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Abstract—We propose a new approach for locating forged 

regions in a video using correlation of noise residue. In our 
method, block-level correlation values of noise residual are 
extracted as a feature for classification. We model the 
distribution of correlation of temporal noise residue in a forged 
video as a Gaussian mixture model (GMM). We propose a two-
step scheme to estimate the model parameters. Consequently, a 
Bayesian classifier is used to find the optimal threshold value 
based on the estimated parameters. Two video inpainting 
schemes are used to simulate two different types of forgery 
processes for performance evaluation. Simulation results show 
that our method achieves promising accuracy in video forgery 
detection. 

I. INTRODUCTION 
In recently years, due to the advances of network 

technologies, low-cost multimedia devices, sophisticated 
image/video editing software and wide adoptions of digital 
multimedia coding standards, digital multimedia applications 
have become increasingly popular in our daily life. However, 
the digital nature of the media files, they can now be easily 
manipulated, synthesized and tampered in numerous ways 
without leaving visible clues. As a result, the integrity of 
image/video content can no longer be taken for granted and a 
number of forensic-related issues arise.  

Two types of forensics scheme are widely used for 
image/video forgery detection: active schemes and passive 
schemes. With the active schemes, the tampered region can be 
extracted using a pre-embedded watermark. However, this 
scheme must have source files to embed the watermark first; 
otherwise, the detection process will fail [1]. On contrary, the 
passive schemes extract some intrinsic fingerprint traces of 
image/video to detect the tampered regions. 

When a real-world scene is captured by a digital camera, 
the information about the scene is processed by a pipeline of 
various camera components, such as color filter array (CFA), 
demosaicing, white-balancing, automatic gain control (AGC), 
Gamma correction, post-processing, and JPEG compression, 
before the final digital image is produced as shown in Fig. 1. 
In the imaging pipeline, each individual processing 
component modifies the input image via a particular 

processing algorithm, which may leave some intrinsic 
fingerprint traces out the output [1][2]. 

 
Fig. 1. Imaging pipeline. 

In many digital image/video-based forensic applications, 
the intrinsic fingerprint traces, such as the process of CFA 
[3][4], Camera Response Function (CRF) [5], sensor pattern 
noise [6][7][8], and compression artefacts [9] can be used to 
detect image/video tampering such as resampling [10], copy 
and paste, slicing [4][11], and double compression [12].  
Besides, the imperfect information in the camera is also used 
for forensics application [2].  

Recently, sensor pattern noise has been successfully used as 
intrinsic sensor biometrics for nonintrusive forensic analysis 
[6][7][8]. For example, the sensor pattern noise has proven to 
be useful and reliable in identifying camera sources [6][8]. 
The method proposed in [6] first extracts the pattern noise 
images in training images captured with some specific 
cameras and the reference pattern noise image can then be 
obtained via averaging operation on these pattern noise 
images. The correlation measurement between the reference 
pattern noise image and pattern noise image is used here. The 
sensor pattern noise has also been used for scanner model 
identification and tampering detection of scanned images [8]. 
In [8], in addition to camera source identification, sensor 
pattern noise was first utilized for image forgery detection. 
This method proposed an accurate pattern noise extraction 
scheme. The above methods [6][7][8] need to pre-collect a 
number of  images captured from specific video cameras to 
extract the sensor pattern noise of the cameras. Besides, it is 
difficult to extract sensor pattern noise from a video without a 
extensive variety of video contents. 

This paper aims to address passive forgery detection in a 
digital video based on the statistical property of noise residue. 
We propose to analyze the temporal correlation of block-level 
noise residue to locate the tampered regions of a video. Our 
method does not need to pre-collect and pre-train the statistics 



of noise residue for specific video cameras as the noise 
residue information can be easily on-the-fly extracted from the 
video to be authenticated. We propose to model the 
distributions of temporal noise correlation values of video 
blocks in forged and normal regions using a GMM model. In 
our method, the GMM model parameters are estimated using 
the Expectation-Maximization (EM) algorithm so that 
optimum thresholds can be derived accordingly using a 
Bayesian classifier. Two video inpainting schemes are used to 
evaluate the performance of the proposed method. 

