Video from a Single Coded Exposure Photograph using a Learned Over-Complete Dictionary

Authors: Yasunobu Hitomi, Jinwei Gu, Mohit Gupta, Tomoo Mitsunaga, Shree Nayar

Published in ICCV 2011

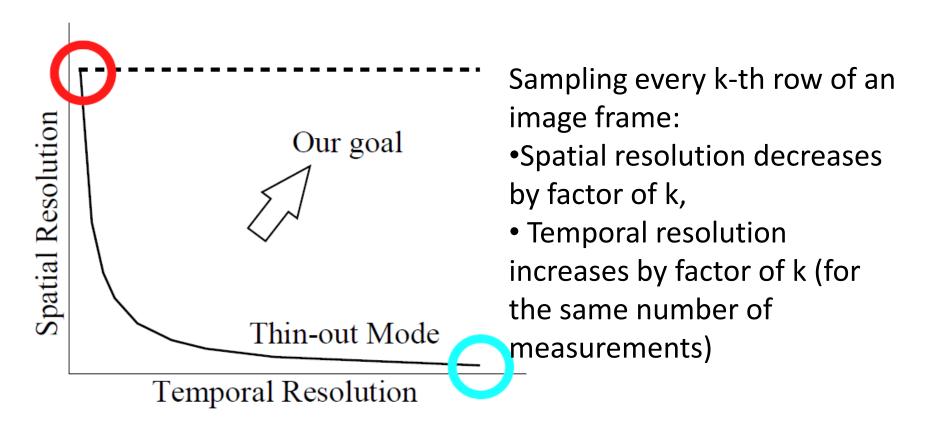
Presented by: Ajit Rajwade (Feb 24, 2012)

Basic Goal of the Paper

Application of "computational photography"

 Improve frame rate of a video camera by making appropriate changes to hardware WITHOUT sacrificing spatial resolution.

Space-Time Tradeoff



Can be overcome with more sophisticated hardware – but associated cost is HIGH

Frame 36 Frame 1

(b) Motion blurred image

(c) Thin-out mode: Low spatial resolution, high frame rate

Still camera

(d) Our input: A single coded exposure image

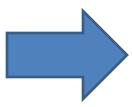
(e) Our result: High spatial resolution, high frame rate video

Coded Exposure Image

It is a coded superposition of **N** snapshots (subframes) within a unit integration time of the video camera.

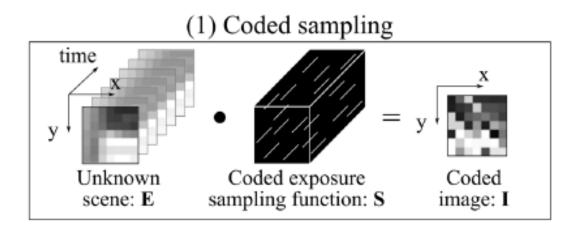
$$I(x,y) = \sum_{t=1}^{N} S(x,y,t) \cdot E(x,y,t).$$

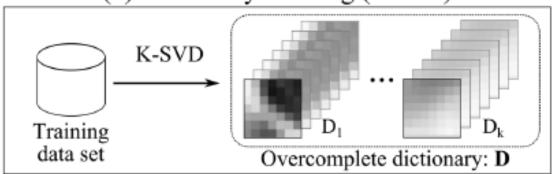
Conventional capture



$$S(x, y, t) = 1, \forall (x, y, t)$$

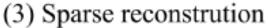
Dictionary Learning/Sparse Coding

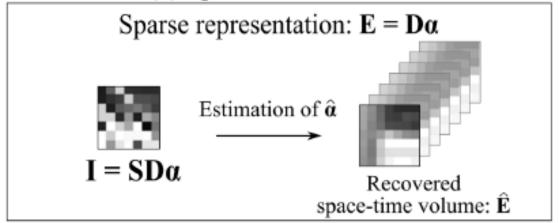




$$\mathbf{E} = \mathbf{D}\alpha = \alpha_1 \mathbf{D}_1 + \dots + \alpha_k \mathbf{D}_k.$$

