
Video Object Cut and Paste

Yin Li Jian Sun Heung-Yeung Shum

Microsoft Research Asia

(a) (b)

Figure 1: Given a video (a) containing an opaque video object on a complicated background, our system can generate clear alpha mattes and
foreground colors (b) for the video object, which can be pasted onto another background.

Abstract

In this paper, we present a system for cutting a moving object out
from a video clip. The cutout object sequence can be pasted onto
another video or a background image. To achieve this, we first ap-
ply a new 3D graph cut based segmentation approach on the spatial-
temporal video volume. Our algorithm partitions watershed pre-
segmentation regions into foreground and background while pre-
serving temporal coherence. Then, the initial segmentation result is
refined locally. Given two frames in the video sequence, we spec-
ify two respective windows of interest which are then tracked using
a bi-directional feature tracking algorithm. For each frame in be-
tween these two given frames, the segmentation in each tracked
window is refined using a 2D graph cut that utilizes a local color
model. Moreover, we provide brush tools for the user to control the
object boundary precisely wherever needed. Based on the accurate
binary segmentation result, we apply coherent matting to extract the
alpha mattes and foreground colors of the object.

Keywords: Video Segmentation, Matting, Tracking, Graph Cut

1 Introduction
Cut and paste of moving objects in a video sequence has many
applications in video processing. Typically, this is performed by
chroma keying, which is also referred to as blue screen matting.
In chroma keying, foreground objects are video recorded in front
of a solid-colored background, usually blue or green, and then are
separated from the background using matting techniques such as
[Smith and Blinn 1996] that take advantage of the known back-
ground color. The simplicity of these techniques enables rapid
foreground separation. For example, using the Ultimater system,
chroma keying can be computed in real time. However, these meth-
ods are limited to simple backgrounds of a solid color. Errors often
occur when foreground objects contain colors similar to the back-
ground.

Previous approaches for video object cutout involve silhouette
tracking, such as in [Kass et al. 1987; Blake and Isard 1998; Agar-
wala et al. 2004; Drori et al. 2004]. Although these methods can be
applied to general backgrounds, object boundaries are imprecisely
represented by smooth curves for greater robustness in the tracking
process. Since a coarse boundary descriptor cannot capture the fine
details of a silhouette, these techniques are inadequate for cut and
paste applications. Rough boundaries could be interactively refined
by auto keying [Mitsunaga et al. 1995], which provides a user inter-
face for detailed boundary adjustment by spline editing. However,
since each video frame must be individually modified by the user, a
prohibitive amount of manual work would be required to properly
delineate the boundary details.

Recently, video matting techniques (e.g., [Chuang et al. 2002;
Apostoloff and Fitzgibbon 2004]) have relaxed the solid color back-
ground requirement to allow smooth color changes. The success
of video matting depends on how accurately the trimaps can be
propagated and how well Bayesian matting [Chuang et al. 2001]
performs in each individual frame. Thus, video matting has two
main difficulties for general video sequences. First, many videos
contain fast motions, deforming silhouettes, and often-changing
topologies, which are very challenging for the state-of-art optical
flow algorithm [Black and Ananda 1996] to bidirectionally prop-
agate trimaps as shown in Figure 2(c). Second, even if accurate
trimaps can be obtained with considerable user interaction, the
Bayesian matting technique often produces unsatisfactory results
when the foreground/background contains complex textures or the
foreground colors are similar to the background colors. An example
of this problem is shown in Figure 2(e).

In this paper, we propose a practical system for video object cut
and paste from general backgrounds. We obtain a binary segmen-
tation of the video objects using a two-step approach: a novel 3D
graph cut based segmentation followed by a new tracking-based lo-
cal refinement. Then we adopt coherent matting [Shum et al. 2004]
which uses the binary segmentation as a prior to produce the alpha
matte of the object.

Our approach has the following advantages. First, we generate
an accurate binary segmentation before we apply the coherent mat-
ting. Therefore, coherent matting can generate better results than
Bayesian matting because it fully exploits the information in the bi-
nary segmentation with a regularization term for the alpha matte, as
shown in Figure 2(f). Moreover, to obtain a binary video segmenta-
tion, our system provides more accurate results and an easier-to-use

(a) (b)

(c) (d)

(e) (f)

Figure 2: Coherent matting vs. Bayesian matting.

(a) The 29th frame in clip #4 from the accompanying video.

