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Abstract

We tackle the long video generation problem, i.e. gen-
erating videos beyond the output length of video genera-
tion models. Due to the computation resource constraints,
video generation models can only generate video clips that
are relatively short compared with the length of real videos.
Existing works apply a sliding window approach to gener-
ate long videos at inference time, which is often limited to
generating recurrent events or homogeneous content. To
generate long videos covering diverse content and multiple
events, we propose to use additional guidance to control the
video generation process. We further present a two-stage
approach to the problem, which allows us to utilize exist-
ing video generation models to generate high-quality videos
within a small time window while modeling the video holis-
tically based on the input guidance. The proposed approach
is complementary to existing efforts on video generation,
which focus on generating realistic video within a fixed time
window. Extensive experiments on challenging real-world
videos validate the benefit of the proposed method, which
improves over state-of-the-art by up to 9.5% in objective
metrics and is preferred by users more than 80% of time.

1. Introduction

Video generation has recently attracted increasing atten-
tion. As a natural extension of image generation, most ex-
isting works treat video generation as a 3D volume predic-
tion problem and focus on generating realistic video clips.
While this paradigm has demonstrated impressive progress
in a wide range of video generation tasks such as frame pre-
diction [13,29,31,39,42], class-conditional generation, and
unconditional video generation [6,32,33,41,46], the length
of the video clip that can be generated is inevitably limited
by the computation resource. Due to the significant com-
putation and memory overhead incurred by state-of-the-art
video generation models, they often generate video clips
that are much shorter than real videos.

In order to generate long videos that match the length
of real videos, existing works adopt a sliding window ap-
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Figure 1. Long video generation. Video generation models can
only generate a relatively short video clip. Existing works [15]
generate long videos using a sliding window approach that extends
the previously generated video clip, which often leads to videos
with repetitive patterns. Instead, we study the problem of generat-
ing long videos using additional guidance, which helps to generate
videos covering multiple, non-recurrent events. We also propose a
two-stage approach for the long video generation problem, which
is complementary to existing efforts on video generation.

proach. Specifically, the model generates one video clip at
a time in temporal order while taking the previously gen-
erated frames as input. The previously generated frames
serve as the condition for the model to ensure that the gen-
erated video is consistent across video clips. This approach
has been successfully applied to generate long videos [15].
However, the results are far from satisfactory, particularly in
real data domains. The synthesized videos are often limited
to homogeneous videos of natural scenes and videos with
recurrent human actions. In contrast, many real videos con-
tain dynamic scenes with multiple, non-recurrent events.
The existing sliding window approach is sub-optimal
from two aspects. First, it implicitly assumes that video
generation is a Markov process, where a new clip only de-
pends on the previous clip or even the last frame of the pre-
vious clip. This is not true in many videos, e.g. an object



may leave and re-enter the video which introduces a long-
range dependency to the video. Second, it assumes that the
initial frames are a sufficient condition for generating the
video clip. However, it is well known that there may be mul-
tiple valid futures given the initial condition for a video [55],
and it is unlikely to infer the correct future purely from the
initial frames. To overcome these problems, it is essential
to use additional guidance to control the generation process
of long videos.

In this work, we propose to tackle the long video gen-
eration problem. Given a video clip generation model, a
series of guidance, and a reference frame representing the
initial condition of the video, the goal is to generate a long
video that is beyond the capability of the clip generation
model. In this work, we choose to use object labels as the
input guidance, where the guidance describes the set of ob-
jects that will appear in the video clip. While other types of
guidance are also possible, we choose object labels because
they can be provided by users easily and naturally supports
video manipulation such as content insertion or removal.
The long video generation problem aims to extend the abil-
ity of existing video generation models to generate realistic
video covering diverse content and multiple events and is
complimentary to existing efforts that focus on generating
high-quality videos within a fixed temporal window.

To solve the long video generation problem, we propose
a two-stage approach by decomposing the problem into a
keyframes generation problem followed by a frame inter-
polation problem. We first predict all the keyframes jointly
based on the input guidance and reference frame. These
keyframes represent the starting frames of each video clip.
We then generate the entire video by predicting the inter-
mediate frames between keyframes, using the video clip
generation model. See Fig. 1. The two-stage approach
allows us to utilize existing video generation models that
are highly optimized and can generate high-quality, realis-
tic videos within a short temporal window. It also allows us
to model the full video jointly and capture long-range de-
pendencies through keyframe generation. Our evaluations
show that the holistic keyframe modeling help to maintain
consistency throughout the video.

