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Abstract

GrabCut is perhaps the most powerful semi-automatic

algorithm for matting presented to date. In its existing

form, it is not suitable for video object segmentation. This

paper considers major extensions that make it suitable for

this purpose. A method for initialising matting without

user intervention is presented, followed by a more robust

data model using a Mean Shift algorithm to control model

complexity. In addition, normalised motion information

as well as colour is used to form joint colour and motion

feature vectors. This improves the robustness of the mattes

in the presence of colour camouflage and decreases the user

intervention required for a successful result. Comparison

between GrabCut and the proposed Motion Extended GrabCut

(MxGrabCut), shows the improvement for video matting.

1 Introduction

The segmentation of images into foreground and background

layers is a topic that has attracted much attention in the vision

community. It is an important task in digital cinema post-

production where the typical use is to “pull a matte” from

a scene and to composite it onto a new background. A

matte, l(x), describes the membership of each pixel, x, to the

foreground and background layers and can be described by the

equation

C(x) = l(x)Cfg(x) + (1 − l(x))Cbg(x) (1)

where, C(x) is the colour value of the observed image at that

site and where Cbg(x) and Cfg(x) are the colour values of the

foreground and background layers. In general, the matte l(x)
can take any value between 0 and 1, although often values are

restricted to 0 and 1 which implies that each pixel must belong

wholly to one of the layers. Fig. 1 shows an example of a frame

divided into foreground and background layers.

Foreground Segmentation has use in a number of applications,

including global motion estimation algorithms [21, 9, 19] and

image coding [28, 14] as well as compositing for motion-

picture post-production[15, 5, 4, 26]. The precise definition of

what constitutes the foreground and background layers varies

according to the application, the most universal definition being

that the foreground layer is composed of objects which are

(a) Original Frame (b) Matte

(c) Foreground Layer (d) Background Layer

Figure 1: This figure shows the separation of the image (a)

into foreground and background layers, (c) and (d), using a

matte generated by MxGrabCut (b).

moving and that the background layer is composed of static

objects (See Fig. 2).

1.1 Related Work

Generating mattes of sufficient quality for automatic

compositing has proven a difficult task. High quality mattes

are required for convincing results when a foreground layer is

composited onto a different background. Sub-pixel accuracy

is required for the mattes, as pixels at layer boundaries can

contain information from both layers. The fall-back solution

in the industry has been to use manual rotoscoping to cut out

foreground objects from a scene or to solve the constrained

segmentation problem of blue or green screen keying.

There has been some research into interactive rotoscoping

algorithms as a lower cost alternative to manual rotoscoping.

One approach is to make the user place points along or near

the layer boundary, with the precise layer boundary being

found using an edge tracking algorithm (e.g. [23, 20]).

However, most research has focused on a region-based solution

to the matting problem which estimates mattes directly using a

limited amount of user interaction.

The most successful region-based algorithms have tended to
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Figure 2: These images show four consecutive frames from a sequence where the camera is tracking the quad-bike. Although

the quad-bike is static relative to the camera, it is considered to be the foreground as it is the only object that is moving relative

to the ground.

approach the problem in a Bayesian fashion. Given the colour

data C(x), the desired matte, l(x), is the one that finds

the maximum-a-posteriori value of the probability distribution

p(l(x)|C(x)). Factorising the posterior in a Bayesian fashion

yields

p(l(x)|C(x)) ∝ pd(C(x)|l(x)) × ps(l(x)|L) (2)

where pd(.) is the data likelihood and ps(.) is a prior on

the value of l at a site x given the label values L in the

neighbourhood of x. The segmented image l(x) is considered

to be a Markov Random Field.

A Bayesian solution to the matting problem was presented in

the Bayes Matting algorithm of Chuang et al. [5, 4]. Mattes

are estimated to sub-pixel accuracy by allowing non-binary

values for the matte, l(x), in Eq. 1. In the Bayesian matting

algorithm, the likelihood is estimated from Gaussian Mixture

Models (GMMs) (i.e. a weighted sum of multi-variate gaussian

distributions) of the foreground and background layers. The

same prior value is used for all possible values l(x), implying

this term is effectively ignored. Bayes Matting requires the user

to provide a trimap, which defines some regions of the image

as either being definitely foreground or definitely background.

