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Abstract

This paper describes a new framework for video matting, the pro-
cess of pulling a high-quality alpha matte and foreground from a
video sequence. The framework builds upon techniques in natural
image matting, optical flow computation, and background estima-
tion. User interaction is comprised of garbage matte specification
if background estimation is needed, and hand-drawn keyframe seg-
mentations into “foreground,” “background,” and “unknown”. The
segmentations, called trimaps, are interpolated across the video vol-
ume using forward and backward optical flow. Competing flow es-
timates are combined based on information about where flow is
likely to be accurate. A Bayesian matting technique uses the flowed
trimaps to yield high-quality mattes of moving foreground elements
with complex boundaries filmed by a moving camera. A novel tech-
nique for smoke matte extraction is also demonstrated.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Generation—Bitmap
and framebuffer operations; I.4.6 [Image Processing and Computer Vision]:
Segmentation—Pixel classification

Keywords: Alpha channel, blue-screen matting, image-based rendering, layer extrac-

tion, matting and compositing, video processing.

1 Introduction

Video matting is a critical operation in commercial television and
film production, giving a director the power to insert new elements
seamlessly into a scene or to transport an actor into a completely
new location. In the matting or matte extraction process, a fore-
ground element of arbitrary shape is extracted, or pulled, from a
background image. The matte extracted by this process describes
the opacity of the foreground element at every pixel. Combined
with the foreground color, the matte allows an artist to modify the
background or to composite (i.e., transfer) the foreground onto a
new background. Still-image matting, a somewhat user-intensive
process, is useful for photo editing operations, and several tech-
niques have been demonstrated for this application. In this paper,
we address the more challenging problem of video matting: pulling
a matte from a video sequence of a foreground element against a
natural background. The challenge is to achieve the quality cur-
rently attainable with recently developed still-image matting tech-
niques without requiring the user to edit each frame and without
introducing temporal artifacts.

The most common methods for pulling video mattes are blue screen
matting, difference matting, and rotoscoping. In blue screen mat-
ting, also known as chroma keying, foreground elements are filmed
in front of a solid color background. Vlahos (as summarized by

Smith and Blinn [1996]) pioneered this technique and developed
a number of heuristics with tunable parameters for extracting the
matte from each frame. This method can be fairly effective but is
restricted to tightly controlled studio environments.

For natural backgrounds, an alternative approach is to begin with a
clean plate, i.e., a shot of the scene without the actors present, and to
then subtract the clean plate from the frames containing the actors.
Mapping the difference values at each pixel to opacities yields a dif-
ference matte [Kelly 2000]. The mapping is user-defined and fails
where there are similarities in color between foreground and back-
ground, requiring additional user interaction to correct the matte.

The last commonly used production matting technique is rotoscop-
ing. In this process, the user draws an editable (e.g., B-spline)
curve around the foreground element at each frame or at selected
keyframes, often with the help of an image snapping tool that ad-
heres to high gradient areas [Gleicher 1995; Mortensen and Bar-
rett 1995; Blake and Isard 1998]. When placed at keyframes, the
curves can then be interpolated or tracked over time so as to ad-
here to foreground contours [Mitsunaga et al. 1995; Blake and Isard
1998]. Tracked results tend to require less editing than interpolated
results, but they often still require frame-by-frame hand adjustment
in order to pull a high-quality matte. In addition, post-processing is
needed to convert the contour into opacity profiles using either ad
hoc feathering or smoothness assumptions about the background
and foreground.

One of the most significant limitations of rotoscoping is its inabil-
ity to work in regions where the matte is complex and not easily
tracked over time with curves, e.g., around wisps of hair. By con-
trast, recent advances in still image matting, especially Bayesian
matting [Chuang et al. 2001], have proven quite successful in
pulling mattes in such difficult areas. Bayesian matting begins with
a user-supplied trimap, i.e., a segmentation of the scene into three
regions: “definitely foreground,” “definitely background,” and “un-
known” (Figure 3). By collecting nearby foreground and back-
ground statistics, the opacity, as well as foreground and background
colors, can be estimated at each pixel in the unknown region. The
difficulty in using this technique for video matting, however, is the
need for the user to create a trimap at each frame.