(b) The optical flow from the 28th frame. (each vector is multipled by 2 for

better visualization.)

(c) The trimap generated by the optical flows from two accurate trimaps in

the 28th and 30th frames by following the approach in [Chung et al. 2002],

which appears too coarse for matting.

(d) The accurate trimap obtained from accurate binary segmentation.

(e) Even with the accurate trimap (d), Bayesian matting produces a fuzzy

result because of the low contrast boundary (such as the black colors around

the head) and complicated background textures (such as the trees in back-

ground). Even worse, these artifacts may cause flickering across frames.

(f) The result produced by our approach and coherent matting shows a

clearer and more stable boundary.

UI for refinement than contour tracking or trimap propagation. Re-
cent interactive 2D image segmentation methods [Li et al. 2004;
Rother et al. 2004] have demonstrated that accurate object bound-
aries can be easily obtained using simple user interaction and the
graph cut algorithm [Boykov and Jolly 2001]. In this paper, we fur-
ther extend the pixel-level 3D graph cut proposed by [Boykov and
Jolly 2001] to the region-level 3D graph cut to handle video objects
(Section 3), and we also provide a local refinement method using
tracking (Section 4).

2 Overview
The framework of our system is illustrated in Figure 3. The user
first selects a few key frames in the video sequence and provides
their precise foreground/background segmentation using any exist-
ing image snapping tool, such as from [Li et al. 2004]. Key frames
are typically sampled at ten-frame intervals, but the sampling rate
may vary according to object motion. For slower moving or de-
forming objects, a lower sampling rate may be used.

Between each pair of successive key frames, a 3D graph is
built on atomic regions (obtained with pre-segmentation) instead
of individual pixels [Boykov and Jolly 2001; Kwatra et al. 2003].
A novel 3D graph cut based segmentation is then performed by
considering the color consistency of each region with the fore-
ground/background color distribution in key frames, and then max-
imizing the color differences between regions across the object
boundary. In addition, it embeds temporal coherence of the video
object in the optimization. Much of the object silhouette can be
accurately located by this 3D graph cut segmentation.

To correct errors caused by the global nature of the color mod-
els used in the above 3D segmentation, our system allows the user

Input video sequence Key frames

3D graph cut on pre-segmented volume

2D graph cut within video tubes

Local color model

Overriding brush

Coherent matting

Output video object

Figure 3: The framework of our system

to refine the segmentation results in local windows across frames,
which we refer to as video tubes. These tubes are extracted by bi-
directional feature tracking of windows positioned by the user. The
segmentation of sections of these tubes is recomputed using local
color models and 2D graph cut.

For those regions that are very difficult for automatic segmenta-
tion, e.g., when color changes are subtle or edges are ambiguous,
our system allows the user to override the segmentation mask by
brushing over the foreground and background.

Finally, the video object is cut out by applying coherent matting
within a trimap that is generated by dilating the binary segmentation
boundary. The alpha matte as well as the foreground colors are
produced for the cut-out object sequence, which can be directly
pasted onto another video or image background.

3 3D graph cut segmentation
Our 3D graph cut segmentation algorithm is applied on the spatial-
temporal volume of the video. To make the optimization process
tractable, we pre-segment each frame in the video into a number of
atomic regions using the watershed algorithm [Vincent and Soille
1991] and build the 3D graph based on these atomic regions. An
alternative pre-segmentation algorithm is tobogganing [Mortensen
and Barrett 1999]. The novelty of our approach lies in the way
we form temporal connections that preserve a set of candidates and
therefore embed temporal consistency without explicit motion esti-
mation.

3.1 3D graph construction

The video object segmentation problem can be viewed as a labeling
problem, where each region in the video is assigned a unique label,
x ∈ {1(foreground), 0(background)}. The regions in key frames
already have labels, while regions in other frames are to be assigned
labels by the 3D graph cut segmentation algorithm.

We construct a 3D graph G = 〈V,A〉 on a 3D volume bounded
by two successive key frames. The node set V contains atomic re-
gions generated by the watershed pre-segmentation algorithm. The
arc set A contains two kinds of arcs: intra-frame arcs AI connect-
ing nodes within one frame, and inter-frame arcs AT connecting
nodes across adjacent frames.