We conduct extensive quantitative and qualitative stud-
ies on both real and synthetic data. In particular, we evalu-
ate our method on the EPIC Kitchen dataset, which is chal-
lenging for video generation due to the rapid motion and
complex scenes. Empirical results verify the advantage of
the proposed long video generation method and show that
it outperforms state-of-the-art video generation models by
9.5% on LPIPS.

Our main contributions are as follows. First, we study
the long video generation problem which aims to extend the
capability of existing video generation models to generate
long videos with dynamic senses and non-recurrent events.

Second, we propose a two-stage approach for the long video
generation problem. Finally, we conduct extensive evalua-
tions to validate the efficacy of our proposed framework.

2. Related Work

Video synthesis. Video prediction, class-conditional video
generation and unconditional video generation have been
widely studied as the sub-tasks of video generation. GAN-
based methods [3,6,32,33,36,40,41,46] have demonstrated
early success to generate short video clips, while the gener-
ation quality decreases significantly when applying to long
videos. Diffusion models [17, 45, 52] are recently intro-
duced for video generation. However, the slow sampling
speed of diffusion models limits their ability to generate
long videos. Auto-regressive models are first developed
to synthesize raw pixels in videos [1, 22,47]. Thanks to
the development of vector quantization [12,43] and trans-
former [9] models, auto-regressive methods are adapted to
predict discrete tokens in the latent space [15,30,51] with
impressive visual quality. In this work, we build upon recent
advances of VQVAE and non-autoregressive transformer
models [4,53].

Despite the recent success in video generation, these
models mostly focus on generating short clips (e.g. 16-
frame videos) and are limited to synthesizing videos in spe-
cific domains [15, 44], such as human actions [34, 38], sky
timelapse [50], robotics videos [10]. Most recently, a few
text-to-video models [16, 19, 35, 48, 49] are developed to
generate videos given natural language inputs. However,
these models are limited to videos with single scenes with-
out a meaningful storyline. In contrast, our work aims to
generate videos with diverse content and novel events.

There are few works exploring complex video generation
conditioned on input guidance at multiple timesteps while
limited to synthetic environments [2, 15, 54]. Our work fo-
cuses on the real-world dataset.

Story visualization and image manipulation. Story visu-
alization [26-28,37] focuses on synthesizing a sequence of
images that visualize a story of multiple sentences. Each
sentence in the story corresponds to one synthesized image.
GeNeVA [7, 11, 14,56] is a conditional text-to-image gen-
eration task developed on CoDraw [24] dataset. It studies
the problem of constructing a scene iteratively based on a
sequence of descriptions. However, these two lines of work
are limited to experiments on synthetic and cartoon data.
These approaches focus on generating a few frames of a vi-
sual story instead of videos. In addition, the inputs to these
methods are natural language descriptions which might ex-
ist in ambiguity and do not clearly describe the objects in
the image, unlike object labels. In contrast, we focus on ex-
periments on real-world data and generating videos given a
series of object labels as inputs.
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Figure 2. Approach overview. The proposed method consists of three stages: 1) generating the series of layouts from the series of object
label sets and a reference first frame image, 2) synthesizing the keyframes of the video from the predicted layout sequence and the reference
image, and 3) interpolating the synthesized keyframe sequence to obtain the complete video.

3. Approach

In this section, we introduce the proposed method for
long video generation. We first give an overview of the ap-
proach and then describe the three main components.

3.1. Overview

We define our problem as follows. The model takes 1)
a series of N sets of object labels {x1,x2, -+ ,Xxy}, and
2) a reference frame, Iy as input. The reference frame is
the starting frame of the video and is the same initial con-
dition as existing video prediction task. The object label
sets serve as the guidance for video generation. Each ob-
ject label set x,, contains k™ object labels which indicates
the objects that will appear in the video. Note that £ may
vary across different timestep n. Our goal is to synthesize
a video V that covers the content provided in the guidance
while maintaining the same style as the initial frame I.

We present the overview of the long video generation
framework in Fig. 2. To tackle the long video generation
problem, our core idea is to model the entire video jointly
through keyframe generation and utilize existing models to
generate high-quality videos within a short temporal win-
dow. We achieve these by 1) generating a series of N
keyframes in the video given the object label sets, each
keyframe presents the starting frames of each video clip,
and 2) predicting the intermediate frames between adjacent
keyframes to obtain the complete video. To reduce the dif-
ficulty of keyframe generation, we use layouts as the inter-
mediate representation to bridge the gap of generating 2D
images from symbolic object labels [18,21]. We introduce
an additional stage of layout generation that creates an ex-
plicit 2D structure of the scene as an intermediate input to
constrain the keyframe generation. It brings an additional
benefit that the users can manipulate the generated videos
by editing the layouts such as content insertion or removal.
The proposed approach consists of three steps: layout gen-

eration, keyframe generation, and frame interpolation.