In this paper we describe a video matting approach that builds upon
the Bayesian matting method and leads to a new kind of rotoscop-
ing tool. The approach employs computer vision algorithms to in-
corporate as much information from other frames as possible. In
particular, we leverage optical flow techniques to flow trimaps be-
tween hand-drawn trimap keyframes, thus reducing user involve-
ment. Further, when the background can be estimated with mo-
saicking techniques, we improve both the trimap and the matte by
borrowing the background colors from the nearest frame in which
those colors are known to be uncontaminated by the foreground.

Our algorithm for flowing the trimaps based on optical flow is
novel. However, the primary contribution of this paper is finding
and adapting a good set of existing algorithms and devising an over-
all framework for applying them together. Using our framework and
a modest amount of user interaction, we demonstrate detailed matte
extractions for actors with complex silhouettes filmed against nat-
ural backgrounds by both stationary and moving cameras. In addi-
tion, we demonstrate a simple extension that allows matte extrac-
tion of foreground smoke.
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The remainder of the paper is organized as follows. First, we dis-
cuss the existing techniques we build upon (Section 2) and then
describe our video matting algorithm (Section 3). Next, we show
results of applying our matting algorithm to video footage both with
and without background estimation (Section 4). Finally, we summa-
rize the work and describe a number of future research directions
(Section 5).

2 Background
In this section, we describe the three main components of prior
work that we use in building our video matting algorithm: Bayesian
matting, optical flow, and background estimation. In each case, we
discuss related work and the particular method we have selected.

2.1 Bayesian matting

Recently, several techniques have emerged to solve the natural im-
age matting problem, i.e., extracting a matte from a still image of a
foreground object in front of a natural background. More formally,
given the compositing equation at a pixel [Porter and Duff 1984],

C = αF + (1 − α)B, (1)

compute the foreground color F , background color B, and opacity
(a.k.a., alpha) α that yields the observed color C. Clearly, this prob-
lem is underconstrained (3 knowns and 7 unknowns). To simplifiy
matters, the latest techniques require the user to specify a trimap.
The matte is then extracted only in the unknown region using the
nearby background and foreground colors to constrain the problem.

Corel’s Knockout package appears to do this by computing
weighted sums of foreground and background pixels that abut the
unknown region, followed by a simple projection step to estimate
alpha, as described in patents (e.g., [Berman et al. 2000]). Ruzon
and Tomasi [2000] introduced a statistical method that partions the
unknown band into regions and builds multi-modal foreground and
background distributions within these regions. These distributions
are first interpolated to estimate alphas, and then the mean fore-
ground and background colors are perturbed until they satisfy the
compositing equation.

More recently, Hillman et al. [2001] and Chuang et al. [2001]
improved on Ruzon and Tomasi’s technique. Hillman et al. use
principal component analysis (PCA) to estimate the optimal alpha,
foreground and background simultaneously, while Chuang et al.
use a Bayesian approach. In this paper, we adopt the technique of
Chuang et al. which appears to yield the best mattes.

Given an observation C for a pixel, the algorithm tries to find
the most likely values for α, F and B. Using Bayes’s rule, we
can express the problem as the maximization over a sum of log-
likelihoods:

arg max
F,B,α

L(F, B, α|C)

= arg max
F,B,α

L(C|F, B, α) + L(F ) + L(B) + L(α) (2)

where L(·) is the log-likelihood function, i.e., the log of probability
L(·) = log[P (·)], and the L(C) term is dropped, because it is a
constant with respect to the optimization parameters.

The algorithm proceeds by growing, contour by contour, into the
unknown region, heading inward both from the foreground the
background borders. At each unknown pixel, a circular region en-
compasses a set of trimap foreground and background pixels, as
well as any foreground and background values previously computed
nearby in the unknown region. The foreground samples are then
separated into clusters, and weighted mean and covariance matrices
are used to derive Gaussian distributions that describe P (F ). The
same is done for the background colors. Given these distributions,

the Bayesian matting approach solves for the maximum-likelihood
foreground, background, and alpha at the unknown pixel.
Hillman et al. [2001] have additionally applied their alpha matting
approach to moving image sequences. They match a low-resolution
version of the current image to the previous image and classify each
pixel as foreground or background if the corresponding pixels are
mostly of the same foreground/background class. Undecided pixels
are classified by searching for corresponding edges in the previous
frame and using their foreground and background color statistics.
Unfortunately, it is hard to gauge the quality of their approach since
only three static frames from a simple sequence are presented.