A small band of pixels at the layer boundary is not assigned

to either layer and the Bayes Matting algorithm estimates the

value of l(x) at these pixels.

Constructing the trimaps used in Bayes Matting requires a

large amount of user interaction. Authors have attempted to

reduce the amount of user interaction by solving the binary

segmentation problem. In the binary problem, pixels belong

wholly to the foreground or background layers. The GrabCut

algorithm or Rother et al. [25] is one of the more well known

approaches. GrabCut merely requires the user to draw a box

around the foreground object. It again uses GMMs of the

foreground and background layers to construct the likelihood.

However, it also introduces a prior ps(l(x)|L) which enforces

a spatial smoothness constraint on the matte. A further

innovation of GrabCut is that it employs an iterative approach

by recursively solving for l(x) and using that solution to refine

the GMMs of the foreground and background.

The common drawbacks of the segmentation algorithms

discussed above are that they make no use of temporal

information and they require user intervention. Recognising

Figure 3: This flowchart outlines the operation of

MxGrabCut.

this, Kokaram et al. [15] proposed an automated matting

algorithm that incorporates temporal sequence data in

the form of global motion compensated Displaced Frame

Differences (DFDs) and estimates the mattes using a Bayesian

framework. Although temporal information is included, the

there no explicit inclusion in the framework of the colour or

texture information in the current frame. Another important

algorithm was proposed by Criminisi et al. in [7] which adds

motion likelihood and temporal prior terms to the Bayesian

framework. However, the algorithm is limited in application

to sequences with a static camera and requires a manually

labelled ground truth to train some of the terms used in the

Bayesian framework.

1.2 Motion Extended GrabCut

The proposed algorithm extends on the GrabCut algorithm,

resulting in an algorithm that produces high quality mattes

without the need for any user intervention or a ground truth.

First of all, user interaction is eliminated by estimating an

initial garbage matte using the frame intensity difference

between the frame to be segmented and its neighbours. This

garbage matte allows a GMM to be trained for each the

foreground and background layers of the image. The algorithm

then adopts an iterative approach similar to GrabCut, with the

GMMs being recursively refined at each iteration (See Fig. 3).

Two key improvements have been made to the iterative

segmentation framework compared to the one used in

GrabCut. Firstly, the GMM for each layer is extended so

that they a model a feature vector containing both the RGB

values and forward and backward motion values for each

pixel. This allows any dependence between colour and motion

to be modelled. In total there are 7 data values for each pixel,
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3 RGB values and two each for motion with respect to the

backward frame and motion with respect to the forward frame.

The other key improvement is the use of Mean Shift [10, 6] to

automatically choose the number of components in the GMM.

Because of this, the GMM should better match the complexity

of the data distribution than if the number of components was

fixed by the user.

The following sections introduce the MxGrabCut algorithm,

and in particular describe the data modelling technique for

the foreground and background layers. This is followed by

a summary of the results obtained from the algorithm and

a discussion which also describes some directions for future

research.

2 Data Requirements

The proposed iterative segmentation algorithm requires both

colour and motion data. The colour data is simply provided

by the image data in the RGB colour space (i.e. C(x)). The

motion data can be usually derived from the motion vector

fields produced by a motion estimator such as [17]. In this

case, the motion values are given by the horizontal and vertical

vector components of the motion with respect to to the previous

frame and also the next frame.

An alternative to performing motion estimation, proposed

in [7], is to use spatial and temporal derivatives of the

image sequence intensity function. This avoids the need for

computationally costly motion estimation, and is reasonable

since these derivatives are central to gradient-based motion

estimation algorithms [17, 13]. The 4 motion values for each

pixel are now given by the forward and backward intensity

difference and the horizontal and vertical spatial difference

where these terms are defined as

∆n,n−1(x) = In(x) − In−1(x)

∆n,n+1(x) = In(x) − In+1(x)

Ix(x) = 0.5
(

In(x + 1, y) − In(x − 1, y)
)

Iy(x) = 0.5
(

In(x, y + 1) − In(x, y − 1)
)

(3)

respectively. In Eq. 3, In(x) is the intensity of a pixel x in

frame n and x represents a point (x, y) in the Cartesian co-

ordinate space. MxGrabCut can be adapted to work with either

form of motion information, although the temporal and spatial

derivatives are used in the examples shown later.

