhd]. (5.6)

5.2.2 Trained bilateral filter

The trained bilateral filter is inspired by the bilateral filter and the hybrid filter. The

bilateral filter is proposed as a generalization of other edge-preserving smoothing

filters such as the sigma filter [86] and the fuzzy filter [99]. It adapts its coefficients

to the spatial closeness and photometric similarity of the pixels. Consequently it

shows very good performance at edge-preserving smoothing. The output yb of a

bilateral filter is defined by [57]:

yb =

N
∑

i=1

xi · c(xi, xc) · s(xi, xc)

N
∑

i=1

c(xi, xc) · s(xi, xc)

s(xi, xc) = exp[−(xc − xi)
2/2σ2

s ]

c(xi, xc) = exp[−d(xc, xi)
2/2σ2

c ]

i = 1, 2, ..., N. (5.7)

where xc is the spatially central pixel and d(xc, xi) is the Euclidean distance be-

tween the pixel position of xi and xc. The Gaussian function has been typically

used to relate coefficients to the geometric closeness and photometric similarity

of the pixels, which seems somewhat arbitrary. Also it is not obvious how to

optimize the bilateral filter using a supervised learning like the hybrid filter.

As one can see, the hybrid filter incorporates both the rank order and spatial

position information as the bilateral filter. However, the rank ordering in the hy-

brid filter only gives some indications of the pixel similarity, that is, the similarity

has been heavily quantized. In order to incorporate the complete similarity infor-

mation as the original bilateral filter does, we obtain the vector Xs = (x[1], x[2],
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..., x[N ])
T by sorting the pixels in the filter aperture according to their pixel value

distance to the spatially central pixel xc. The ordering is defined by:

|x[i+1] − xc| ≥ |x[i] − xc|, i = 1, 2, ..., N. (5.8)

Then we transform the vector Xs into Xs′ = (x[1]′, x[2]′, ..., x[N ]′)T . The transform

is defined as:

x[i]′ = µ(xc, x[i]) · xc + (1 − µ(xc, x[i])) · x[i], i = 1, 2, ..., N. (5.9)

where µ(xc, x[i]) is a membership function between x[i] and xc. The membership

function is defined as:

µ(xc, x[i]) = MIN(
|x[i] − xc|

K
, 1). (5.10)

where K is a pre-set constant. Other membership functions such as a Gaussian

function are also possible. The vector Xtb is obtained by concatenating the vectors

X and Xs′:
Xtb = (x1, x2, ..., xn, x[1]′, x[2]′, ..., x[N ]′)T . (5.11)

Similar to the linear filter, we define the output of the proposed trained bilateral

filter as:

ytb = W T
tbXtb. (5.12)

where Wtb is a 2N × 1 vector of weights.

The expected advantage of the trained bilateral filter is that, the weights of the

transformed samples that are similar to the center sample value are increased to

better preserve edges and suppress the noise. On the other hand, the linear part

obtains the spatial information which is useful for local image structure recon-

struction. Essentially the trained bilateral filter behaves as the original bilateral

filter whose coefficients are continuously dependent on the spatial and intensity

difference of pixels. Additionally the coefficients of the trained bilateral filter can

be optimized by a supervised learning in a similar fashion as the hybrid filter.

5.2.3 Neural filter

Different from other filters that use the rank order and similarity information, the

neural filter introduces the nonlinearity by using a nonlinear transfer function.

In the neural filter, a multi-layer feed-forward neural network is employed as a

convolution kernel. The neural network takes the pixels in a filter window from

the input image and outputs the processed pixel as the result of the neural network

computation. A two-layer neural network with Nh hidden units as shown in Fig.

5.1 is defined by:

ynn = f2(LWf1(IWX + b1) + b2). (5.13)
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Figure 5.1: The two-layer neural network model with several hidden units at the hidden layer.

where IW is an Nh × N matrix of weights connecting the input layer to the

hidden layer; LW is a 1 × Nh matrix of weights for the hidden layer; b1 is an

Nh × 1 matrix of bias for the hidden layer; b1 is a bias for the output and f1, f2

are transfer functions for the hidden and output layer, respectively. The transfer

function can be an identity function or a sigmoid function. Functions such as

the hyperbolic tangent that produce both positive and negative values are usually

chosen for the hidden layer. Such functions tend to yield a faster training than

functions that produce only positive values such as log-sigmoid, because of bet-

ter numerical conditioning [111]. The identity function is often employed in the

output layer because the characteristics of a neural network are improved signifi-

cantly with an identity function when applied to function approximation issues in

image processing [76]. When all the transfer functions are identity functions, the

neural filter becomes a linear filter. The flexibility of the neural network can be

increased by using more hidden units or hidden layers.

The neural network acquires various nonlinear functions by a supervised learn-

ing. The optimal coefficients for a neural network can be obtained through back-

propagation [107]. During the training, the errors between outputs and targets

are computed and the derivatives of the errors are back-propagated to adjust the

coefficients of the network iteratively and minimize the mean squared errors.

5.3 Content adaption

As one can see in the previous section, these nonlinear filters do not explicitly uti-

lize the content classification from which the linear filter can profit a lot as shown

in the previous chapters. We expect the content classification could bring addi-

tional performance improvement to these nonlinear filters. Therefore we apply

the nonlinear filters in the proposed content adaptive filtering framework.

To apply the nonlinear filters in the proposed framework, we simply replace

the linear filtering part with a nonlinear filter as shown in Fig. 5.2. The training
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procedure is similar to the one for the linear filter. We optimize the coefficients of

these nonlinear filters for every class.

Figure 5.2: The block diagram of using nonlinear filters in the proposed framework: the local

image structure is classified using the content classification and the filter coefficients are obtained

from the LUT.

5.4 Experiments and results

In this section, an evaluation of the four mentioned nonlinear filters in different

image processing applications, image de-blocking, noise reduction and image in-

terpolation, is provided. In the evaluation, we compare these filters with the linear

filter. And also different content classifications are investigated.

Training and test material

The training material includes a variety of high quality natural images, including

people, building, animals and landscapes. All the filters are trained on the same

training material. And the test images and the snapshots from the test sequences

used in our experiments are shown in Fig. 5.3. Note that the test material is not

included in the training material.

Filter setting

For the neural filter, a two layer feed forward neural network is used. The transfer

function used in the hidden layer is the hyperbolic tangent function, whereas the

identity function is used at the output layer. The pixel value range in the neural

filter is re-scaled from the range [0, 255] to [-1, 1], which corresponds to the

output range of the hyperbolic tangent function. For a fair comparison, we use

two hidden units in the hidden layer, which will result in a similar number of

coefficients as the hybrid filter and the trained bilateral filter. Table 5.1 lists the

numbers of the coefficients of different filters per class.
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(A) Bicycle (B) Birds (C) Boat

(D) Football (E) Lena (F) Motor

Figure 5.3: The testing material used for the evaluation.

Table 5.1: Number of coefficients of different filters per class.

Filter Linear OS Hybrid Trained bilateral Neural

Coefficient number N N 2N 2N 2N+5

Evaluation procedure

For the evaluation, we degrade (compress, add noise, down-scale) the original

test sequence to generate the simulated input sequences. Then different filters are

applied to the simulated input sequences. The MSE scores between the original

test sequences and processed sequences will be used as the performance indicator.