2.2 Optical flow

Optical flow algorithms can be used to estimate the inter-frame
motion at each pixel in a video sequence. Given two neighboring
frames, Ci and Ci+1, we can think of each pixel x in Ci+1 as com-
ing from a shifted location x + u in Ci:

Ci+1(x) = Ci(x + u) (3)

where u describes the “velocity” of the pixel and is itself a spatially
varying function over the image. We refer to u(x) as the flow field
between two frames.
Over the years, researchers have developed a number of techniques
for estimating the flow field, many of which are compared and sum-
marized by Barron et al. [1994]. Two assumptions common to many
of these techniques are that the color of a source and destination
pixel should be similar, and that the flow field should exhibit some
amount of spatial coherence. Thus, the problem becomes one of
optimizing a data term (color similarity) plus a regularization term
(smooth flow).
One of the better-performing optical flow techniques is due to
Black and Anandan [1996]. In addition to estimating regularized
flow, their technique employs robust statistics to avoid large errors
caused by outliers and to allow for discontinuities in the flow field.
Their method handles large motions using a multi-scale approach
to flow estimation. In our video matting process, we have incorpo-
rated Black’s optical flow algorithm, for which an implementation
is available on the author’s Web page.
In order to use optical flow to its fullest advantage, we make two
important observations. The first observation arises when we con-
sider disocclusions in an image sequence, i.e., when a feature not
present in one frame appears in the next frame. Optical flow breaks
down here because it cannot find source pixels that “explain” the
new feature. However, if we view this same event when running
through the frames in the reverse direction, the event becomes an
occlusion, and optical flow does not have a problem. This insight
has also been noted and used in the image coding literature [Sun
et al. 2000]. We’ll refer to it as “Observation 1.”
The second observation is that optical flow tends to perform poorly
at the boundaries between foreground and background layers that
have distinct motions, yet are blended together. As noted above,
Black’s algorithm does allow for discontinuities in the flow field.
However, we have found that this allowance does not always work,
particularly for complex silhouettes. This second insight will be
called “Observation 2.”
Later in the paper (Section 3.2), we use these observations to decide
how to flow information through the spatiotemporal video volume.

2.3 Background estimation

Clean plate techniques are straightforward when the camera is
locked down or when it is attached to a motion control rig that per-
mits reproducing camera motion both with and without the actors.
In some cases, however, a partial clean plate can be assembled from
nearby video frames, if the background motion can be reliably esti-
mated from frame to frame. Such image mosaicking techiques have
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recently been used in MPEG-4 video coding to compactly trans-
mit a static portion of the scene viewed from a panning camera
[Lee et al. 1997]. Once a conservative foreground mask (sometimes
called a garbage matte) has been specified, through either manual
[Lee et al. 1997] or automated [Wang and Adelson 1994] means,
the remaining background fragments can be assembled using per-
spective image mappings to form a composite mosaic [Szeliski and
Shum 1997], which can then be reprojected into each original frame
to form a dynamic clean plate. While these previous approaches
have been succesfully applied in image coding and surveillance,
they have not been used to obtain pixel-accurate alpha mattes.

In this paper, we require user input to establish a garbage matte, and
we adopt the mosaicking method of Szeliski and Shum [1997] to
compute frame-to-frame registration. This method works under the
assumption that the background undergoes only planar-perspective
transformation. This assumption is equivalent to requiring that the
background be planar or, less restrictively, that the camera’s optical
center translate a negligible amount relative to the distance to the
background between frames being registered.

3 Video matting

Our approach to video matting combines these earlier techniques
with a modest amount of user interaction. Figure 1 illustrates the
flow of user interaction, data, and computation, which we summa-
rize here.

Where possible, a background plate B can appreciably improve the
quality of the mattes obtained. To aid this process, the user draws
a set of garbage mattes G that conservatively eliminate the fore-
ground and enable background estimation. Next, the user draws
trimaps at selected keyframes. These keyframe trimaps K can be
fairly crude, as shown in Figure 3, and thus can be drawn quickly.
In particular, the user draws a thick boundary that encompasses the
regions where alphas need to be estimated and also partitions the
image into foreground and background. To distinguish the two, the
user selects which partition or partitions are to be flood-filled as
foreground, and the remainder is flood-filled as background. The
choice of keyframes is something the user adapts to with experi-
ence; for example, keyframes are helpful in areas where the topol-
ogy of the foreground layer changes.