3 Normalisation of Motion and Colour

An important consideration in constructing the joint

colour/motion feature vector is to normalise the motion

values with respect to the colour values. The normalisation

should ensure that a given difference between values in a

motion component has the same significance as the same

difference between values in a colour component. The adopted

approach is to force the ranges of the colour and motion

components to be the same. This is more straightforward if the

temporal and spatial derivatives are used for motion. Then,

the theoretical upper and lower bounds of each term can be

deduced and the range of the data is adjusted so that it is the

same as the colour values. However, if motion vectors are

used, the theoretical range can not be deduced. Consequently,

the range is estimated by finding the maximum and minimum

values in the motion vector fields. In both cases, the new

motion value m is given by

m = 255 ×
m − mmin

mmax − mmin

(4)

where the range of colour values is 0 to 255.

4 Garbage Matte Generation

The garbage matte in the proposed algorithm is designed to

replace the user drawn box in GrabCut. Its function is to give

a rough indication of where the foreground layer is, and this

facilitates the creation of the data models for both layers. The

garbage matte estimation takes inspiration from the algorithm

outlined in [15]. The key idea is that pixels which obey the

global motion model are part of the background layer. An

affine model for global motion is described by

In(x) ≈ I ′n−1(x)

≈ In−1(Ax + d) (5)

which states that the intensity values of the current frame, In,

can be approximated by a motion-compensated neighbouring

frame, I ′n−1. In this model, A is a 2 × 2 matrix d describes

the translation. Since pixels in the foreground layer will not

obey this motion model, the difference between the current

frame and motion compensated neighbour will be large. The

two DFDs ∆g
b and ∆g

f are estimated according to

∆g
b(x) = In(x) − In−1(Abx + db)

∆g
f (x) = In(x) − In+1(Afx + df ) (6)

where Ab and db are the global motion estimates for the

backward image pair while Af , df are the estimates for the

forward image pair. The garbage matte, lg(x), is then given by

lg(x) =

{

1 |∆b(x)| > δ AND |∆f (x)| > δ

0 Otherwise
. (7)

Typically, a value of 20 is used for the threshold δ. The global

motion parameters (Ab, db, Af , df ) are estimated using the

F Align plug-in provided in the Furnace suite of plug-ins [11].

Several published alternatives could be also used, including

[21, 9, 16].

As a final stage, the matte is eroded and subsequently dilated.

The erosion operation is intended to remove isolated false

alarms, while the subsequent dilation operation ensures that

as much as possible of the foreground object is contained in

the foreground layer of the garbage matte. In the proposed

algorithm, the structuring element is larger in the dilation

operation than the erosion operation, which implies the the

dilation is more significant than the erosion. An example of

a garbage matte is shown in Fig. 4.
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(a) Original Frame (b) Garbage Matte

Figure 4: This figure shows an example of a garbage matte

produced by MxGrabCut.

5 Data Modelling

As has been stated in Section 1.2, GMMs are used to model

the colour and motion data distribution (i.e. it defines the

Probability Density Function (PDF)) for the foreground and

background. In previous matting algorithms, either histograms

[2, 7] or GMMs [5, 26, 25] have tended to be used. Since

the proposed algorithm adds motion to the model, using

histograms is impractical as even a relatively coarse histogram

with 20 bins for each of the 7 dimensions (207 bins in total)

would have too many bins to populated sufficiently. GMMs

allow a large amount of data to be represented by a small

number of parameters and present a more general model for

the data.

For the purposes of the proposed algorithm, each image is said

to contain a set of feature vectors Z , where each vector z ∈ Z
contains the 7 colour and motion values for one of the pixels in

the image. Then, the PDF for the foreground and background

layers (pfg(z) and pbg(z) respectively) is described by a GMM

as follows

pfg(z) =
∑

k

πfg(k)G(z; ~µfg(k), Rfg(k))

pbg(z) =
∑

k

πbg(k)G(z; ~µbg(k), Rbg(k)). (8)

In the GMM, each component of the mixture k has a mean ~µ(k)
and a covariance matrix R(k) as well as a weight π(k) which

is normalised such that

∑

k

π(k) = 1. (9)

Finally, the form of a multivariate Gaussian distribution

G(z; ~µ,R) is

G(z; ~µ,R) = ‖R‖−
1

2 ×exp
{

−
1

2
(z−~µ)T R−1(z−~µ)

}

. (10)

In the proposed algorithm, the foreground and background

GMMs are created once the garbage matte, lg(x), is known

(Fig. 3). As a first step, the image pixels are partitioned into

two sets according to which layer they belong to in the garbage

matte. The GMMs are then created from these sets.