5.4.1 Image de-blocking

In the experiment for image de-blocking, we evaluate the filter performance to

remove JPEG compression coding artifacts. The test images and sequences have

been compressed using JPEG compression at a quality factor of 20 (the quality

factor of 100 is the best). The free baseline JPEG software from the Independent
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JPEG Group website 1 is used for the JPEG encoding and decoding. We use a di-

amond shape filter window shown in Fig. 5.4 to balance between the performance

and the complexity. As suggested in Chapter 2, we use the ADRC classification

and the DR classification for the content classification. To show the contribution

from the individual classifiers, we separately investigate the ADRC classification,

the DR classification and their combination. For the DR classification Tr = 32 is

used.

Figure 5.4: The diamond shape filter window for de-blocking: the estimated output is in the

center of the window.

In addition to the MSE score, we also use the BIM metric proposed by Wu

[101] for the evaluation. The BIM metric measures the blockiness of compressed

images or sequences. The BIM value BIM = 1 refers to no blockiness at all

and the larger the BIM value is, the more blockiness in the content. A lower BIM

value can be achieved by a strong smoothing filter. However, this will remove lots

of details and increase the MSE score. Therefore, we use both the MSE and BIM

scores for the evaluation.

The MSE scores of all the filters with different classifiers are shown in Table

5.2. The average BIM scores of the test sequences processed by these filters are

shown in Fig. 5.5. For the MSE score, all the nonlinear filter, except the OS

filter, perform better than the linear filter. For the BIM score, all the nonlinear

filters have better results than the linear filter, while the OS filter has the lowest

BIM score. For both the MSE and BIM scores, all the filters can benefit from

the ADRC classification and the DR classification. With the combination of the

ADRC and DR classification, the best MSE and BIM scores are achieved. The OS

filter has the highest MSE score because it only uses the rank order information

and fails to exploit the structure information. This can be shown in the MSE scores

for the sequences such as Bicycle, Boat and Motor which contain many image

details. With the ADRC classification, the performance of the OS filter can be

greatly improved, although it is still worse than the linear filter. The hybrid filter

has shown better performance than the linear filter due to the added rank order

information. With a similar complexity as the hybrid filter, the trained bilateral

filter shows much better performance in the MSE score, even without the content

1The web address is: http://www.ijg.org/files/jpegsrc.v6b.tar.gz
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Table 5.2: MSE scores for de-blocking.

Mean Square Error

Sequence Linear OS

Classification∗ I II III IV I II III IV

Bicycle 54.1 53.7 45.8 45.3 89.1 89.0 63.0 62.4

Birds 11.6 11.6 11.3 11.8 17.2 17.3 14.6 13.6

Boat 64.4 64.3 62.5 61.6 87.7 87.5 73.2 72.5

Lena 31.9 31.9 30.2 30.1 39.4 39.3 34.0 33.3

Motor 96.7 96.3 89.2 89.3 156.6 156.2 116.4 115.2

Average 51.7 51.5 47.8 47.6 78.0 77.9 60.2 59.4

Mean Square Error

Sequence Hybrid Tr-bilateral

Classification∗ I II III IV I II III IV

Bicycle 50.2 49.8 48.5 44.7 45.0 44.9 41.5 41.5

Birds 11.5 11.5 11.0 10.9 10.9 10.9 10.5 10.5

Boat 63.1 62.9 62.3 61.2 60.0 59.9 59.5 59.5

Lena 31.1 31.1 30.2 29.6 30.0 29.9 29.0 28.8

Motor 93.7 93.1 90.3 88.5 86.9 86.8 84.2 84.2

Average 49.9 49.6 48.5 47.0 46.6 46.4 45.1 45.1

Mean Square Error

Sequence Neural Compressed

Classification∗ I II III IV

Bicycle 53.7 51.9 45.9 45.3 63.5

Birds 11.2 11.2 11.2 11.2 13.8

Boat 63.4 62.8 61.4 61.8 72.3

Lena 31.9 31.0 29.5 29.3 36.9

Motor 95.4 94.3 89.1 89.1 108.9

Average 51.1 50.2 47.4 47.3 59.1

∗Classification: I - no classification, 1 class, II - DR, 2 classes, III - ADRC, 4096 classes,

IV - ADRC+DR, 8192 classes.
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Figure 5.5: The average BIM scores of the test sequences processed by these filters with different

classifications: LI-Linear filter, OS-Order statistics filter, HB-Hybrid filter, TB-Trained bilateral

filter, NN-Neural filter. Classification: I - no classification, 1 class, II - DR, 2 classes, III - ADRC,

4096 classes, IV - ADRC+DR, 8192 classes.

classification. And it also achieves a relatively low BIM score. This suggests

that the trained bilateral filter has a stronger signal adaptivity when the similarity

information is incorporated so that the additional content classifications will not

bring much improvement.

This is also reflected in the image fragments from Motor image processed

by all the filters shown in Fig. 5.6-5.7. With the classification the linear filter

can suppress the coding artifact nicely, but the edges are also blurred comparing

to the original. The OS filter can greatly reduce the coding artifacts but it also

destroys all the fine structural details. Although it shows better details preserving

with the structure classification, the overall performance is not still as good as

the linear filter. Comparing to the linear filter, both the hybrid filter and the neural

filter can equivalently suppress the coding artifacts and demonstrate a better ability

at preserving edges. As suggested in the MSE and BIM evaluation, the trained

bilateral filter demonstrates the best edge preserving ability and removes coding

artifacts effectively. When comparing the results of using different classifications,

we see that using the ADRC classification improves the performance at the fine

details and using the ADRC+DR classification removes the blocking artifacts in

the flat area better than using the ADRC classification alone.
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(A) Original (C) LI (G) OS

(B) Corrupted (D) LI DR (H) OS DR

(E) LI ADRC (I) OS ADRC

(F) LI ADRC+DR (J) OS ADRC+DR

Figure 5.6: Image fragments from the image Motor processed by different filters with different

classifications: LI-Linear filter, OS-Order statistics filter.
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(K) HB (O) TB (S) NN

(L) HB DR (P) TB DR (T) NN DR

(M) HB ADRC (Q) TB ADRC (U) NN ADRC

(N) HB ADRC+DR (R) TB ADRC+DR (V) NN ADRC+DR

Figure 5.7: Image fragments from the image Motor processed by different filters with different

classifications: HB-Hybrid filter, TB-Trained bilateral filter, NN-Neural filter.
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5.4.2 Noise reduction

For noise reduction, we will evaluate these filters’ abilities to remove Gaussian

noise. The Gaussian noise usually manifests itself as irregular luminance pat-

terns, which are different from real image structures. We expect that the ADRC

classification could help distinguish the noise from the real image structures so

that better noise reduction can be achieved. And also we hope that better noise

reduction can be achieved in the low contrast area, in which case the DR classifi-

cation is needed. Therefore, in the experiment, the content classifications, ADRC,

DR and ADRC+DR, are investigated. The Gaussian noise applied here has a mean

of 0 and a standard deviation of 10. A 3 × 3 filter window centered at the pixel

to be estimated is employed to eliminate the noise. The threshold used in the DR

classification is optimized to Tr = 40.

Table 5.3 lists the MSE scores of all the methods in the applications of Gaus-

sian noise reduction. Similar to the results of image de-blocking, all the filters can

benefit from the ADRC classification and the DR classification. With the com-

bination of the ADRC and DR classification, the best MSE scores are achieved.

Although the OS filter produces the worst MSE, with the content classification it

still has a quite close score to the linear filter. It suggests that the rank order in-

formation has some effect at removing the noise. This is also shown in the results

of the hybrid filter. The MSE score of the hybrid filter is improved by combin-

ing the linear filter and the OS filter. The trained bilateral filter has a significant

improvement over the hybrid filter, given the fact that they have a similar com-

plexity. Without any content classification, the trained bilateral filter achieves a

better MSE score than any other filter with the content classification.