3.2. Layout Generation

We first generate a series of layouts from the object
label sets to explicitly constrain the keyframe generation.
Given a series of NV object label sets {x,,}, and a ref-
erence first frame Iy, we synthesize a series of layouts
{L;,Lo, - ,Ly}, which represents the layouts of the N
keyframes in the video. Since the reference first frame I
is given, we assume L is known as well and can be used
as a reference layout to synthesize {L;, Lo, - ,Ly}. We
define the layout L as a set of bounding boxes with vari-
able length k™, i.e. {by,ba, -+ ,bgn}. The bounding box
contains the attribute of its object label, x-coordinate of the
center, y-coordinate of the center, width and height, i.e.
b ={c,x,y,w,h}.

Our layout generator is motivated by BLT [25]. We first
apply tokenization to encode the object label sets {x,, } into
discrete tokens. We then learn a transformer model that
predicts the layout tokens given the object label sets as in-
put. The ground truth tokens are obtained from tokenizing
the layouts {L,, }. Though the object label sets and layouts
have variable length k™, we pad the token sequences to fixed
length in practice. Specifically, the input series of N object
label sets with k™ labels in each set can be flattened into a
sequence of tokens. Similarly, the layout sequences can be
flattened into token sequences as well, where the values of
the bounding box attributes are simply discretized by uni-
form quantization [25].

The tokens of the reference layout Ly and the object la-
bels c are known and the other attributes of the bounding
boxes {x,y,w, h} are replaced with a [MASK] token. The
transformer model is trained to predict the missing tokens
for the layout series f;l ~L ~ [25]. Different from BLT [25]
which takes a single object label set as input and predicts a
single layout, our model takes the reference layout and a se-



ries of object label sets as input, and predicts multiple lay-
outs at the same time. Thus, our model preserves the tem-
poral consistency of the layout sequences while BLT fails
to.

3.3. Keyframe Generation

Next, we generate a sequence of keyframes from the pre-
dicted layout sequences. Given a reference first frame I
and a series of layouts {ﬂl, Lo, -, fJN} synthesized in the
previous stage, we aim to generate a sequence of keyframes
I,-I. Each pair of adjacent keyframes will be used as the
start and end frame to generate one video clip out of the
N clips in the entire video. Following [4], we convert the
keyframe generation into tokenization and sequence predic-
tion. We use a VQVAE [12] model to encode the raw image
pixels I into discrete visual tokens e, and a bidirectional
transformer model is used to predict the masked image to-
kens i.e. target keyframes. Finally, the decoder of VQVAE
is used to map the visual token € into raw images I

Specifically, the input series of layouts
{Lo, Ly, ---,L ~ } are flattened into a sequence of discrete
tokens. The reference keyframe I and the target keyframe
sequence I,-Iy are transformed into discrete visual tokens
and flattened into sequences as well, i.e. {eg, e, -+ ,en}.
At training time, the tokens of input layouts and the visual
tokens of the target keyframes are concatenated. The
tokens are randomly masked out and the transformer model
is trained to predict the missing token. Specifically, given
a sequence s = {eO,LO,ﬁl, .. Ly,ei,-- ,en} in
dataset D, we replace the tokens in the sequence with
the [MASK] token and obtains the masked sequence sj;.
We minimize the negative log-likelihood of predicting the
masked tokens s;,t € M.

L=—F Zlogp(stISM) (D

sE teM

At test time, the tokens of layout sequence and the first
frame {eg, Lo, L,---,L N | are given, and the model pre-
dicts the tokens of the following keyframes €; — éy. Fi-
nally, the decoder of VQGAN is used to reconstruct the tar-
get keyframes I, —1Iy. Fig. 3 shows our keyframe genera-
tion approach.

Compare with [4], our keyframe generation method gen-
erates all the frames jointly. This provides a more holistic
model for the entire video. As we show in the experiment,
this helps to improve the consistency across keyframes and
improves the coherency of the video.