5.1 GMM Initialisation using Mean Shift

In past segmentation algorithms that used GMMs [5, 26, 25],

the number of components was chosen arbitrarily the user,

with the parameters for the initial GMM components calculated

using the algorithm of Orchard and Bouman [22]. Obviously,

choosing an arbitrary number of components means that the

GMM may not reflect the true order of complexity of the data.

In the algorithm outlined here, the number of components in a

GMM is identified by applying the Mean Shift [6] algorithm

to the corresponding data set. Mean Shift identifies the modes

or local maxima of the Kernel Density Estimate (KDE) of the

given data set. It also provides a segmentation of the feature

vectors. This segmentation is used to assign each feature vector

to a component in a GMM1. In MxGrabCut, a uniform 7-

D spherical kernel is used for mean shift. The radius of the

sphere is known as the bandwidth and is the only additional

parameter supplied to the algorithm apart from the data. The

bandwidth effectively controls the smoothness of the KDE.

High bandwidth values result in a smoother KDE which leads

to fewer components in the GMMs. A typical value for the

bandwidth is 40.

From a practical perspective, the weakness of Mean Shift

is its computational complexity which is O(n2).2 Much

research has focused on improving the efficiency of mean shift

algorithm and here the Path Assigned Mean Shift algorithm

[24] is used. To further improve the efficiency of the process,

the image and garbage mattes are downsampled horizontally

and vertically by a factor of 4. Once the data sets have

been divided into components, the parameters of the GMMs

(i.e. weight, mean and covariance of each component) can

be estimated directly from the data of each component. The

weights are given by the fraction of points in the set that belong

to each component.

5.2 Optimising GMM Parameters using the EM

algorithm

From these initial models, the parameters can be refined using

the Expectation-Maximisation (EM) algorithm[8]. Using the

current set of GMM parameters, the expected component k̂(z)
for each point z in the appropriate partitioned set is estimated

(the E-Step). This corresponds to the Maximum Likelihood

(ML) component according to

k̂(z) = arg max
k

{

π(k)G(z; ~µ(k), R(k))
}

. (11)

The second stage of the EM algorithm (the maximization stage

or M-step) involves finding the maximum likelihood parameter

values given the expected component values from the E-Step.

For a GMM, this merely involves re-estimating the mean and

covariance matrix of the points that belong to each expected

component. The weight for each component is again given by

the fraction of points in the partitioned set belonging to the

expected component.

1Each local maximum is associated with a GMM component
2
n represents the number of Pixels.
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EM is used in two of the stages in MxGrabCut (Fig. 3). Firstly,

it is used in the GMM Initialisation stage to refine the GMMs

after they have been created from the mean shift procedure.

EM is repeated a number of times until successive estimates

of the GMM parameters converge. This is limited in practice

to 20 iterations. It is also used in the GMM refinement stage,

where a single EM iteration is performed to update the GMM

parameters after each segmentation iteration.

6 Segmentation

The segmentation stage of the proposed algorithm extends the

Bayesian framework in Eq. 2 by including the motion data.

Given the full set colour and motion feature vectors Z(x), the

posterior PDF p(l(x)|Z(x)) now factorises as

p(l(x)|Z(x)) ∝ pd(Z(x)|l(x)) × ps(l(x)|L). (12)

As in Bayes Matting and GrabCut, the Data Likelihood in this

algorithm is derived from the GMMs for the foreground and

background. Given foreground and background GMMs pbg(z)
and pfg(z), the data likelihood is defined as

pd(Z(x)|l(x)) =

{

pbg(Z(x)) for l(x) = 0

pfg(Z(x)) for l(x) = 1.
(13)

This implies that for each pixel in the image the likelihood for

each label is given by the value of the PDF of the appropriate

GMM.