To enable a qualitative comparison, some image fragments from the sequence

Bicycle restored by all the filters are shown in Fig. 5.8 - 5.9. The OS filter shows a

strong noise reduction, but it also removes the details. Although the edge preserv-

ing performance of the OS filter can be further improved by the content classifi-

cation, it is still not as good as the other nonlinear filters. The hybrid filter shows

better performance at preserving edges than the linear filter. The trained bilateral

filter further improves the edge preserving, producing the best contrast. The neu-

ral filter shows similar edge preserving, but it also produces some overshoots near

the edges. When comparing the results of using different classifications, we see

that using the DR classification improves the contrast a little and using the ADRC

classification improves the performance at reconstructing the fine details. Further-

more, we see that the trained bilateral filter shows a great flexibility. It has good

performance no matter whether the content classification is included. Without the

content classification, it shows better performance than the linear filter with the

content classification.

From the results of image de-blocking and noise reduction, we can conclude
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Table 5.3: MSE scores for noise reduction.

Mean Square Error

Sequence Linear OS

Classification∗ I II III IV I II III IV

Bicycle 57.1 52.4 40.1 37.7 68.1 65.3 46.3 43.2

Birds 25.3 22.7 19.8 19.2 21.6 21.0 20.2 20.0

Boat 54.1 51.9 46.3 45.2 73.4 72.4 53.0 51.5

Lena 33.0 31.3 28.5 28.0 37.9 37.1 30.5 30.2

Motor 79.2 74.7 60.5 58.1 114.7 112.0 72.0 67.9

Average 49.7 46.6 39.0 37.6 63.1 61.6 44.4 42.6

Mean Square Error

Sequence Hybrid Tr-bilateral

Classification∗ I II III IV I II III IV

Bicycle 48.8 43.6 39.6 36.6 32.0 31.4 29.4 28.8

Birds 24.3 22.8 19.7 19.3 20.2 19.8 19.0 18.8

Boat 52.3 49.2 46.3 44.3 39.8 39.9 38.8 38.5

Lena 31.6 30.7 28.4 28.0 28.0 27.7 26.9 26.8

Motor 73.6 66.6 60.2 55.7 47.9 47.8 45.3 44.6

Average 46.1 42.5 38.8 36.7 33.6 33.3 31.9 31.5

Mean Square Error

Sequence Neural Corrupted

Classification∗ I II III IV

Bicycle 49.7 47.6 33.1 31.8 100.3

Birds 20.6 20.6 19.4 20.1 100.4

Boat 48.3 48.0 42.6 41.9 100.2

Lena 31.6 31.3 27.6 27.8 100.3

Motor 73.0 71.0 56.8 54.7 100.2

Average 44.6 43.7 35.9 35.3 100.3

∗Classification: I - no classification, 1 class, II - DR, 2 classes, III - ADRC, 4096 classes,

IV - ADRC+DR, 8192 classes.
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(A) Original (C) LI (G) OS

(B) Corrupted (D) LI DR (H) OS DR

(E) LI ADRC (I) OS ADRC

(F) LI ADRC+DR (J) OS ADRC+DR

Figure 5.8: Image fragments from the sequence Bicycle processed by different filters with

different classifications: LI-Linear filter, OS-Order statistics filter.
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(K) HB (O) TB (S) NN

(L) HB DR (P) TB DR (T) NN DR

(M) HB ADRC (Q) TB ADRC (U) NN ADRC

(N) HB ADRC+DR (R) TB ADRC+DR (V) NN ADRC+DR

Figure 5.9: Image fragments from the sequence Bicycle processed by different filters with

different classifications: HB-Hybrid filter, TB-Trained bilateral filter, NN-Neural filter.
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that similarity information is very useful for noise reduction applications. The

rank information only gives some indication about the pixel similarity, therefore

the hybrid filter profits little from it. Although the neural filter is regarded as a

flexible model which can approximate any smooth function, it still heavily de-

pends on the content classification to get satisfactory results. From the results,

we can see that a filter that is designed to inherently adapt to signal can achieve

similar performance as a non-inherently adaptive filter that is based on the con-

tent classification. It also suggests that the performance of the neural filter can be

further improved by inherent adaptations like the trained bilateral filter.

5.4.3 Image interpolation

In image interpolation, local structure classification has proven to bring signifi-

cant improvement for the linear filtering [110]. We expect that the nonlinear filter

based on the structure classification can further be improved. Because interpola-

tion does not change with the local contrast, we use only ADRC for the content

classification. In the experiment, we apply all the filters with an aperture size of

3 × 3 on the low resolution pixels to estimate the corresponding high resolution

pixels using window flipping [98]. We adopt the same evaluation process as Zhao

[110].

In Table 5.4, the MSE scores on the test images and sequence in the application

of image interpolation are provided. The table shows that the OS filter has the

highest MSE score because they only use the rank order information and fail to

exploit the content structure. The MSE scores for these filters with the ADRC

classification have a significant reduction compared to those without on every test

image and sequence, which suggests that the structure information is important for

interpolation. Comparing the results from the linear filter, the hybrid filter and the

trained bilateral filter, we see that the rank order information and the similarity

information do not bring much improvement as they do not contribute to better

interpolation. The neural filter demonstrates a somewhat more robust estimation

and achieves the lowest MSE score.

For a qualitative comparison, some image fragments from the Bicycle se-

quence interpolated by these methods are shown in Fig. 5.10. Without the ADRC

classification, none of these filters produces satisfactory results, especially the OS

filter destroys the local structure heavily. With the ADRC classification, more im-

age details have been reconstructed due to the local structure information. The

results from the linear filter and the hybrid filter show that they generate some

staircase effects at some lines, while those lines are reconstructed more smoothly

by the trained bilateral filter and the neural filter. Comparing the results from the

trained bilateral filter and the neural filter, we can also see that the neural filter

reproduces thinner lines that are closer to the original.
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Table 5.4: MSE scores for image interpolation.

Mean Square Error

Sequence Linear OS Hybrid

Classification∗ I III I III I III

Bicycle 68.9 46.6 294.8 80.1 69.1 45.7

Birds 62.3 54.9 179.6 80.6 62.3 54.7

Boat 65.4 58.1 271.1 87.9 65.6 59.4

Lena 23.6 20.9 94.2 33.4 23.6 21.1

Motor 109.8 88.1 334.5 138.1 109.9 86.7

Average 66.0 53.7 234.8 84.0 66.1 53.5

Mean Square Error

Sequence Tr-bilateral Neural

Classification∗ I III I III

Bicycle 69.0 44.4 63.0 43.2

Birds 62.2 54.4 61.3 54.6

Boat 65.3 57.3 64.0 55.9

Lena 23.5 20.5 23.2 20.0

Motor 109.8 89.1 104.2 87.6

Average 66.0 53.1 63.1 52.3

∗Classification: I - no classification, 1 class, III - ADRC, 256 classes
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(A) Original (C) LI (E) OS

(B) Down-scaled (D) LI ADRC (F) OS ADRC

(G) HB (I) TB (K) NN

(H) HB ADRC (J) TB ADRC (L) NN ADRC

Figure 5.10: Image fragments from the Bicycle sequence interpolated by different filters with

different classifications: LI-Linear filter, OS-Order statistics filter, HB-Hybrid filter, TB-Trained

bilateral filter, NN-Neural filter.
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5.4.4 Nonlinearity analysis

From the results in the previous section, we see that these nonlinear filters can

bring performance improvement over the linear filter. To further gain insight of

the nonlinear filter, we perform an analysis to see where the nonlinearity has been

used. Here we choose the trained bilateral filter and the neural filter.