Once the initial set of trimaps is specified, the labelings are passed
through the volume using optical flow, resulting in trimaps T at ev-
ery frame. The flow of information considers where optical flow is
likely to succeed and where it might fail. In order to narrow the
bands of uncertainty in the trimaps as they flow through the vol-
ume, they are converted to alpha mattes α by the Bayesian matting
process at each step of the process and then converted back into
trimaps. If background information is available, the flow process
can be improved using better alpha mattes (and thus trimaps) and
by using a form of difference matting that improves the trimaps in
regions where flow fails.

Finally, if the matte is not satisfactory, the user can select a frame
and edit the trimap with a simple painting tool. In practice, we pro-
vide an image of the alpha matte to edit, as this tends to expose
the structure of the image more than the trimap, but we permit the
user to paint alphas of only 0 or 1. The edited alpha matte is then
converted to a trimap and becomes a new keyframe. We then re-run
the trimap interpolation method to make maximum use of the new
information.

The output of the system is the estimated foreground F , estimated
background B̂, and alpha α for every frame. Note that, even when
the background is available, the estimated background color may
be slightly different in order to satisfy the maximum-likelihood cri-
terion in Bayesian matting.

In the remainder of this section, we discuss in greater detail the
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Figure 1 Video matting flow chart. The primary computational blocks of our
process are the background estimation, trimap interpolation, and Bayesian
matting components. Each block receives the original image sequence C as
input. For background estimation, the user also provides a garbage matte G to
remove the foreground; then, a background B is estimated and used in trimap
flow and matting. To obtain a video matte, the user provides keyframe trimaps
K, which are then converted to alpha mattes α and passed to the trimap
interpolator. The interpolated trimaps T are refined through alpha matting
at each step. Once the trimaps are complete, the Bayesian matting algorithm
generates an estimated foreground F , background B̂, and α for all frames.

fundamental computational blocks: background estimation, trimap
interpolation, and alpha estimation. We conclude by describing a
simple extension for extracting a smoky foreground layer from a
known background.

3.1 Background estimation

Before beginning background estimation, a garbage matte is nec-
essary to mask out, in a conservative manner, all pixels that could
possibly contain foreground contributions. While automatic meth-
ods have been published for estimating a garbage matte, and indeed
we have tried using the keyframe trimaps to assist in this process,
they do not always work. Making errors in the background plate
can seriously degrade the quality of the alpha matte. Thus, we fol-
low the approach commonly used in the film industry: we require
the user to provide the garbage mattes. For our system, the user
must draw a rectangle at a handful of keyframes. These rectangles
are automatically interpolated over all the frames, and can then be
adjusted immediately by the user to obtain conservative garbage
mattes. For a sequence of 100 frames, it took about 5 minutes to
specify garbage mattes.

Given the garbage mattes, we follow the registration procedure de-
scribed in Section 2.3. However, instead of constructing a single
clean plate, we fill in the missing parts of each frame with the
color from the temporally nearest frame that contains a background
color for that pixel. In practice, we find that copying pixels from
nearby keyframes has the advantage of reducing errors due to small
amounts of parallax or gradual temporal variations that may arise
with illumination changes, motion blur, and defocus.

3.2 Trimap interpolation

To pull a complete video matte, we require a trimap for each frame.
Constructing the trimaps manually is tedious and time-consuming;
on the other hand, a fully automatic approach is unlikely to suc-
ceed in giving high-fidelity mattes. Thus, we have developed a
semi-automatic system that calculates trimaps for every frame us-
ing hand-drawn trimaps for selected keyframes.

To take advantage of spatiotemporal coherence within the video
volume, we employ optical flow. The flow field acts as a guide for
passing trimap labelings through the volume between keyframes.
In principle, we could simply start from the first keyframe and flow
its trimap forward in time. Observation 1, however, tells us that dis-
occlusions will cause errors in flow that can frequently be resolved
by viewing flow in the opposite direction. The solution is clear: run
flow in both directions — forward from one keyframe and back-
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ward from the next — and combine the observations according to a
measure of per-pixel accuracy for each prospective flow.