3.4. Frame Interpolation

Finally, given the reference first frame I and a sequence
of generated keyframes I...1y, we apply an existing
video generation model to generate the complete video. In
particular, we use MAGVIT [53] to generate intermediate
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Figure 3. Keyframe generation. The reference frame and pre-
dicted layouts are first converted into discrete tokens. A trans-
former takes the tokens as input and predicts the tokens of the
keyframes, which are then decoded into the final keyframes. Note
that the transformer generates all keyframes jointly, which pro-
vides a more holistic model for the video.

frames following the video interpolation task of the origi-
nal model. Specifically, the model takes the initial and final
frame of the video as input. It first converts the input frames
into discrete video tokens using 3D-VQVAE. A transformer
model is then used to predict the tokens of intermediate
frames. Finally, the interpolated video tokens are mapped
back to the raw videos by the 3D decoder.

We re-train the video generation model on our data. Dur-
ing inference time, given two consecutive keyframes i,
and I,,, the model predicts the video token sequences that
connect between the two keyframes, i.e. Z,,. We predict IV
clips of video tokens Z1, Zo, - - - ,Zx. Finally, the video to-
ken sequences are concatenated and then mapped to the raw
video pixels V by the 3D decoder.

4. Experiments

We validate our approach on both real and synthetic data.
We first evaluate the video generation results on challenging
real-world videos. Next, we study the keyframe generation
results on both real and synthetic data.

Dataset. We validate our method on two datasets.

EPIC Kitchen [8] is a real video dataset consisting of
egocentric videos of kitchen activities. It contains 700
videos with a total length of 100 hours. Compared with
other commonly used datasets for video generation re-
search, e.g. UCF [38], Kinetics [23], and BAIR [10], the
content of EPIC Kitchen videos are more dynamic. The ob-
jects move in and out of the camera field-of-view frequently,
and the scene and camera viewpoint may change rapidly. To
synthesize such video, the video generation model needs to
generate multiple, non-recurrent events within a short time
window. This aligns with our goal for long video gener-
ation, and EPIC Kitchen serves as an ideal test bed for the



Table 1. Quantitative results for video generation. We report
the metrics on the EPIC Kitchen dataset [8]. Image metrics are
averaged across all video frames. Our method consistently outper-
forms state-of-the-art video generation methods.

Methods

FVD] PSNR{ SSIM{ LPIPS |

MAGVIT (frame pred.) [53] 421.7 11.316 0.175 0.482
MAGVIT (class cond.) [53] 400.9 11.398 0.178 0.476
Ours 380.8 12.037 0.206  0.431
Ours (GT Layouts) 363.5 13.566 0.287 0.350
Ours (GT Keyframes) 3147 15.591 0.386 0.253

problem and approach. Therefore, we choose EPIC Kitchen
over other datasets for our experiments.

We preprocess the EPIC Kitchen videos as follows. We
follow the original train and test split and cut the videos
into 64-frame sequences. We first re-sample the sequences
with double the frame rate, so that each 64-frame sequence
covers a 5-second video with the five keyframes sampled
equidistantly. This leads to 276k sequences for training and
3k sequences of non-overlapping frames for test. We use
MaskFormer [5] to extract the semantic map for each frame
and convert them into the object labels and bounding boxes,
which serve as the input guidance and ground truth layout.
Please refer to the supplementary material for details.

CoDraw [24] is a synthetic dataset consisting of virtual
scenes made by clip objects. It contains 10k scenes con-
sisting of 58 different objects. Each scene comes with a
sequence of images showing the step-by-step construction
process of the scene. While it is not a video dataset, it
contains diverse object classes and provides complete an-
notation for the object labels and layouts, which is ideal
for controlled experiments. We use the sequence of images
as video keyframes and evaluate keyframe and layout gen-
eration on CoDraw. To analyze the temporal consistency
between the generated keyframes, we extend the original
CoDraw data by creating 6 different appearances for each
clip object class and re-render the data using the original
layouts. This resulting dataset consists of 67k training se-
quences and 4k test sequences.

Evaluation metrics. We use the following metrics for per-
formance evaluation:

e Frechet Video Distance (FVD)—assesses the quality of
generated videos. Specifically, it measures whether the
distribution of generated videos is close to that of real
videos in the feature space. Following the original pa-
per, we use I3D model trained on Kinetics-400 for video
features.

e Frechet Inception Distance (FID)—assesses the quality
of generated images, similar to FVD. We use incep-
tion V3 for image features. FID is used to evaluate the
keyframe quality.

e Learned Perceptual Image Patch Similarity (LPIPS)—
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Figure 4. Per-frame results for video generation. X-axis shows
the frame number, ranging from O to 64. Y-axis shows the LPIPS
of a specific frame averaging over all test videos. The performance
of MAGVIT drops rapidly over time, while our approach can slow
down the quality degradation. Figures are best viewed in color.

assesses the perceptual similarity between the generated
video frames and the ground truth video frames. We com-
pute these metrics for every frame and report the average.

o PSNR, SSIM—assess the similarity between the gener-
ated frames and ground truth frame, similar to LPIPS.