For the trained bilateral filter, the input vector Xtb consists of vector X and

Xs′, which can be regarded as a linear part and a nonlinear part. Suppose W T
tb =

(W T , W T
s ), where W and Ws are the corresponding weights for vector X and Xs′

respectively. Therefore, we have

yl = W T X (5.14)

ys = W T
s Xs′ (5.15)

ytb = yl + ys (5.16)

We can compare the contribution of yl and ys to the final output ytb. If the con-

tribution of ys is bigger than yl, the trained bilateral filter is regarded as working

nonlinearly.

For the neural filter, the hyperbolic tangent function used in the hidden unit can

be considered as an identity function in the input range of [−0.1, 0.1] as shown in

Fig. 5.11. If the input range is out of the linear range, then the neural filter works

nonlinearly.
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Figure 5.11: The input range of the hyperbolic tangent function. Solid line indicates the hy-

perbolic tangent function, dash line indicates the identity function and thick solid line shows the

near-linear area of the hyperbolic tangent function.

In order to illustrate the nonlinearity, we perform the analysis on the com-

pressed Motor image in the application of image de-blocking. Fig. 5.12 shows

outputs of the nonlinearity analysis. The black area in the output indicates where

the nonlinearity has been used and the white area indicates the opposite. As shown



5.5. CONCLUSION 113

in the figure, nonlinearity mainly occurs around edges in the image, where this

nonlinearity has shown better edge preservation in the results.

Figure 5.12: The output of the nonlinearity analysis, Top left: the input Motor image. Bottom

left: the output of nonlinearity analysis from the trained bilateral filter. Bottom right: the output

of nonlinearity analysis from the neural filter. The black area in the output indicates where the

nonlinearity has been used.

5.5 Conclusion

In this chapter we have introduced several types of nonlinear filters. Different

from the linear filter which only exploits the spatial information, the hybrid filter is

proposed to incorporate the rank information and the neural filter uses a nonlinear

transfer function to introduce nonlinearity. Inspired by the bilateral filter and the

hybrid filter, we propose a new type of nonlinear filter, the trained bilateral filter.

It utilizes the pixel similarity and spatial information as the original bilateral filter

and can be optimized to acquire desired effects by the least mean square algorithm.

These nonlinear filters are applied in the proposed framework of content adaptive

filtering to see whether they can profit from the content classification. A thorough

evaluation of these nonlinear filters is done in application to image de-blocking,

noise reduction and image interpolation.
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The chapter shows that given a filtering application like blocking artifact re-

duction it is possible to tune the bilateral filter to the optimal adaptation using

the proposed trained bilateral filter. By adopting the similarity information, the

trained bilateral filter possesses the essential characteristics of the original bilat-

eral filter and can be optimized by the least mean square algorithm. It achieved

the best results in the experiments. The order statistics filter can heavily suppress

the noise but also destroys the details. The rank information only gives some in-

dication about the pixel similarity, therefore the hybrid filter which combines the

rank order and spatial information can profit little from it.

The neural filter has more flexibility and demonstrates the best performance

to reconstruct the details. In the application of image interpolation, the rank order

and similarity information do not bring much performance improvement. None

of these filters is designed to inherently adapt itself to better image interpolation.

Therefore, all the filters benefit a lot from the content classification, which is cru-

cial for the interpolation.

All the nonlinear filters can profit from the content classification, but the

trained bilateral filter profits little and it shows satisfactory edge preserving and

noise reduction without the classification. This suggests that a nonlinear filter

which inherently adapts to the signal well can perform better than a simple lin-

ear filter with the content classification. Furthermore, the results from the chapter

suggest that designing a filter to inherently adapt to the signal is as important as

designing content classifications. A good filter design can lead to a simpler con-

tent classifier. Taking account of the number of coefficients and the performance,

the trained bilateral will be the best choice for the implementation.

The trained bilateral filter can adapt to noise or coding artifacts within the filter

aperture. However, it can not adapt to the level of noise or coding artifacts because

within the range of the filter aperture, the level of noise or coding artifacts is

difficult to estimate. Using the histogram of local feature statistics to estimate the

local image quality could improve the performance of the trained bilateral filter.

Incorporating such adaption to the trained bilateral filter remains an interesting

topic for future research.



Chapter 6

Trained Transfer Curves

In the previous chapters, we have seen how the proposed content adaptive process-

ing framework can be used for different video enhancement applications such as

noise reduction and resolution enhancement. And they have shown superior per-

formance over other approaches. Until now, we have not yet discussed contrast

enhancement. In this chapter, we try to find if contrast enhancement can benefit

from the proposed framework of content adaptive video enhancement.

From the literature it is known that the grey level transformation is widely

used for contrast enhancement. The transfer curve for the transformation can be

selected from pre-defined functions or obtained by processing the histogram, such

as histogram equalization. However, we did not find examples where the trans-

fer curve function can be tuned to achieve some desired effects by a supervised

learning.

As image content varies between different regions in the video, it is also very

desirable to have localized contrast enhancement. However, how to optimize the

local contrast enhancement is still a question.

To answer these questions, we propose a trained approach to obtain the opti-

mal transfer curve for contrast enhancement, which is based on histogram clas-

sification. A supervised learning is applied to optimize the transfer curve from

a version enhanced by computationally intensive algorithms. Furthermore, we

propose a combined global and local contrast enhancement approach using sep-

arately trained transfer curves. A global transfer curve and a local one, are used

to transform the local mean and the difference between the local mean and the

processed pixel, respectively. The advantage is that it can adapt to both global and

local content and offer optimized enhancement.

The rest of the chapter is organized as follows. We start with a brief survey

of different contrast enhancement techniques in Section 1. Then we propose the

trained transfer curve approach for the global enhancement in Section 2. Section

3 discusses content classification for the local enhancement. We present a hybrid

115
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enhancement approach based on the trained global and local methods in Section 4.

In order to evaluate the proposed method, subjective evaluation experiments have

been performed and the results are presented. Finally, we draw our conclusion in

Section 5.

6.1 Introduction

Contrast enhancement is an important image processing technique to increase the

image quality. It was traditionally approached by the grey level transformation,

which is one of the simplest of all image enhancement techniques [115]. It is

a transformation that maps a pixel value in an input image to a pixel value in

the processed image. Usually the values of the transformation are stored in one-

dimensional array and the mappings are implemented by look-up-tables [113].

Early grey level transformations use some basic type of functions for image en-

hancement, such as linear and logarithmic functions [114].

Since a fixed transformation may not be optimal for different image contents,

some histogram-based approaches have been proposed [117]. A histogram shows

the frequency distribution of all the grey levels in an image, that is, the numbers

of pixels with every grey level. In these approaches, the grey level transformation

values are calculated through processing the histogram. One typical example is

histogram equalization, which re-maps the grey levels in the image such that the

resultant histogram approximates that of a uniform distribution. Fig. 6.1 shows

that the contrast of an input image is well enhanced by histogram equalization.

The histogram of the processed image is more uniformly distributed. The problem

of histogram equalization is that it can over-enhance the image contrast when the

grey scale distribution is highly localized [121]. It is not clear how to tune these

approaches for some desired enhancement.