In the following sections we describe how we measure the accu-
racy of optical flow and then present our algorithm for running and
combining bi-directional flow.

3.2.1 Accuracy of optical flow

In this section, we devise a method for determining the accuracy
of optical flow based on the observations in Section 2.2. This ac-
curacy test is built on precomputed error maps, i.e., the per-pixel
prediction errors from one frame to another. To create a forward
error map E

f
i for a flow from frame i − 1 to i, we first compute

the image predicted by flow, Ci(x − u), bilinearly resampled onto
the pixel grid. At each pixel of this warped image, we can com-
pute the difference between the predicted color and the observed
color as the L2 distance between the pixels in RGB color space,
E

f
i = ||Ci(x) − Ci(x − u)||. A similarly computed backward

error map Eb
i measures the accuracy of flow from frame i + 1 to i.

After computing error maps for each frame in both directions of
optical flow, we combine these to create two sets of accumulated
error maps. Since we are propagating trimap values from the near-
est keyframes, it is not enough to know the error for single frames
of optical flow. Instead, we need the accumulated error in optical
flow in both directions from the nearest keyframes. If frame i is a
keyframe, the forward accumulated error map A

f
i+1

is simply set

to E
f
i+1

. To compute A
f
i+2

, we first warp the values of A
f
i+1

for-

ward in time using the calculated flow. Then, we set A
f
i+2

equal to

this warped accumulated error map plus E
f
i+2

. This set of calcula-
tions is performed from each keyframe forward until the following
keyframe is reached. The backward accumulated error maps Ab

i are
computed similarly. Thus, at a frame j, the accumulated error maps
A

f
j and Ab

j give us a measure at each pixel of the accuracy of flow
estimation from the previous and following keyframes.

3.2.2 Combining forward and backward flow

Once optical flow and the error maps have been calculated, we flow
the trimaps forward in time from the hand-drawn keyframes. That
is, a trimap is formed at frame i + 1 by warping the keyframe
trimap i using the calculated forward flow vectors. We add an ad-
ditional validity bit for each pixel of the flowed trimaps that indi-
cates whether the calculated trimap value is trusted; this validity
bit Vi(x, y) is set to 0 if E

f
i (x, y) is greater than a certain thresh-

old (experimentally set to 30). This bit indicates whether a flowed
trimap value is to be trusted. When calculating trimap i + 2 from
trimap i+1, the validity bits are also warped forward and combined
conjunctively. That is, if forward flow vectors indicate that pixel
(x, y) in frame i+1 flows to (x′, y′) in frame i+2, the validity bit
at (x′, y′) in trimap i+2 is set to Vi+1(x, y)∧(Ef

i+2
(x′, y′) < 30).

After calculating each warped trimap, we improve it by performing
Bayesian alpha estimation. Untrusted pixels whose validity bits are
0 are labelled as “unknown”: we are not confident of the labelling
of these pixels and do not want them corrupting the color distribu-
tions. The result of the alpha estimation is thresholded (within 10
of “definitely foreground” or “definitely background”) and used to
improve the trimap. If alpha estimation confirms the labelling of an
untrusted pixel, the validity bit is set to 1. If a pixel labelled as “un-
known” is identified as “foreground” or “background”, the label is
changed accordingly.

In the second pass, we start from each keyframe and flow back-
wards in time. Now, however, we must combine the trimap pre-
diction in the forward direction with the trimap prediction in the
backward direction. This is made simple by the accumulated error
maps that we calculated earlier. First, the backward trimap predic-
tion for frame i is calculated using a technique symmetric to the

forward trimap calculation. Then, at each pixel, we use the lesser
of A

f
i and Ab

i to select a trimap value. In practice, we add an addi-
tional penalty term to this comparison; if the forward trimap label
is “unknown” we add a penalty of 50 to A

f
i , and likewise for the

backward trimap. Our results were improved by this penalty term
because of Observation 2; “unknown” pixels are near depth discon-
tinuities and should be trusted less.