Implementation details. In our experiments, each video
sequence contains 64 frames, and the videos are generated
at 128x128. We sample one keyframe every 16 frames in
the 64-frame clips so that the keyframe sequence contains
N = 4 synthesized keyframes at 256x256. More imple-
mentation details are in the supplementary materials.

4.1. Video Generation

First, we evaluate the video generation results on the
EPIC Kitchen dataset. The goal is to verify the effective-
ness of additional guidance and holistic video modeling in
long video generation.

Baselines. We compare with the following state-of-the-art
video generation methods

o MAGVIT (frame prediction) [53]: given the reference
frame as input, we apply MAGVIT to generate a 16-
frame clip. We then take the last predicted frame as input
to iteratively generate the entire video. This is the stan-
dard sliding window approach for long video generation.

o MAGVIT (class conditional) [53]: we condition the
MAGVIT model on both the reference frame and the ob-
ject label. This extends the sliding window approach to
take additional guidance similar to our method.

To understand how the quality of layout and keyframe gen-
eration affects the video generation results, we also compare
with two variants of our method that take the ground truth
layouts and keyframes as inputs respectively.

Quantitative results. The results are in Tab. 1. Our method
consistently outperforms the baselines in terms of video
quality, and the generated videos are closer to the ground
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Figure 5. Visual results for video generation. MAGVIT (frame pred./class cond.) generates video with homogeneous contents, and the
quality degrades for long sequences. Our method generates video with scene change (floor to table), object deletion (utensils on left hand)
and object insertion (knife on right hand), showing the ability of our model to generate videos with multiple events. We further show that
Our (GT Layouts) generates videos close to the upper bound results of Our (GT Keyframes). On the other hand, Ours generates videos that
match the content but with different layouts. The results validate the ability of our model to generate videos that satisfy different levels of
the input guidance i.e. object label sets or (more constrained) layouts.

truth videos. The results verify the effectiveness of the pro-
posed approach. Note that MAGVIT (class conditional)
performs better than MAGVIT (frame prediction), which
shows the benefit of additional guidance. Our approach
further improves MAGVIT (class conditional), which sug-
gests that both the additional guidance and the holistic video
modeling provided by our approach are helpful for long
video generation.

On the other hand, Ours (GT Layouts) and Ours (GT
Keyframes) significantly improve the output video quality.

The results suggest that long video generation has signifi-
cant room for improvement given the very same video gen-
eration model, and improving the video generation model
alone may not be sufficient for solving the video genera-
tion problem. It verifies the importance of the long video
generation problem. Note that our multi-stage approach al-
lows users manually improve the intermediate representa-
tions, e.g. provide more detailed layouts, which allows fur-
ther improvement for the generated videos in an interactive
generation setting.
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Figure 6. Video manipulation through layouts. Users can gener-
ate different videos by sampling different layouts, as shown in the
first two rows. Users can even manipulate the videos by editing the
layouts. The yellow cross in the third row shows object deletion,
and the yellow arrow in the last row shows object movement.

Fig. 4 shows the per-frame LPIPS score. The gener-
ated image quality degraded rapidly in MAGVIT, especially
when we try to generate videos beyond the length of the
training clip (i.e. 16 frames). In contrast, our approach ex-
periences a slower quality degradation, which further veri-
fies its benefit in generating video beyond the training clip.

Qualitative results. Fig. 5 show the qualitative results.
MAGVIT tends to predict a relatively static video, which
is consistent with the observations in prior works. On the
other hand, our method generates video with scene change
(wall to table), object deletion (plate at the bottom) and ob-
ject insertion (left/right hand), showing the ability of our
model to generate videos with multiple events. Compared
with the upper bound results of Ours (GT Keyframes), our
method generates videos that match the content but with
different layouts or locations.

Fig. 6 shows that our method allows users to gener-
ate different videos by sampling different layouts from the
model. It also allows video manipulation through layout,

Table 2. User study. We report the percentage of raters that con-
sider our method generates better video quality and better repro-
duces the ground truth videos respectively.