To construct the intra-frame arcs AI , we simply connect each
region rt to each of the adjacent regions in the same frame It. To
construct the inter-frame arcs AT , we connect each region rt to
each region in the adjacent frame It±1 that lies within a given ra-
dius1 (typically 15 pixels), excluding obviously unrelated regions
whose mean color differs from that of region rt by more than a
threshold Tc (typically 30). We keep a set of candidate connections
for possible correspondences on adjacent frames, and let graph cut
optimization decide which should be cut off. This strategy leads to

1To handle regions with various shapes, such as an “L” shape or thin and

long regions, the adjacency between regions is computed by morphological

dilation instead of Euclidean distance between region centers.

t+1

E3

t

x = 1

E2

x = 0 E1

t - 1

E3

Figure 4: 3D graph cut construction. For a region r, it contributes
to 3D graph construction in three ways. First, it connects to the
foreground and background virtual nodes according to an energy
term E1. Second, it connects to neighboring regions within a frame
with term E2. Last, it connects to candidate regions on adjacent
frames with term E3.

greater robustness than traditional tracking methods, which deter-
mine only one correspondence.

3.2 3D graph cut optimization

The 3D graph cut algorithm solves the labeling problem by mini-
mizing the following energy function defined on the 3D graph G:

E(X) =
X
r∈V

E1(xr)+ λ1

X
(r,s)∈AI

E2(xr, xs) + λ2

X
(r,s)∈AT

E3(xr, xs)

(1)
where xr is the foreground/background label of region r, and
X = {xr : ∀r}. The first term E1 measures the conformity of
the color of region r to the foreground/background color model
built from the color information in the key frames. The second
term E2 measure color differences between two adjacent regions in
the same frame, and encourage two similar adjacent regions to be
both within the foreground or in the background. The third term
E3 measures color differences between two adjacent regions in two
adjacent frames, and embeds temporal coherence in the graph cut
optimization process through intra-frame arcs AT .

Likelihood energy E1 The foreground/background color mod-
els for E1 are built by sampling the colors in these key frames.
Gaussian mixture models (GMMs) are used to describe the fore-
ground/background color distributions. The mth component of the
foreground GMMs is denoted as (wf

m, µf
m, Σf

m), representing the
weight, the mean color and the covariance matrix. We use M com-
ponents to describe the foreground or background colors, hence
m ∈ [1, M]. Typically M = 6.

For a given color c, its distance to the foreground GMMs is de-
fined as,

d
f (c) = min

m∈[1,M]

h
D̂(wf

m, Σf
m) + D̄(c, µf

m, Σf
m)
i
, (2)

where

D̂(w, Σ) = − log w +
1

2
log det Σ, (3)

and

D̄(c, µ, Σ) =
1

2
(c − µ)T Σ−1(c − µ). (4)

For a region r, its distance to the foreground GMMs is defined as
the expectation of the distance of all pixels inside the region, de-

noted as 〈df 〉r . The distance 〈db〉r to the background color is de-
fined similarly. Then, the likelihood energy E1(xr) is defined as:

r ∈ {F} r ∈ {B} r 6∈ {F} ∪ {B}

E1(xr = 1) 0 ∞ 〈df 〉r

E1(xr = 0) ∞ 0 〈db〉r

{F} and {B} are sets of foreground regions and background re-
gions, respectively, in key frames, whose labels are inputs. As-
signments of 0 and ∞ to E1 enforce these hard constraints in the
optimization.

Prior energies E2 and E3 These two energies are defined with
respect to color similarity between two regions r and s as follows:

E(xr, xs) = |xr − xs| · e
−β‖cr−cs‖

2

, (5)

where ‖cr − cs‖ is the L2 norm of the RGB color difference. β
is a robust parameter that weights the color contrast, and can be

set to β =
�
2〈‖cr − cs‖

2〉
�−1

[Blake et al. 2004], where 〈·〉 is the
expectation operator. β is computed separately for E2 and E3. Note
that the factor |xr − xs| allows this energy to be considered only
for connections across the segmentation boundary. The prior energy
E2 and E3 are penalty terms when adjacent nodes are assigned with
different labels.

The objective function of Equation (1) can be globally min-
imized by an efficient graph cut algorithm ([Boykov and Jolly
2001]) and the resulting labels for each node determine a segmen-
tation in the video volume. The construction of the 3D graph is
illustrated in Figure 4. Note that in the 3D graph construction, the
edge cost of the arc to virtual foreground (background) node in the
graph is E1(0) (E1(1)), and the edge cost of the intra-frame or

inter-frame arc is e−β‖cr−cs‖
2

. The arc between nodes that have
similar colors (cr and cs) should have high cost.