In the category of histogram equalization methods, a fixed transfer curve is

usually applied globally to an image. This is based on the assumption that the

image quality is uniform over all areas. However, this assumption does not hold

when distributions of grey levels change from one region to another. Therefore,

another category consisting of local contrast enhancement [120] [118] [119] has

been proposed to improve the local enhancement performance. The main idea

in the local contrast enhancement is to find the transformation function for every

pixel based on its neighborhood content. In [120] the histogram of grey levels

in a window around each pixel is generated first. The cumulative distribution of

grey levels, that is the cumulative sum over the histogram, is used to map the

input pixel grey levels to the output. However, these methods usually have some

disadvantages that they often generate halo artifacts between different regions. An

example of such halo artifacts is shown in Fig. 6.2. The halo artifacts occur near
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(A) Input (B) Processed by histogram equalization

Figure 6.1: An example of histogram equalization: the image contrast is enhanced and the

histogram of the processed image is more uniformly distributed.
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the region boundaries since the local histograms there change dramatically.

The local contrast enhancement approaches do not have the knowledge of the

global image content so that they can not enhance the overall contrast. Therefore,

a third category includes hybrid methods which enhance the contrast at differ-

ent resolution scales. One example is to use frequency band boosting. An im-

age is split into different frequency bands and local contrast enhancement can be

achieved by boosting the gains of the higher frequency bands. In [122] Bae pro-

posed to separate an input image into a base part and a detail part through edge

preserving filtering. The global contrast of the base part is enhanced by apply-

ing histogram matching from an example image. The details part is boosted and

added back to the modified base. The halo artifacts are prevented, but the method

lacks automatic content adaptation and it is also not clear how to optimize the

enhancement.

6.2 Trained transfer curves for global enhancement

In order to tune the contrast enhancement to achieve some desired effects, such as

manually tuned results by experts or superior enhancement by some computation-

ally expensive algorithms, we propose a trained classification-based approach for

contrast enhancement. Here we start with the global contrast enhancement, later

introduce the local and hybrid enhancement. Existing global methods usually

compute the transfer curve from the histogram on-the-fly and methods generating

satisfactory results are often computationally expensive. We propose to obtain

trained transfer curves based on histogram classification through a off-line train-

ing rather than computing them on-the-fly. In this approach, the histogram of an

input image is first calculated and classified into a number of classes. Then in

every class, we obtain the optimal transformation function using input images and

desired target versions.

6.2.1 Proposed approach

To classify the histogram into a number of classes, we could try to use adaptive

dynamic range coding (ADRC) mentioned in the previous chapter. ADRC is a

simple and effective way to classify the image structure by thresholding the pixel

vector. We could expect that similar thresholding could also lead to an effective

histogram classification. Let h(n) denote the histogram, where n is the bin num-

ber. Then we have

ADRC(h(n)) =

{

0, if h(n) < hav

1, otherwise
(6.1)



6.2. TRAINED TRANSFER CURVES FOR GLOBAL ENHANCEMENT 119

(A) Result from a local contrast enhancement method [118]

(B) Result from a hybrid contrast enhancement method [122]

Figure 6.2: Results from a local and hybrid contrast enhancement method. The local methods

usually generate halo artifacts between different regions. This can be prevented by using edge

preserving filtering to generate different resolution scales.
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Figure 6.3: An example of the histogram classification.

where hav is the average level in the histogram. To avoid an impractical number of

classes, we use eight bins for the histogram calculation. The original luminance

value is quantized equally into eight levels. The concatenation of the ADRC codes

will give the class number, c. Fig. 6.3 shows an example of the histogram classi-

fication.

Let X = {X(i, j)} denote a given image composed of L discrete grey levels

denoted as x0, x1, ..., xL−1 , where X(i, j) represents the intensity of the image

at the spatial location (i, j) and X(i, j) ∈ {x0, x1, ..., xL−1}. The class number

for the histogram of the input image is c. Let Y = Y (i, j) denote the desired

reference image. Let fc(x) be the transfer curve function to be obtained for class

c. Then we have the estimated output

X̂(i, j) = fc(X(i, j)) (6.2)

The mean squared error MSE between the desired image and the estimated image

will be

MSE = E[(Y − fc(X))2] (6.3)

The optimal solution can be obtained by minimizing MSE. Taking the first

derivative with respect to every variable in fc(x) and setting them to zeros, we

obtain:

fc(x) = E[Y (i, j)|c], i, j ∈ {X(i, j) = x} (6.4)

The optimization procedure of the proposed trained transfer curve is shown

in Fig. 6.4. We use images that need to be enhanced as the input images and

apply the computationally intensive enhancement to generate reference images.

These input images and output reference images are used as the training material.

Before the training, the images are classified using the histogram classification.

The image pairs that belong to one specific class are used for the corresponding

training, resulting in an optimized transformation function for this class.
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Figure 6.4: The training procedure to obtain the trained transfer curve. The input and output

target image pairs are collected from the training material and are classified using the histogram

classification. The transfer curves are then optimized for specific classes.

Figure 6.5: The block diagram of applying the classification-based transfer curve: the grey level

histogram is classified using the ADRC and the optimal transfer curve for that class is obtained

from the LUT.

To illustrate how to apply this classification-based transfer curve, a block dia-

gram is shown in Fig. 6.5. First the histogram of the input image is obtained and

classified by ADRC. Then the ADRC code is used to get the optimized transfer

curve in that class from the look-up-table. The grey levels in the input image are

transformed using the optimized transfer curve, resulting in the enhanced image.

6.2.2 Experimental results

For the evaluation of this proof-of-concept, we pick up the Auto Contrast function

in Adobe Photoshop as the learning target, as it generates satisfactory results and

can be regarded as an unknown method similar to manual tuning. In the experi-

ment, an image database that contains various types of images has been used for

the training. The desired target images are generated by applying the Auto Con-

trast function to the image database. For testing, we used the test images, Lena

and Stone, as shown in the Fig. 6.6 and 6.7, which are not included in the training
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Original Lena image Histogram of Lena image

class code 01111100

processed by Auto Contrast Transfer curve defined by Auto Contrast

processed by the proposed method Trained transfer curve

Figure 6.6: Experiment results on the test image Lena, its histogram classification, and enhanced

results and transfer curves by Auto Contrast and the proposed method.
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Original Stone image Histogram of Stone image

class code 01111100

processed by Auto Contrast Transfer curve defined by Auto Contrast

processed by the proposed method Trained transfer curve

Figure 6.7: Experiment results on the test image Stone, its histogram classification, and en-

hanced results and transfer curves by Auto Contrast and the proposed method.
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Figure 6.8: The testing material used for the subjective evaluation.

set.

As one can see, the results from the trained transfer curve method are quite

close to the enhanced version by Photoshop Auto Contrast. More precisely, one

can see that the trained transfer curve has a similar shape, but smoother. The result

suggests that the desired effects of some enhancement methods can be mimicked

by a supervised learning. As the histogram processing based approaches need to

process the histogram, the proposed method does not require that. Therefore it has

a lower complexity. We shall emphasize that the ADRC histogram classification

is merely an example classification. Further research into alternative classification

schemes is necessary. As a proof-of-concept, however, the ADRC classification

is efficient and serves our needs.

In order to subjectively assess the proposed method, we performed a paired

comparison of test sequences and their enhanced versions obtained from Auto

Contrast and our trained approach. The test set includes two video sequences and

three still images, both of which were not included in the training. The screen

shots of these sequences and images are shown in Fig. 6.8. Taking the original

material and its two enhanced versions as the test material, each two of them with

the same content were shown side by side on an LCD screen with a resolution

of 1920 by 1080 and the order had been randomized. Eighteen expert and non-

expert viewers were asked to sit in front of the screen at a distance of three times

the screen height and select the one that he/she perceived as having the better

image quality.