Dictionary Learning/Sparse Coding





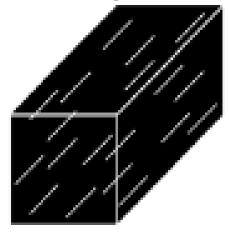
$$\mathbf{E} = \mathbf{D}\boldsymbol{\alpha} = \alpha_1 \mathbf{D}_1 + \dots + \alpha_k \mathbf{D}_k.$$

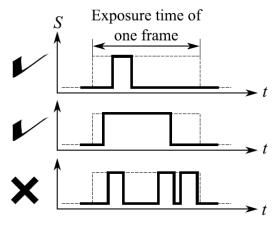
$$\hat{\alpha} = \underset{\alpha}{\operatorname{arg min}} \|\alpha\|_0 \quad \text{subject to} \quad \|\mathbf{S}\mathbf{D}\alpha - \mathbf{I}\|_2^2 < \epsilon.$$

Code Design: S

- (1) S should be binary at any point of time, a pixel (that collects light) is either ON or OFF
- (2) Each pixel can have only one continuous ON time (called a 'bump') during the camera integration time (due to limitations of contemporary CMOS sensors)
- (3) **Fixed bump length** for all pixels but **different start times** for the bump at different pixels

(4) Union of bumps within an M x M spatial patch should cover full integration time





Optimal Bump Length?

Too high: removes high frequency information

Too low: low SNR

Bump	Noise standard deviation σ (Grey-levels)					
length	0	1	4	8	15	40
1	22.96	22.93	22.88	22.50	21.41	17.92
2	23.23	23.22	23.18	23.06	22.62	20.76
3	23.37	23.37	23.35	23.25	23.03	21.69
4	23.29	23.30	23.25	23.27	22.99	22.08
5	23.25	23.26	23.24	23.19	23.07	22.34
6	23.06	23.10	23.07	23.06	22.85	22.32
7	22.93	22.92	22.89	22.85	22.80	22.29
8	22.80	22.81	22.77	22.78	22.69	22.23
9	22.63	22.62	22.61	22.59	22.53	22.09
10	22.49	22.48	22.50	22.49	22.43	22.06

Set to 2 for 9X frame rate gain, to 3 for 18X frame rate gain

Dictionary Learning

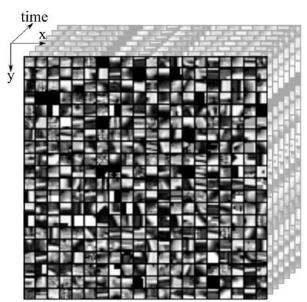
- Done offline training set was 20 video sequences, each video rotated in 8 directions and played forward + backward = 320 videos.
- All videos had target frame rate (500 to 1000 fps, as we work with a 60 fps camera and want 9-18 fold gain).
- Video-patch size was 7 x 7 x 36 = 1764 x 1
- Offline learning: KSVD, K = 100,000 atoms
- Sparse coding done online (using OMP)