If a background plate is available, it is useful to incorporate this
information when flow is invalid from both directions. In the event
that the forward and backward validity bits are both 0, we can resort
to a simple form of difference matting. In particular, we compute
the RGB L2 distance between the observed color and the back-
ground color and apply user defined thresholds to map the distance
to a trimap value.

Finally, during the second pass each computed trimap is passed
through alpha estimation, and the results are used to improve the
trimap as described earlier.

3.3 Bayesian matting with background

When the background is not available, we run the matting algo-
rithm on the video frames and trimaps exactly as described in Sec-
tion 2.1. When available, however, the estimated background offers
three distinct advantages. First, the distribution of the background is
tighter and more accurate. (However, due to sensor noise, the back-
ground color is still not a point in color space, but is modeled by
a Gaussian distribution with a small standard deviation centered at
the estimated color.) Figure 3 shows that the extracted alpha matte
is much improved with the help of the clean plate. Second, we no
longer need to compute background statistics by sampling neigh-
borhoods and computing means and covariances, thus speeding up
the matting process. Finally, the neighborhood windows no longer
have to be large enough to span the unknown region and include
pixels in the known background region. These last two factors yield
a factor of 10 speedup in the matting process.

3.4 Smoke matting

We have also developed a simple extension for extracting mattes
of flowing, participating media, such as smoke, given a known
background. Figure 4 illustrates the “smoke matting” process for
a smoking actor. First, applying the video matting technique de-
scribed in this section to just the actor, we pull his matte and re-
move him from the scene. We then compute the difference between
the matted-out image and the background image, and all pixels that
are different by more than a threshold (5% in our example) are
selected for estimating foreground statistics. By treating the color
of the smoke as a constant value that is simply composited with
a varying alpha over the background, we need only discover that
foreground color in order to estimate the matte. For each selected
pixel, if it has been mixed with smoke, then we expect its color to
lie somewhere along a line in RGB color space between the pixel’s
known background color and the foreground smoke color. By tak-
ing all of the selected pixels, we can construct a set of these lines
that, barring degenerate configurations, will roughly intersect at the
foreground smoke color. Thus, we compute an initial estimate of
the foreground color as the least-squares nearest intersection of all
the lines. We then project the approximate intersection point onto
each of the original lines and form a foreground distribution used
by Bayesian matting. The smoke matte is calculated at every pixel
in the image without the actor, and then the actor and smoke mattes
are combined.

4 Results

We have applied our new video-matting algorithm to a number of
video sequences. The final results are best viewed in video form,
but we present stills for several instructive examples in this section.
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sequence frames initial keys edited keys frames/sec
Amira (Fig 2) 91 10 2 15
Kim (Fig 3) 101 11 4 15
Smoke (Fig 4) 176 10 1 15
Baseball (video) 161 12 3 30
Jurassic (video) 96 11 1 30

Table 1 Details for the five test sequences.

Figure 2 demonstrates the importance of using bi-directional opti-
cal flow for computing interpolated trimaps. For this example, no
background estimation is performed. In flowing from keyframe 27
to 28, a disocclusion of the foreground occurs, causing errors in
the optical flow, which lead to “unknown” labels in these regions.
Flowing from 29 to 28 solves this problem, but introduces some
disocclusion in the background. Combining the two flows using the
forward/backward sweep described in Section 3.2 gives a more ac-
curate trimap and a better matte and composite.

Figure 3 illustrates the utility of background estimation. After the
user provides the garbage matte, a background sequence is con-
structed. The keyframe trimap, combined with the input image, can
be used to create a matte using the Bayesian method even with-
out the background, but the matte contains a number of errors, as
shown in the composite over blue. When including the background,
but using the method of Ruzon and Tomasi, the matte also exhibits
artifacts. In fact, when playing this result back as a video, tempo-
ral flashing artifacts arise, which are likely due to the static neigh-
borhoods assembled independently for each frame. Finally, using
the Bayesian method combined with the background yields a matte
that, while not perfect, is free of many of the artifacts of the other
two methods, and composites well over novel backgrounds.

Figure 4 shows a result of smoke matting and illustrates a composite
over an edited background. In this case, we acquired the original
background by locking down the camera and filming in the absence
of the actor. Note that while the resulting matte is not perfect around
the silhouette of the actor, for the purposes of background editing
in a particular region, the matte is good enough. If more edits were
required, the user could focus them only in the regions that would
be composited over the background edits.