An analysis of the paired comparison result as proposed by Montag [61] is

shown in Fig. 6.9. The 95 percent confidence interval is used for the image

quality scale. Here, we show the average results on all the sequences and images

and also the results on the sequence group and the image group, respectively. On
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Results for all material

Results for sequences Results for images

Figure 6.9: The subjective evaluation results: A higher value on the quality scale means a higher

preference by the viewers. Methods: a - original, b - the trained global approach, c - the trained

global and local approach.

average, the quality scale of the two enhanced versions is higher than the original.

This suggests that the perceptual image quality has been significantly increased

by the two enhanced versions. Similar results have also been reflected in the

sequence group and the image group. In the image group, the difference between

the two enhanced versions is larger. Although there is no significant difference

between the trained approach and the target algorithm, the trained approach is

more preferred in the test. We expected this, because the trained approach uses the

statistically averaged result and the trained transfer curve is smoother. However,

more experiments are required to get statistically significant results.
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6.3 Trained transfer curves for local enhancement

In the previous section, we have introduced the proposed transformation function

to the global image enhancement, that is, a fixed transformation function is used

to provide similar enhancement for all regions of the entire image. This is based

on the assumption that the image quality is uniform over all areas. However,

this assumption does not hold when distributions of grey levels change from one

region to another. In such a case, a local contrast enhancement will improve the

performance.

6.3.1 Local enhancement based on histogram classification

A straight-forward approach to the local enhancement is to use the mentioned

global method for every pixel based on the histogram of its local neighbors. This

has been proposed in [120]. For every pixel, the local histogram needs to be cal-

culated and classified. However, this is computationally demanding. Therefore, it

is less suitable for real-time video enhancement.

An alternative would be to apply the enhancement in a way that compromises

between a global histogram equalization algorithm and a fully adaptive algorithm.

In this case, the image can be divided into a limited number of non-overlapping

blocks and the same histogram equalization technique is applied to pixels in each

block. The problem of this approach is that the pixels near the block border will

be mapped differently and consequently a significant blocking effect will be re-

sulted. To alleviate the blocking effect, bilinear interpolation of the mappings of

neighboring blocks can be used, that is, the mapping for a pixel is obtained by

using a weighted-sum of the mappings of its four nearest blocks. Fig. 6.10 shows

the results of the block based local histogram equalization with and without the bi-

linear interpolation. The results show that the local contrast can be enhanced, but

the blocking effect still remains even after the bilinear interpolation. Therefore,

we have to look for classifiers that could avoid using a block-based approach.

6.3.2 Local enhancement based on local mean and contrast

We consider that local mean and contrast in a neighborhood of the processed pixel

could be a better choice than the local histogram for content classification. The

local mean is defined as the local average of the neighboring pixels and the local

contrast is defined as the difference between the maximum and minimum pixel

values. As they can be computed through a sliding window, we could expect that

it will reduce the blocking effect.

Therefore, we train the transfer curve based on the local mean and the lo-

cal contrast. In the experiment the local mean M and the local contrast DR are
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(A) Without interpolation (B) With interpolation

Figure 6.10: The block based local histogram equalization: (A) without interpolation, (B) with

interpolation.

equally quantized into 8 levels, that is, 3 bits class code, respectively. The ob-

tained transfer curve is shown in Fig. 6.11. The upper figure shows trained trans-

fer curves for different local mean values with a fixed local contrast value. And

the lower figure shows trained transfer curves for different local contrast values

with a fixed local mean value.

The results suggest that the contrast enhancement does not depend much on

the local mean, which means for the local contrast enhancement we could use

only the local contrast classification. From the transfer curves for different local

contrast with a fixed local mean, we can see that when the local contrast is higher,

there will be more stretch in the local details. This suggests that in the smooth

area the local details will not be stretched heavily to avoid some artifacts and in

the fine structure area it will be boosted.

Different from the histogram classification, the local enhancement based on

the local contrast is approached by a sliding window manner. Furthermore, it

shows that local contrast enhancement does not depend on the local mean, through

which we can integrate the global enhancement.
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(A)

(B)

Figure 6.11: Trained transfer curves using the local mean and contrast classification: (A) Curves

for different local contrast values with a fixed local mean value, (B) Curves for different local mean

values with a fixed local contrast value.
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Figure 6.12: Block diagram of the proposed hybrid enhancement method: the input is divided

into a local mean part and a detail part by using the edge-preserving filtering. The local mean part

is transformed using a trained global curve based on the histogram classification, and the detail

part is transformed by a trained local curve based on the local contrast quantization.

6.4 Trained transfer curves for hybrid enhancement

Since the global enhancement alone cannot enhance local details in an image and

the local enhancement does not improve the overall contrast, a hybrid approach

could be beneficial. Here, we propose a new contrast enhancement approach. In-

spired by Bae’s method [122], we divide the input image into two parts, a local

mean part and a detail part. To improve the global contrast, the proposed method

applies a trained global transfer curve to the local mean, which is obtained through

edge-preserving filtering over the input image. The detail part, which is the differ-

ence between the local mean part and the original input, is transformed by a local

transfer curve controlled by the local contrast.

6.4.1 Proposed approach

The diagram of the proposed method is shown in Fig. 6.12. First within a local

window from the input image, the local mean is calculated using edge preserving

filtering. The difference between the central pixel and the local mean is used as the

input to the local transfer curve, which is selected according to the local contrast.

The final output pixel is obtained by adding the transformed difference and local

mean. The window slides pixel by pixel over the entire image and the processed

image then is obtained.

The local mean u(i, j) at position (i, j) is calculated within a window centered

at the processed pixel. Let X(i + m, j + n) denote the pixels within the window,

where m, n are the horizontal and vertical offset to the pixel coordinates, respec-

tively. To avoid generating halo artifacts, edge preserving filtering, such as the

sigma filter and the bilateral filter, can be used to calculate the local mean. In the

experiment we find that the sigma filter has similar performance as the bilateral
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filter for this application and also the sigma filter has a lower complexity. There-

fore, we use the sigma filter in the proposed approach. The sigma filter averages

the pixels which are in the same region as the central pixel. Here, if the differ-

ence between a pixel and the central pixel is below a certain threshold, then the

pixel is regarded to be in the same region as the central pixel. Otherwise, it is not.

Therefore, the local mean u(i, j) is:

u(i, j) =
∑

m,n

X(i + m, j + n)/Nkm, n ∈ {|X(i + m, j + n) − X(i, j)| < th}

where th is the mentioned threshold and Nk is the number of the pixels which

belong to the same region as the central pixel. Then the local detail part v(i, j),
which is the difference between the central pixel and the local mean, is defined as:

v(i, j) = X(i, j) − u(i, j) (6.5)

The local detail v(i, j) will be transformed using a local transfer curve, which

is controlled by the local contrast. Let LC(i, j) denote the local contrast, which

is defined as the quantized difference between the maximum and minimum pixel

value in the window with the same region label:

LC(i, j) =
max(X(i + m, j + n)) − min(X(i + m, j + n))

Q

m, n ∈ {|X(i + m, j + n) − X(i, j)| < th} (6.6)

where Q is a pre-defined quantification.

The optimal local transfer curve can be obtained in a similar manner as the

global transfer curve, except that the classification is based on the local contrast

and the enhancement to generate the reference image is applied locally.