Like GrabCut, the Prior probability enforces a spatial

smoothness prior on l(x). The segmented image l(x) is

considered to be a Gibbs Random Field. It is in the form of a

contrast dependent prior [18] and is expressed as

ps(l(x)|L) = exp
{

−Λs

∑

y∈Ns(x)

U(x,y)|l(x)− l(y)|
}

(14)

where Ns(x) is a spatial neighbourhood of x. U(x,y) is the

contrast dependent energy term which is defined as

U(x,y) = ‖x − y‖−1 exp{−β‖C(x) − C(y)‖2} (15)

where ‖x − y‖ is the euclidean distance between the two

neighbours and

β =

(

2
〈

∥

∥C(x) − C(y)
∥

∥

2
〉

)−1

. (16)

In this context, 〈.〉, denotes expectation of the enclosed term

over the entire image. Λs is a tuning parameter which, when

large, increases spatial smoothness of the matte. A value of 50
is used following the suggestion in [25].

The prior encourages spatial smoothness since the probability

is decreased whenever two neighbours x and y are different.

The degree of smoothness is dictated by the contrast dependent

energy U(x,y), which is designed to enforce smoothness when

the contrast is low [25, 2]. In MxGrabCut, the RGB contrast is

chosen since the perceived foreground/background boundaries

occur at image edges rather than motion discontinuities.

6.1 Solving for l(x)

The desired solution l̂(x) is the matte that maximises the joint

posterior PDF over every pixel. In equation form, this is

expressed as

l̂(x) = arg max
l(x)

∏

x

p(l(x)|Z(x)). (17)

It becomes more convenient to express the problem as an

energy minimisation problem by taking the negative log of the

posterior. The solution now becomes

l̂(x) = arg min
l(x)

∑

x

(− ln
{

p(l(x)|Z(x))
}

). (18)

There are numerous suitable methods to solve for l̂(x). In

MxGrabCut, the max-flow Graph Cuts approach proposed in

[2, 3] is used. This energy minimisation algorithm estimates

the global minimum energy for a two label problem in

an efficient manner, unlike other methods such as Iterated

Conditional Modes [1] and Simulated Annealing [12].

Furthermore, the framework outlined in [2] allows hard

constraints to be placed on l̂(x) by manipulating the likelihood

function. However, in the segmentation stage of the proposed

algorithm, no such constraints are placed on the matte.

6.2 Iterative Segmentation

A segmentation stage is performed each time the GMMs are

refined. Once the new matte l(x) is calculated, it is then used

to repartition the data set Z . When the next GMM refinement

operation is executed, the data GMMs are trained on a more

accurate partition. With each refinement, the maximum-a-

posteriori estimate of the joint PDF of the matte and GMMs,

P (l(x), pfg(z), pbg(z)|Z(x)), converges to a local maximum

of the PDF. Iterations should continue until the estimate of

matte and GMM parameters have converged. In practice, the

number of iterations is capped, typically to 10 iterations in the

examples shown in this paper.

7 Results and Discussion

Figures 5 and 6 show examples of mattes taken from scenes

with either a static background or a background undergoing an

affine motion and Fig. 7 shows the improved matte obtained

when using the motion as well as colour to train the GMMs.

In the best case examples, the result is comparable in quality

to a manually drawn matte, with a tight fit of the matte to

the object image edge. However, in many examples, there

is a mislabelling around the boundary of the matte, resulting

in parts of the background being included in the foreground

layer. Any mislabelling is typically due to an insufficient

garbage matte or because the GMMs do not realistically model

or foreground and background. The mattes can be improved in

a semi-automatic manner, as outlined in [25, 2], by allowing

the user to mark the mislabelled regions.

A binary segmentation of a frame is not sufficient for

compositing applications as it does not model the regions of
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(a) Original Images

(b) Extracted Foreground Layers

Figure 5: This figure shows examples of the foreground layers extracted by MxGrabCut from two sequences in which there

is no camera motion. In the first sequence, both the actor and its shadow are detected as foreground. Although the detected

layer boundary generally agrees with the image edge, there is some mislabelling around the layer boundary in each example.