The default parameters are fixed to λ1 = 24, λ2 = 12 in all
of our experiments. The 3D graph cut segmentation algorithm can
compute the video object boundary well at a reasonable speed.

4 Local refinement by tracking

Since the foreground/background color distributions are built glob-
ally from the key frames, the 3D graph cut segmentation result
can be poor in areas where the foreground color matches the back-
ground color of a different part of the video, and vice versa. In this
section, we introduce a tool which allows the user to specify short
and localized video tubes where only local color models are used in
graph cut segmentation. By isolating local colors, the segmentation
boundary can be improved significantly.

A video tube consists of rectangular windows {Wt}
T
t=1 across

T frames. To specify a video tube, the user only needs to place
two key windows W1 and WT . The remaining windows are au-
tomatically located by a bi-directional feature tracking algorithm.
There are two requirements for specifying a video tube: 1) at least
one key frame is in between W1 and WT such that local fore-
ground/background color models can be obtained for refinement,
2) the tube boundary must be correct at the segmentation borders,
since the intersection points provide hard constraints in the opti-
mization.

After tracking is performed, a constrained 2D pixel-level graph
cut segmentation is applied to each window individually using the
local foreground and background color models constructed from
the windows in the key frames. Finally, the refined segmentation re-
sult in each window is seamlessly connected to the existing bound-
ary outside the window.

(a) (b)

Figure 5: (a) A window of a video tube placed on a boundary
of an existing segmentation result. (b) A 2D graph cut segmen-
tation is constructed. The outermost pixels are labeled as fore-
ground/background hard constraints according to the existing seg-
mentation result, and all inside pixels are uncertain. The graph cut
segmentation result (shown as a dashed line) is used to replace pre-
vious segmentation boundary.

4.1 Bi-directional feature tracking

Given two key windows W1 and WT , our algorithm tracks the po-
sition of the window in the intermediate frames. The sizes of W1

and WT can be different and adjusted by the user. Before tracking,
the windows in between are linearly interpolated (both position and
size) from W1 and WT .

We denote pt as the center position of each window Wt in the
video tube. We also define a search range St for the position of
each window. All positions {pt}

T−1
t=2 of windows can be solved by

minimizing the following objective function:

{p∗
t } = arg min

{pt}

T−1X
t=2

min(D(pt, p1), D(pt, pT)) +

TX
t=2

{η1‖(pt − pt−1) − (bpt − bpt−1)‖ + η2D(pt, pt−1)} , (6)

where D(pt1, pt2) is the sum of squared color distances between
two windows Wt1 and Wt2 in their overlapping region when their
centers pt1 and pt2 are aligned. bpt−1 and bpt are the positions of
windows Wt−1 and Wt before optimization, which is computed
by linear interpolation. η1 = 0.1 and η2 = 1 are used in all our
experiments.

The first term in equation (6) is designed to optimize the color
consistency of the window with respect to the key windows. We
choose the best matching key window to compute this cost, to al-
low for feature changes over time. The second term enforces the
smoothness of the video tube. The third term is for minimizing the
color differences between adjacent windows. Note that the posi-
tions of key windows are fixed in the optimization process, since
they have been placed by the user. We refer to this tracking method
as “bi-directional” tracking because each window receives informa-
tion from two key windows in two directions.

This objective function can be optimized using the dynamic pro-
gramming (DP) algorithm [Bellman 1957]. In our system, a multi-
scale method is used for the optimization. First, a Gaussian pyramid
is built for each frame in the video, and each higher level has half
the frame size of its immediate lower level. The window’s position
and size are scaled accordingly. We perform optimization at each
level beginning from the top of the pyramid, within the search range
St centered at the optimized location in the preceding level. For the
top level, the initial position of Wt is linearly interpolated from the
key windows. Typically, for an NTSC video (720 × 480) there are
L = 4 levels and St is a 7 × 7 square window at each level for our
experiments.