Methods Quality  Reproduction
Ours vs. MAGVIT (frame pred.) 76.3% 82.1%
Ours vs. MAGVIT (class cond.) 68.4% 66.7%

Table 3. Quantitative results for keyframe generation. The met-
rics are averaged across keyframes. Please refer to the supplemen-
tary material for additional metrics.

CoDraw EPIC Kitchen
Methods FID| LPIPS| FIDJ] LPIPS|
MaskGIT [4] 10.8 0.304 46.9 0.633
HCSS [20] 9.8 0.425 50.2 0.653
Ours 7.4 0.325 34.8 0.575
Ours-GT 3.9 0.106 24.2 0.416

Ours-GT (Single) 4.6 0.156 27.5 0.480

where the user may remove an object, change the size and
position of the objects, efc.

User study. We also conduct a user study to augment the
quantitative evaluation. In the study, we present two videos
generated by different methods together with the ground
truth video and ask the raters 1) which video has the bet-
ter visual quality, and 2) which video better reproduces the
content of the ground truth video. We conduct the study
with 40 videos and 11 participants. The results are in Tab. 2,
which is consistent with the quantitative results and further
validates the superior performance of our method

4.2. Keyframes Generation

Next, we evaluate the performance of our keyframe gen-
eration model. The goal is to verify 1) the importance of
generating all the keyframes jointly, and 2) the importance
of additional guidance for generating content across a large
temporal window.

Baselines. We compare the following baselines and variants
of our method:

o MaskGIT [4]: the model takes the reference as input and
iteratively predicts the next keyframe. This model repre-
sents keyframe generation without input guidance.

e HCSS [20]: the model takes a single layout as input and
generates a single keyframe. We apply HCSS to generate
each keyframe independently from the predicted layouts.
This model represents keyframe generation without full
video modeling.

e Ours: our keyframe generation given the predicted lay-
outs as inputs.

e Ours-GT: our keyframe generation using the ground truth
layouts as inputs (upper bound performance).

e Ours-GT (Single): our keyframe generator that pre-
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Figure 7. Qualitative results for keyframe generation. Compared with our method, MaskGIT tends to predict repetitive content which
shows the importance of guidance. On the other hand, HCSS predicts inconsistent keyframes and fails to maintain temporal consistency.
When we compare Ours-GT with Ours-GT (Single), we can see the iterative approach fails to generate consistent keyframes. The results

show the importance of modeling the entire video jointly.

dicts keyframes iteratively conditioning on the previous
keyframe and ground truth layouts. This model repre-
sents keyframe generation without full video modeling.

Quantitative results. The results are in Tab. 3. Our
method consistently outperforms HCSS on both real and
synthetic data, which verifies the importance of joint pre-
diction for all keyframes. Our method also performs bet-
ter than MaskGIT except for the perceptual similarity with
ground truth frames in the synthetic dataset. After taking
a closer look at the generated frames, we observed that
MaskGIT tends to predict repetitive keyframes with little
changes across frames. This implies that the video will
remain static, which is not suitable for video generation.
These results show that our method can generate better
keyframes for video generation than MaskGIT, which veri-
fies the importance of guidance. We also compare different
variants of our method. In particular, the superior perfor-
mance of Ours-GT over Ours-GT (Single) further verifies
that a model that considers the entire video jointly leads to
better keyframe generation.

Qualitative results. Fig. 7 shows the qualitative results. As
mentioned before, MaskGIT tends to generate keyframes
with similar content, which shows the importance of provid-

ing input guidance at multiple timesteps. Comparing HCSS
and our method, we can see that HCSS fails to generate con-
sistent results across the keyframes, e.g. the color of the fire
changes. Similarly, when we compare Ours-GT with Ours-
GT (Single), we can see the iterative approach fails to gen-
erate consistent keyframes. The examples clearly demon-
strate the importance of joint modeling for the entire video.
Please refer to the supplementary material for additional
evaluation, including the evaluation for layout generation.

5. Conclusions

We tackle the problem of long video generation which
aims to generate videos beyond the output length of video
generation models. We show that the existing sliding win-
dow approach is sub-optimal, and there is significant room
for improvement using the same video generation model.
To improve long video generation, we propose to use ad-
ditional guidance to control the generation process. We
further propose a two-stage approach which can utilize ex-
isting video generation models while capturing long-range
dependency within the video. Empirical results validate our
model design and show favorable results over state-of-the-
art video generation methods.
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