The rest of this paper is organized as follows. Section 2 
presents the proposed video forgery detection scheme based 
on the noise residue of camera. In Section 3, the experimental 
results of the proposed schemes are demonstrated. Finally, 
Section 4 concludes this paper. 

 

II. PROPOSED VIDEO FORGERY DETECTION METHOD 
 

A. Overview of the proposed method 
We propose a bottom-up approach for locating the 

forged/inpainted regions of a video based on block-level 
temporal noise correlation.  Fig. 2 shows the flowchart of the 
proposed video forgery detection algorithm. In the first step, 
following the same process proposed in [4], the noise residue 
of each video frame is extracted by subtracting the original 
frame from its noise-free version. The wavelet denoising filter 
proposed in [17] is used to obtain the noise-free image. 

 
Fig. 2. Flowchart of our proposed method. 

In the second step, each video frame is first partitioned into 
non-overlapping blocks of size N × N. The correlation of the 
noise residue between the same spatially indexed blocks of 
two consecutive frames is then computed as illustrated in Fig 
3. 

The final step is to locate tampered blocks by analyzing the 
statistical properties of block-level noise correlations. In the 
first part of this step, a simple thresholding scheme is 
exploited to obtain a coarse classification. Based on the coarse 

classification, a GMM model is applied to characterize the 
statistical distributions of block-level temporal noise 
correlations for tampered and non-tempered regions, 
respectively. The GMM model parameters are then estimated 
using the EM algorithm so that optimum thresholds can be 
derived accordingly using the maximum-likelihood (ML) 
estimation and Bayesian classifier. The detail of each step is 
elaborated in the following. 

  

 
Fig. 3. Illustration of computing the correlations of the noise residue between 
every two temporally neighboring video blocks. 

B. Extraction of Noise Residue 
As mentioned above, we adopt the same denoising filter 

proposed in [4][17]. First, we assume that the high-frequency 
wavelet coefficients can be modeled as the sum of a 
stationary white Gaussian noise and a noise-free image. The 
denoising process is composed of four steps as summarized 
below: 

1. A four-level wavelet decomposition is performed on a 
noisy image to obtain its wavelet coefficients. After the 
decomposition, only high-frequency components (i.e., 
the LH h(i,j), HL v(i,j) and HH d(i,j) subbands) are 
used for processing. 

2. Second, the local variance of each wavelet coefficient 
is estimated. For each wavelet coefficient, we define a 
window size of W × W, where W ∈{3,5,7,9}. The local 
variance is computed by 

( ) ( )
2 2 2

02
( , )

1, max 0, ,W
i j N

i j c i j
W

σ σ
∈

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑        (1) 

where σ0 = 5 c(i,j) denotes the wavelet coefficient in 
each sub-band (h(i,j), v(i,j), and d(i,j)). Then, we take 
the minimum value among the local variances by 
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3. The wiener filter with the following profile is used for 
denoising.  
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4. For each wavelet coefficient, repeat previous steps 
until the process converged. Finally, the inverse 
wavelet transform is used to obtain the noise-free 
image. 



After the noise-free image is obtained, the noise residual  
n(i,j) can be easily extracted by subtracting the original image 
from its noise-free version. The noise residue n(i,j) consists 
PNU and high-spatial-frequency details of image content. In 
[4], the PNU was extracted from noise residual n(i,j) via an 
averaging operation. A more sophisticated and accurate sensor 
pattern noise extraction scheme was proposed in [8]. It 
however, consumes significantly more computation. Although 
sensor pattern noise can be used as an intrinsic fingerprint to 
effectively identify image/video forgery. It is in general 
difficult to extract sensor pattern noise from a video without 
an extensive variety of video contents such as in a surveillance 
video. In this work, we use the extracted noise residue n(i,j) 
directly to find the forged regions. Although, in addition to 
sensor pattern noise, the noise residue also contains high-
frequency image details, it is still useful for video forgery 
detection. 

 

C. Calculation of Block-level Noise Correlation Values 
Let ni,j denote the noise residual at pixel coordinate (i,j). 

The correlation value  ݎ between previous frame and current 
frame on each block (shown in Fig. 4) can be defined as 
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where t denotes the t-th frame and nt  is the mean value of the 
noise residual at t-th frame.  