Results on toy-data

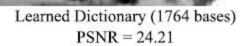
3D DCT (1764 bases) PSNR = 21.95

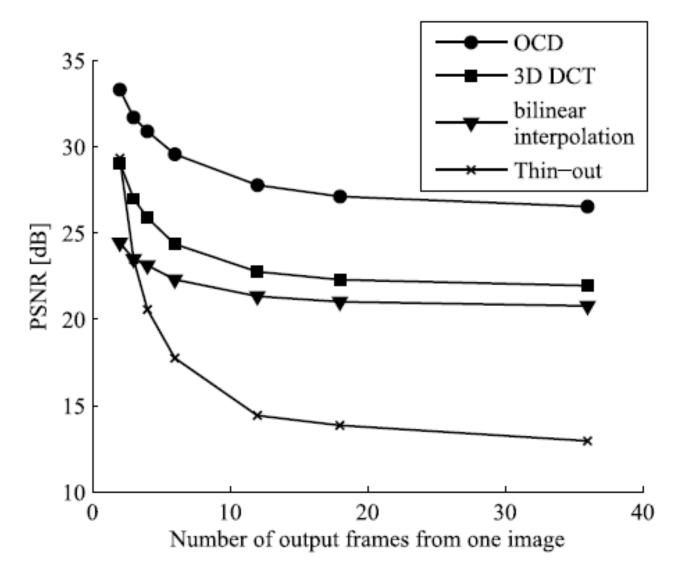
3D DWT (1764 bases) PSNR = 15.78

Learned Dictionary (100k bases) PSNR = 26.54

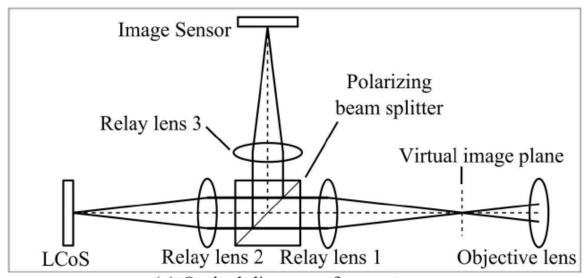


36X frame rate gain



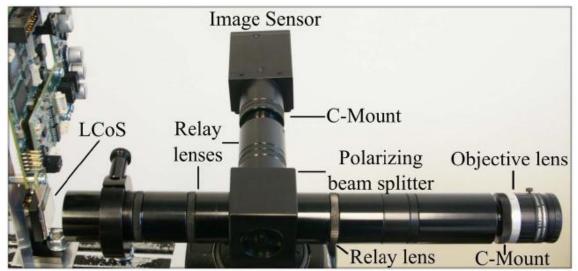


Bilinear interpolation – Uses simple grid-based down-sampling of space-time volume.



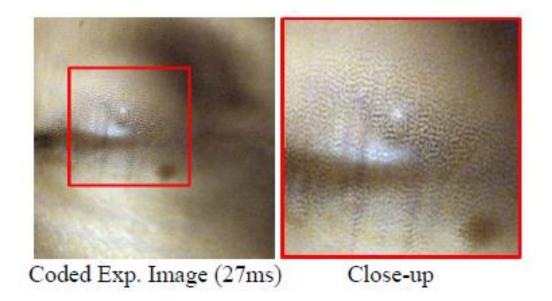
Per-pixel binary codes were implemented using a liquid crystal on silicon device (LCoS)

(a) Optical diagram of our setup

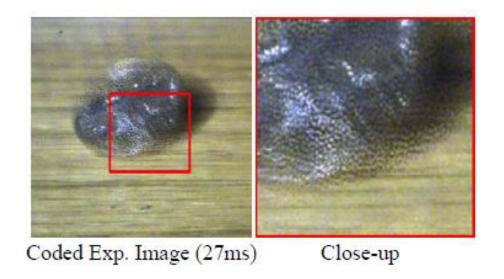


(b) Image of our setup

LCoS is synced with the camera and operates at 9-18 times camera frame rate

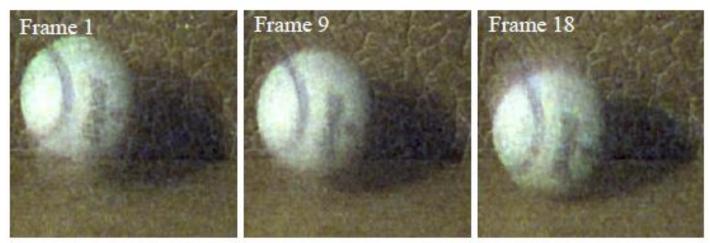


Reconstructed Frames (3 out of 9)



Reconstructed Frames (3 out of 9)





Reconstructed Frames (3 out of 18)

Prior Work

- Related hardware prototype in "P2C2:
 Programmable Pixel Compressive Camera for High Speed Imaging", by Reddy et al, CVPR 2011.
- One major difference reconstruction technique: sparsity on the transform coefficients of each sub-frame + brightness constancy assumption / optical flow for temporal redundancy

Conclusion

- Overcomes space-time tradeoff using per-pixel coded exposure pattern
- Hardware prototype developed
- Works well for varied complex motions (does not require analytical motion model)
- Limitation 1: Maximum target frame-rate must be fixed (e.g. 36X)
- Limitation 2: Requires training videos (which are hopefully `representative') at target frame rate.