Let gLC(x) denote the local transfer curve and fGC(x) denote the global trans-

fer curve, then the output pixel Y (i, j) will be:

Y (i, j) = fGC(u(i, j)) + gLC(v(i, j)) (6.7)

6.4.2 Experimental results

For the evaluation, we test our proposed method on some natural images, and we

also compare the global and local methods from the previous sections. For the

proposed method, we obtained the local transfer curve by learning from the adap-

tive contrast limited histogram equalization method [118] which is well-known

and produces superior results. For the global histogram classification, we use a 6

bin histogram calculation, that is, 6 bits for the classification. For the local con-

trast classification, we quantize the local contrast into 32 levels, which are 5 bits

for the classification. Different window sizes have been used in the experiment.
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We show some experimental results using Fig. 6.1 (A) as an input image.

Image fragments from the input image and different processed versions are shown

in Fig. 6.13. We can see that the global method can enhance the overall contrast

well, but the local contrast enhancement is rather limited. The result of the local

histogram equalization method can increase the local contrast very nicely in the

texture area. However, it generates quite visible halo artifacts in the boundary

area between the sky and the pyramid. When the block size of the local method

increases, the halo artifact becomes less visible but also the local contrast boost

becomes weaker. The hybrid method seems to be able to combine the advantages

of the global and local methods. It can improve the overall contrast while boosting

the local details. With a local window size of 5 pixels, it can only boost the details

near the highest frequency. When the window size grows to 21 pixels, it can also

boost lower frequency. Taking all of these into consideration, it seems that the

hybrid method with a larger window size is the best approach.

As there is no method for a quantitative evaluation, we performed a subjective

assessment on the hybrid method compared with the trained global method and

the original, similar to the previous section. The same test material shown in Fig.

6.8 is used. As suggested, we use a window size of 21 by 21 pixels to obtain well

balanced result. The subjective evaluation results are shown in Fig. 6.14. Here,

we can see that, on average, the hybrid approach shows a significant improvement

over the global enhancement, which is significantly better than the original input.

Also it seems that the global enhancement is more appreciated in the experiment

since the improvement of the global enhancement is greater than that of the local

enhancement. This is probably because the local detail enhancement is less visible

than the overall contrast enhancement.

6.5 Conclusion

In this chapter, we have shown a proof-of-concept for the trained approach to

obtain contrast enhancement by a supervised learning. The transfer curve depends

on the histogram classification of the input image. It shows that it is possible to

obtain the desired effect by learning other histogram-based enhancement methods

or expert-tuned examples using the trained approach. We have initially used the

ADRC as a histogram classifier, which is shown by the experimental result to be

effective for the enhancement. Whether it is the optimal histogram classification

requires further research work.

For the local enhancement, we conclude that it does not depend on the local

mean, but on the local contrast. Therefore, the coarsely quantized local contrast

is proposed as the classifier. Furthermore, we have introduced a hybrid method

based on the trained approach. The input image is divided into a local mean part
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(A) (B) (C)

(D) (E) (F)

Figure 6.13: Image fragments from the processed results: (A) input, (B) enhanced by local

method with a block size of 16 by 16 pixels, (C) enhanced by local method with a block size of 64

by 64 pixels, (D) enhanced by global method, (E) enhanced by hybrid method with a local window

size of 5 by 5 pixels, (F) enhanced by hybrid method with a local window size of 21 by 21 pixels.
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Results for all material

Results for sequences Results for images

Figure 6.14: The subjective evaluation results: A higher value on the quality scale means a

higher preference by the viewers. Methods: a - original, b - the trained global approach, c - the

trained global and local approach.
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and a detail part by using the edge-preserving filtering to prevent the halo effect.

The local mean part is transformed using a trained global curve based on the his-

togram classification, and the detail part is transformed by a trained local curve

based on the local contrast classification. Compared with the global and local

methods, the hybrid method shows the best balanced performance at enhancing

the image contrast and preventing halos. The proposed hybrid approach seems

to be promising. However, in this chapter only a two-scale version is investi-

gated. We could expect that an extension to more scales will further improve the

enhancement performance, which merits further attention.



Chapter 7

Conclusions and future work

There are various research topics in the field of video enhancement, such as noise

reduction, sharpness, resolution, color and contrast enhancement. Although quite

diverse in terms of interests, all these topics have one common ultimate goal, that

is, to improve the subjective video quality, or make videos or images more beau-

tiful. How to achieve it is not always trivial. In the past, algorithm designers

have to iterate between the processes of evaluating the algorithm improvement

through subjective assessment experiments and adjusting the algorithm improve-

ment, which are very time consuming and eventually lead to a high design cost.

Researchers try to find a subjective video quality metric to replace subjective as-

sessment experiments. Such attempts have not been successful so far.

Least mean square methods that optimize parameters automatically through

minimizing the mean square error between processed images and desired versions

attract researchers’ attention. It can replace the parameter tuning by heuristics.

However, these methods often have a solution which is optimal on the average

image quality. They perform rather poorly on local image details. In order to

solve this problem, some classification based approaches have been proposed,

which apply the least mean square optimization for individual categories that are

classified by local image content, such as edge directions. Such local content

adaptivity has led to a better image quality.

Having this concept of local content adaptivity for least mean square opti-

mization, we find that it could be generalized into an ideal framework for content

adaptive video processing. The goal of this thesis is to provide such a content

adaptive video processing framework, which can replace heuristics and reduce

the algorithm design time. We recognize two main parts in the concept: video

content classification and processing model selection. To generalize the frame-

work, we have proposed more new classifiers and new types of processing models

in these two main parts.

Prior work about this concept mainly focused on resolution enhancement such

135
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as resolution up-scaling and de-interlacing. Not much research work has been

done with noise reduction, especially coding artifact reduction in digitally coded

videos. To extend the framework to cope with coding artifact robust enhance-

ment applications, a classifier to detect coding artifacts is required. We find that

the combination of local structure and contrast information can provide a simple

but effective means to distinguish coding artifacts from real image structures. In-

corporating this new classifier into the content adaptive filtering framework has

led to several artifact robust enhancement algorithms for digitally coded videos,

including artifact reduction and its integrations with sharpness and resolution en-

hancement.

Incorporating these new features in the framework not only improves the en-

hancement but also introduces more interesting applications to the framework. We

further explore the content classification for blurred videos, which has resulted in

new local blur estimation methods and two blur dependant enhancement applica-

tions. Additionally, we show that it is possible to reduce the number of content

classes without much sacrifice to the performance.

Usually a linear model or filter is used for such a concept in the prior work.

It is known that nonlinear filters can perform better where the nonlinearity is sig-

nificant, such as in smoothing tasks where edge preservation is important. It is

interesting to see what the nonlinear filters could add to the framework. We have

extended the filter model to the hybrid filter, the neural filter. Our exploration

in this area has also resulted in a new type of nonlinear filter, trained bilateral

filter which possesses the advantages of the original bilateral filter and the least

mean square filter. Besides filtering, there are some other processing forms, such

as using transfer curves in the contrast enhancement. We have also explored the

opportunity to apply the framework to contrast enhancement by using a content

adaptive transfer curve in the adaptive processing part.

7.1 Conclusions

In this thesis, a versatile framework for content adaptive video processing is pro-

posed. We have proposed new classifiers and processing models to the framework

and extend it for more applications. The main findings are summarized as follows.

7.1.1 Content classification

Chapter 2 presents a novel classifier for coding artifacts. Based on this classi-

fier, several coding artifacts reduction algorithms combined with resolution up-

conversion and sharpness enhancement have been developed.
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• Using two orthogonal image properties, local structure and local contrast,

can distinguish the coding artifacts. Usually many existing coding artifact

reduction methods require the compression parameter or the bit stream in-

formation or coding block grid detection to obtain good performance. The

proposed classifier does not require such information, which makes it suit-

able for postprocessing digital video compressed by different codec stan-

dards.