When a region is forged, the correlation value of temporal 
noise residue in the region is usually changed (increased or 
decreased) depending on the forgery scheme used. Fig 4 
shows the histograms of block-level correlation values of 
every two consecutive frames for a forged still-background 
surveillance video. The red curves indicate the distributions of 
non-forged blocks, whereas the blue ones indicate those of 
forged blocks. Two different video inpainting schemes are 
used to simulate two most representative kinds of forgery 
schemes that lead to contrary effects on noise correlation. The 
first is temporal copy-paste inpainting which find the most 
coherent block from to fill in the tampered region. Obviously 
the correlations in the forged region become higher, almost 
approaching unity, since in a video with still background  the 
content selected for forging temporally neighboring blocks are 
usually the same to maintain the temporal coherence of the 
forged region. 

The other is the example-based texture synthesis scheme 
proposed in [14] that fills in a region from sample textures. It 
is one of the state-of-the-art image inpainting schemes. 
Although texture synthesis is in general not suitable for 
inpainting a video since it is difficult to maintain temporal 
coherence between successive frames after inpainting, we use 
it to simulate the tampering processes that will in effect 
decorrelate the sensor pattern noise as the sample textures for 
completing a region are selected from different locations, 
thereby reducing the temporal correlation of noise residue. 
Note, using the temporal copy-paste inpainting to complete a 

removed object with a moving background or dynamic scene 
(e.g., a video captured with a moving camera) may also lead 
to similar effect since it fill in a region using content with 
different noise patterns compared to those of the temporally 
neighboring regions. The two inpainting schemes are used in 
this work to simulate two typical kinds of tampering processes 
for evaluating the performance of the proposed forgery 
detection schemes.  
 

  
(a) 

 
(b) 

Fig. 4. Comparison of distributions of noise correlation values between two 
temporally neighboring video blocks in forged and non-forged regions. The 
forging schemes used are: (a) temporal copy-paste inpainting [13], and (b) 
example-based texture synthesis [14]. 

 

D. Forgery Detection by Statistical Analysis of Noise Residue 
Since the tampering process usually changes the temporal 

statistical property of sensor residue, we can distinguish the 
tampered regions from the non-tampered ones by analyzing 
the statistical properties of block-level noise correlation.  

After the correlation values of every two temporally 
neighboring blocks are obtained, the parameters of the 
distributions of normal blocks and forged blocks are estimated 
respectively via the maximum-likelihood estimation. For a 
Gaussian distributed signal, the parameters can be estimated 
easily by calculating 
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In typical applications, in a forged video, the area of 
forged regions is usually much smaller than that of normal 
region. Based on this assumption, we propose a simple pre-
classification scheme to quickly determine whether a video 
frame has been forged without resorting to computation-
intensive fine classification for non-tampered video frames, 
thereby achieving significant computation saving. Besides, the 
pre-classification result can be used to speed up the model 
adaptation in the fine-classification. The pre-classification is 
defined as follows: 
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where Classn denotes the binary classification mask for the n-
th block with a value of 1 indicating the block has been forged.  

In the pre-classification stage, when the percentage of 
tampered blocks detected in a video frame exceeds a 
predetermined threshold, a fine-classification process is 
performed to refine the detection result. Otherwise, the video 
frame is classified as a non-tampered frame, and no further 
detection process is preformed. Based on the pre-classification, 
a GMM model is applied to characterize the statistical 
distributions of block-level noise correlations for the tampered 
and normal regions, respectively. The GMM model 
parameters are then estimated using the EM algorithm [19] so 
that optimum thresholds can be derived accordingly using the 
maximum-likelihood (ML) estimation and Bayesian classifier. 
The means and variances of the block-level noise correlation 
of the forged and normal classes are used as the initial values 
in the EM algorithm to speed up the iteration process.  

For simplicity but without loss of generality, we assume 
that there are two Gaussian distributions in a forged video. For 
the two-class problem, the discriminate function can be 
defined as 
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where ܲሺ߱௜ሻ denotes the prior of the ith class, which can be 
approximated by the result of pre-classification. To obtain the 
classification hyper-plane, we compute the threshold value of 
r by setting equation ଵ݃ሺݎሻ െ ݃ଶሺݎሻ ൌ 0 which is the optimal 
threshold value with minimum classification error according 
to the Bayesian classification theory.  