(a) Original Images

(b) Extracted Foreground Layers

Figure 6: This figure shows results of MxGrabCut applied to sequences in which there is camera motion. The detected

foreground/background boundary closely follows the true path, although again there is some mislabelling of background as

foreground.
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(a) Foreground Layer using Motion

and Colour

(b) Foreground Layer using only

Colour

(c) Foreground Layer using Motion

and Colour

(d) Foreground Layer using only

Colour

Figure 7: The above images show two example of how using

GMMs of the joint colour/motion feature vectors improves the

robustness of the algorithm compared to using colour alone.

When motion is used, the rate of mislabelling is dramatically

reduced. In both examples, all other parameters are the same

and the same garbage matte is used.

transparency that are typically found around object edges.

Other algorithms, such as the the Bayes Matting algorithm of

[4, 5], allow for continuous label values over the range 0 to 1.

Both Kokaram et al. [15] and Rother et al. [25] outline how

binary mattes can be used to estimate these non-binary mattes

by generating a trimap from the binary matte. In the example

shown in Fig. 8, a trimap is generated by performing a small

erosion and dilation on the binary matte. The non-binary

matte is generated from the trimap using the Bayes Matting

technique [4, 5].

The above examples show that good mattes can be obtained

when the background motion is affine. The affine and related

motion models assume that the background is planar, and thus

do not allow for parallax in the background (See Fig. 9). Fig.

10 shows that the algorithm fails in a sequence with parallax

in the background. Because of the parallax, the motion in the

background can not be compensated accurately, which leads

to a failure in the garbage mate estimation. Furthermore, the

parallax clutters the motion field, making it more difficult to

distinguish between foreground and background motion. Thus,

even when a user drawn garbage matte is used, the algorithm

produces a poor quality matte.

It is obvious that a better method for modelling such motion is

needed. For example, in [27] an algorithm has been proposed

to extract multiple layers from shots containing parallax.

However, an ambiguity still exists between foreground objects

that are moving independently of the background and objects

that lie at various depths in the background. A potential

solution presents itself when a scene is captured using

multiple cameras. The extra views of the foreground object

at each time instance allows the depth map of the scene to be

extracted. Depth can then be used as an additional feature for

segmentation alongside colour and motion hence improving

the ability to pull mattes. The applicability of such solutions

to digital cinema post-production will increase in line with the

growth of 3D cinema.

8 Final Comments

This paper has introduced a new algorithm for automatically

segmenting frames into foreground and background layers.

The algorithm shows how a garbage matte can be generated

automatically, removing the need for user-intervention in

the segmentation process. Furthermore, it has been shown

that including motion information improves the robustness

of the mattes and that the complexity of the GMMs can be

chosen adaptively using Mean Shift. There are a number

of leads for future research in this area. The problem of

foreground segmentation in sequences containing parallax

has already been discussed. Other possible extensions could

be to reduce the dimensionality of the data space to save on

computational complexity or to propagate mattes and GMMs

from neighbouring frames to improve temporal consistency of

the mattes throughout the sequence.
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(b) Definite Foreground Region (c) Definite Background Region

(d) Extracted Foreground using Non-

Binary Matte

(e) Zoom of Binary Foreground Layer (f) Zoom of Non-Binary Foreground

Layer

Figure 8: This figure shows how the binary mattes produced by MxGrabCut can be used to generate non-binary mattes. The

binary matte is used to define regions of definite foreground and background (shown as layers in (b) and (c)) by eroding and

dilating the matte respectively. A non-binary matte (d) can then be estimated by the Bayes Matting algorithm. (e) and (f) show

that the non-binary matte blends with the cyan background in a more visually pleasing manner.
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Figure 9: These images show 4 consecutive frames from a sequence in the camera motion causes parallax in the background.

This can be seen from the motion of the grey tank on the left over the brick fall in the far background.

(a) Original Frame (b) Garbage Matte (c) Estimated foreground

(d) Manually drawn garbage matte (e) Foreground layer estimated from the

manually drawn garbage matte

Figure 10: This figure shows the difficulties of matting in sequences containing parallax. In this example the foreground layer

produced by MxGrabCut (c) is poor because the estimated garbage matte is also poor(b). However, even when a user-drawn

garbage matte is used (d), the estimated matte (e) is still of low quality.
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