• In the application of JPEG de-blocking, the proposed coding artifact reduc-

tion algorithm showed better performance than Nosranatia’s method which

is one of the best methods. In the application of H.264 de-blocking, the

proposed method outperforms the in-loop filter recommended in the H.264

standard, although the in-loop filter has an advantage to utilize all the com-

pression information in the loop.

• We have proposed an integrated artifacts reduction and resolution up-conversion

approach. Based on the proposed coding artifact classification, the proposed

framework is used for estimating the high resolution pixels and eliminating

the coding artifacts at the same time. The optimal coefficients are obtained

by a training between the high resolution reference and the simulated de-

graded version. The results showed that the proposed method can well re-

duce coding artifacts and preserve image structures and fine details. We

have also compared the proposed integrated approach with two alternative

concatenated versions. The results showed that the integrated approach not

only has a better performance but also is much more economical than the

other two in terms of coefficients look-up-table size. Similarly, we have also

proposed an integrated approach to achieve simultaneous coding artifact re-

duction and sharpness enhancement.

In Chapter 3, we look at the problem of enhancing videos which contain dif-

ferently blurred objects. New local blur estimation methods have been proposed.

Furthermore we have applied the proposed blur estimation to two blur dependant

video enhancement applications.

• The maximum of the difference ratio between an original image and its

two re-blurred versions has been shown to be able to identify the edges

and estimate the local blur radius in the original image. Compared to other

edge based approaches, it does not require edge detection and have robust

estimation, especially for the interference from neighboring edges.

• To obtain a consistent blur estimation over objects that allows more stable

restoration or enhancement, we have proposed three approaches to improve
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the consistence of the blur map, spatial-temporal neighborhood, propagat-

ing estimates and segmentation-based approach. The proposed segmentation-

based approach gives the most consistent and accurate estimation results.

• In the proposed segmentation-based approach, we include not only the color

information but also the spatial information and blur radius into the feature

space, which leads to meaningful segmentation results. We also see that

some over segmentation problems which later can be partially solved by the

blur estimation. By assigning the segmentation blur, the segments with the

same blur radius are merged together in one region.

• We have applied the proposed segmentation based blur estimation in two

applications, focus restoration and blur dependent coding artifact reduction.

In the focus restoration application, experiments shows that objects that

are differently blurred can be brought back into focus with the proposed

method. In the application of blur dependent coding artifact reduction, the

proposed approach has shown a better ability to remove the blocking arti-

facts in the unfocused part and a better sharpness enhancement in the fo-

cused part.

Chapter 4 discusses how to reduce the class-count in the content classification,

which can increase exponentially with added image features.

• We have proposed three class-count reduction techniques, class-occurrence

frequency, coefficient similarity and error advantage, which are based on

our proposed framework and are generally applicable for different content

classifications.

• In the applications of coding artifact reduction and image interpolation,

it has been shown that these three class-count reduction techniques can

greatly reduce the number of content classes without sacrificing much per-

formance and are promising for applications with a large number of classes.

Among them, the coefficient similarity approach and the error advantage

approach produce the best result. Taking the cost into consideration, the

class-occurrence frequency approach seems to be the choice.

7.1.2 Processing model

Chapter 5 introduces several types of nonlinear filters for the content adaptive

processing framework.
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• We have replaced the linear filter in the framework with several types of

nonlinear filters. An evaluation of these nonlinear filters in application of

image de-blocking, noise reduction and image interpolation showed that the

nonlinear filters have better performance than the linear filter in different ap-

plications. All the nonlinear filters can profit from the content classification

accordingly.

• We have proposed a new type of nonlinear filter, the trained bilateral filter.

It utilizes the pixel similarity and spatial information as the original bilat-

eral filter and can be optimized to acquire desired effects by the least mean

square optimization.

• The good performance of the trained bilateral filter in noise reduction sug-

gested that a single nonlinear filter which inherently adapts the signal well

can perform better than a simple linear filter with the content classification.

Chapter 6 presents a proof-of-concept for the trained approach to obtain de-

sired contrast enhancement.

• We have proposed to obtain trained transfer curves based on histogram clas-

sification through a off-line training rather than computing them on-the-fly.

In this approach, the histogram of an input image is first calculated and clas-

sified into a number of classes. Then in every class, we obtain the optimal

transformation function using input images and desired target versions. The

result suggested that the desired effect of some enhancement methods can

be mimicked by a supervised learning.

• We have also investigated the trained transfer curves for local contrast en-

hancement. The results suggested that the contrast enhancement does not

depend much on the local mean, which means for the local contrast en-

hancement we could only use the local contrast classification.

• We further propose a hybrid method to enhance both the local and global

contrast. The input image is divided into two parts, a local mean part and

a details part. To improve the global contrast, the proposed method applies

a trained global transfer curve to the local mean, which is obtained through

edge-preserving filtering over the input image. The details part, which is

the difference between the original input and the local mean part, is trans-

formed by a trained local transfer curve controlled by the local contrast.

Experiments showed that the hybrid method seems to be able to combine

the advantages of the global and local methods. It can improve the overall

contrast while boosting the local details.
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7.1.3 Concluding remarks about the framework

To achieve content adaptivity, many image restoration techniques use prior infor-

mation, or constraints about the local content in their cost functions. Usually these

constraint functions have different optimization methods, which makes it difficult

to find a unified approach. The proposed framework resembles the concept of

prior information, or constraints, by quantizing these types of information into a

number of content classes, which offers a unified way to incorporate local con-

tent information. By simply adding more classes, the framework can easily cope

with, even integrate, more different applications, which greatly reduces the time

to design a video enhancement algorithm.

To obtain the optimal solution, iterative approaches are usually taken to solve

many classic inverse problems in the video processing field. The proposed frame-

work uses a direct solution which can be regarded as a quantized approximation.

The approximation can be linear or nonlinear, filters or transfer curves. The ap-

proximation is pre-calculated through an off-line training by minimizing the dif-

ference between output images and desired versions. No on-the-fly optimization

is required. Therefore, it is more attractive for real-time implementation.

We also see content classification and adaptive processing as the two essential

parts that supplement each other. Designing a processing model to inherently

adapt to the signal is as important as designing content classifications. A dedicated

model design can lead to simpler content classification. Vice versa, a good content

classification can simplify the model design.

7.2 Future work

7.2.1 Introduce the framework to more applications

We have proposed new content classifiers and processing models to bring the

framework to many applications, including coding artifact and noise reduction,

sharpness, resolution and contrast enhancement. There are also some applications

we have not tried with the proposed framework, for instance, color enhancement.

We would expect that new classifiers need to be designed for these applications.

In Chapter 5, we have investigated nonlinear filters in the application of Gaus-

sian noise reduction. Impulsive noise, which typically due to dusts inside the

camera, or faulty CCD elements within digital cameras, is another different type

of noise. It is also interesting to investigate further whether these nonlinear filters

can bring similar benefits for reducing the impulsive noise.
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7.2.2 Replace heuristics in classification

Research in the field has been greatly accelerated by the generic framework and

automatic optimization of parameters. However, on the road towards a fully auto-

matic video enhancement framework, there are problems that are not completely

solved yet. Heuristics remains in the classification. Researchers still need to spend

time to invent good classifiers. How to achieve automatic content classification for

different application is still not known. In Chapter 3, we have proposed to cluster

similar classes into larger classes. One solution could be using this clustering tech-

nique to form classes automatically from a large collection of basic classes. There

has been also research work about using adaptive boosting [124] to synthesizing

weak classifiers. It has been used to build a local coding artifact metric [125].

Such techniques are interesting for the future research for the content adaptive

framework.
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