 

III. EXPERIMENTAL RESULTS 

In our experiments, three 200-frame surveillance-like test 
sequences with still backgrounds were captured using a JVC 
GZ-MG50TW digital camcorder with a frame rate of 30 fps. 
The built-in video encoder of the video camera is MPEG-2. 
The resolution of each frame is ITU-R 601 (720×480) and the 
bit-rate is 8.5 Mbps. Therefore the compression ratio is about 
15:1 for the 4:2:0 Y-Cb-Cr color format, and 30:1 for the full 
color format.  

As mentioned above, the temporal copy-paste inpainting 
[13] and example-based texture synthesis [14] were used for 
forging the human objects in the videos. As shown in Table I, 
the forgery detection performance is evaluated by the 
precision and recall rates, which are calculated from the 
ground-truths as defined below: 
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where Nhit represents the number of correct detections, Nfalse 
denotes the number of false positives, and Nmiss denotes the 
number of misses. 

TABLE I 
PERFORMANCE EVALUATION OF THE PROPOSED FORGERY DETECTION 

SCHEME FOR THREE TEST SEQUENCES 

 Recall Precision Miss_rate False_positive_rate
Temporal Copy-Paste Inpainting 

Seq_1 62.54% 98.22% 37.46% 1.78% 
Seq_2 40.76% 93.28% 59.24% 6.72% 
Seq_3 64.00% 98.34% 36.00% 1.66% 

Example-Based Texture Synthesis Inpainting 
Seq_1 76.31% 94.83% 23.69% 5.17% 
Seq_2 72.86% 90.78% 27.14% 9.22% 

 

  
(a)                                (b)                                        (c) 

 
(d)                       (e)                                        (f) 

Fig. 6.  Snapshots of two test sequences for the temporal copy-paste 
inpainting scheme: (a),(d) original frames, (b),(e) the inpainted frames, and 
(c),(f) the corresponding detection result.  
 

The experimental results show that, for both two video 
inpainting attacks, the proposed method achieves high 
precision rates with rather small false positive rates, where the 
false positives are mainly due to too high or too low 
illumination which leads to low noise residual energy. Besides, 
the noise residual is also content dependent making the 
correlation feature not very stable for applications with 
dynamic scene such as a video captured with a moving camera.   
The detection result for texture-synthesis-based inpainting 
achieves better recall rates because the noise correlation value 
drops drastically after inpainting. Fig. 6 shows some snapshots 
of the original video frames, their inpainted frames using the 
two inpainting schemes, and the corresponding detection 
results using the proposed method. The green blocks indicate 



the forged regions detected. The test videos, their inpainted 
versions, and the detection results can be found in [20]. 
 

Although the noise correlation is fairly reliable feature in 
fine-quality video, it is sensitive to quantization noise. We 
used an encoder to recompress the test sequences with 
different settings of quantization step-sizes (with compression 
ratios ranging from 27 to 62) to evaluate the effect of 
compression on detection accuracy. Fig. 7 shows that the 
higher the compression ratio, the lower the detection precision, 
as much of noise may disappear after coarsely quantizing 
DCT coefficients. Therefore the proposed noise correlation is 
not reliable for low-quality video such as low-bandwidth 
Internet streaming videos. However, quantization noise itself 
can be used as an intrinsic fingerprint signature for forgery 
detection in low-bit-rate compressed video since quantization 
noise is a compression-oriented feature that appears in the 
form of blocking effects. For example, a method of using 
blocking effects to detect image forgery was proposed in [9]. 
Adequately combining the noise residue feature with 
compression-oriented features such as blocking effects may 
improve the reliability and accuracy of forgery detection in a 
wide range of video bit-rates. 

 
Fig. 7.  Comparison of detection precision for with different quantization 

step-size settings (with compression ratios ranging from 27 to 62). 
 

IV. CONCLUSION 
In this paper, we have proposed a digital video forgery 

detection scheme using temporal noise correlation without the 
need of embedding any prior digital signature in the 
compressed video. We have also proposed a statistical 
classification scheme based on a GMM model and the 
Bayesian classifier. In our experiments, two video inpainting 
schemes are used to simulate two different types of tampering 
processes for performance evaluation. Experimental results 
show that the proposed method achieves promising detection 
accuracy for fine-quality videos.  
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