Both time of execution and the amount of user interaction depend
heavily on the nature and resolution of the sequence. Overall, our
system can be divided into an unsupervised pre-processing phase
and an online phase. For the 640x480 Kim sequence (Figure 4), pre-
processing took about 80 seconds per frame; the calculation of op-
tical flow was by far the largest component of this time. For the on-
line phase, drawing a keyframe trimap for this sequence took about
2 minutes per trimap. Interpolating these trimaps took 12 seconds
per frame, with alpha estimation as the bottleneck. The interpola-
tion process is unsupervised, and the user can draw more keyframes
in parallel. As mentioned in Section 3, the user can then hand-edit
any errors to form additional keyframes; this is quick and requires
only a couple minutes for the entire sequence.

All of our algorithms scale linearly with pixels of resolution, but
other factors such as the area of unknown regions in the trimaps
also affect running time. Choosing the frequency of keyframes also
depends on the sequence. Complicated geometry such as wispy hair
generally requires a keyframe every 10 frames. Sequences of sim-
pler geometry require keyframes every 20–30 frames. Care should
be taken to add keyframes when objects enter or leave the field of
view. The number of keyframes required for each sequence, along
with the number of additional hand-edited keyframes after the first
pass of the algorithm are given in Table 1. Two sequences listed are
found only on the accompanying video.

5 Conclusion

In this paper, we have presented a new process for video matting
that is capable of pulling mattes of foregrounds with complex sil-

houettes filmed in motion over natural backgrounds. Our primary
contribution is a framework that pulls together pieces of existing
research and combines their strengths while working around their
weaknesses. The result is a new kind of rotoscoping approach that
flows trimap image segmentations over time and enables the ex-
traction of detailed mattes around complex foreground silhouettes.
In the process, we have introduced a novel method for combining
bi-directional optical flow to interpolate trimaps. Further, we have
introduced a simple procedure for extracting mattes of participating
media filmed against a known background.
In the future, we hope to develop an optical flow algorithm that
incorporates the notion of blended, complex foreground and back-
ground layers, thus improving flow estimates and allowing us to
accumulate foreground and background color distributions tempo-
rally as well as spatially. In addition, when the user edits selected
trimaps, it should be possible to generate new trimaps and mattes
more quickly, perhaps interactively, by taking advantage of the lo-
cality of these edits. Ultimately, we would like to develop a com-
plete tool with an integrated and powerful user interface that could
be tested by and improved with the help of rotoscoping artists.
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frame 27 frame 28 frame 29 composite 28

trimap27→28 trimap28 trimap28←29 alpha 28

Figure 2 Combining bi-directional flow. For frames 27, 28, and 29 (shown above) and the current trimaps for frames 27 and 29 (neither shown), we estimate the
trimap for frame 28. Flowing the trimap in the forward direction (27→ 28) yields a trimap with extra uncertainty due to disocclusion as the actor’s face turns to
the right. The trimap predicted by flowing backward (28← 29) has less uncertainty in those regions, but suffers from disocclusions where the background is newly
exposed. By combining the information in both these trimaps, we can compute trimap 28 automatically, which is better than either one alone. The right column
shows a composite into a new scene (top) using the pulled matte (bottom) based on the combined trimap.

(a) (b) (c) (d)

Figure 3 Background estimation in Bayesian matting. On the far left are the keyframe trimap and estimated background for a single frame. Using the original
image (a) and the trimap without the background, Bayesian matting pulls a matte with errors, as shown in a composite over blue (b). Including the background but
using instead the method of Ruzon and Tomasi gives an improved result (c), but flaws in the matte are still visible. Applying the Bayesian matting with background
results in a higher-quality matte and composite (d).

(a) (b) (c) (d)

Figure 4 Smoke matting. The input image (a) is part of a sequence for which keyframe trimaps and trimap flow have been computed, and for which a background
plate is available. Using the alpha matte as a garbage matte, the foreground actor is removed (b). After applying the participating-media matting algorithm
described in Section 3.4, we obtain a matte for the smoke, which is combined with the actor’s matte to yield a complete matte (c). We can then composite the
foreground over an edited version of the background as shown here (d).
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