To view this tracking process, please refer to the accompany-
ing video. Although the appearances within some windows may
change over time, our optimization algorithm performs well and lo-

(a) (b) (c)

Figure 6: Local refinement by local color model. (a) One frame
from video clip #3. (b) The 3D graph cut segmentation result. No-
tice that the error pixels have colors similar to the color of the red
flag in the background. (c) The green rectangle is one window of a
video tube. With a local color model that excludes irrelevant global
color information, the boundary is precisely refined.

cates the windows that comply with the requirements of the local
refinement process.

4.2 Constrained 2D graph cut segmentation

Once a video tube is located, a 2D graph cut segmentation is per-
formed within each window to refine the existing segmentation
boundaries. The 2D graph is constructed at the pixel level:

E(X) =
X
i∈V′

E1(xi) + λ
′
1

X
(i,j)∈A′

I

E2(xi, xj) (7)

where xi is the label of the pixel i, V ′ are all pixels in the tracker,
and A′

I is the eight-neighboring relationship between pixels. E1

and E2 have similar definitions as in Equation (1) except that re-
gions are replaced by pixels. The value of λ′

1 is typically set to
10.

In order to seamlessly embed the refinement into the existing
segmentation, a foreground and background hard constraint is au-
tomatically generated according to the existing segmentation result.
As shown in Figure 5, the labels of all pixels inside the window are
solved by the 2D graph cut algorithm, except for the pixels on the
window’s boundary. These pixels are marked as foreground hard
constraints if it is in the foreground of the existing segmentation.
Otherwise, they are marked as background hard constraints. Be-
cause of these hard constraints, the 2D graph cut segmentation in-
side the window must produce a result that is seamlessly connected
to existing boundaries outside of the window, as shown in Figure 5
(b).

There must be at least one key frame inside a video tube. The
pixels inside the window in the key frames are collected to compute
the foreground/background GMM models for this video tube for the
E1 term above. Compared to the global color models in 3D graph
cut segmentation, this local 2D graph cut segmentation uses more
accurate color models in local windows and leads to significantly
improved results. Figures 6(b) and 6(c) show the segmentation re-
sults before and after local refinement, respectively. This refine-
ment method does not require accurate user interactions, because
the user needs only to place the key windows to exclude irrelevant
colors.

5 Postprocessing
Overriding operations When there are ambiguous edges around
the boundary or the contrast of the border is very low, the graph
cut algorithm may not be able to produce a correct object boundary.
Moreover, it usually performs poorly for very thin structures, such
as fingers.

To overcome these difficulties, our system allows the user to di-
rectly control the object boundary with great precision using two
override brushes for identifying definite foreground and definite
background regions, respectively. All overriding operations are
recorded in an override layer, as shown in Figure 7(b), Figure 8(b),
and Figure 9(b).
Coherent matting To extract the video object for pasting, we
adopted coherent matting [Shum et al. 2004] to compute a frac-
tional alpha matte for the object boundary. The coherent matting
algorithm improves Bayesian matting by introducing a regulariza-
tion term for the alpha. Hence, it produces an alpha matte that com-
plies with the prior binary segmentation boundaries, and performs
well even when foreground/background colors are similar.

The uncertain regions in matting are computed by dilating the
binary object boundary, typically by 10 pixels. For small holes or
thin gaps in the foreground, this dilation may result in no back-
ground colors to be sampled nearby. In this case, we instead sample
background colors from neighboring frames.

6 Experiments
All experiments were performed on a 3.1GHz PC. The source
videos were taken with a DV camera in progressive scan mode at a
12.5 frames/sec rate. Each clip was split into about 30 frames per
segment, and each segment was loaded and processed individually.
The key frames were usually sampled at every ten frames, while
some clips needed denser samples due to fast motion or shadow
changes.

The processing time was about half an hour for each segment of
video. About 20% was for preprocessing and other computation,
40% for video tube tracking and adjustment, and another 40% for
overriding operations.

Table 1 shows the complexity and processing time of the four
video clips that appear in this paper. Pre-processing is performed
only once for each segment and the watershed results and 3D graph
can be saved and reused if needed. Time for building the 3D graph
is needed only when the parameters are changed, which is rare.
In our experiments, all parameters are fixed to the default values
mentioned in previous sections.

Figures 7, 8, and 9 show some frames from our experiments. In
these figures, (a) shows the 3D graph cut results as overlaid dashed
lines. (b) shows the local refinements in video tubes and override
layers. Dashed lines indicate the boundaries after both processes.
The white pixels record the actions of foreground brushing and the
black pixels for background brushing. (c) shows the coherent mat-
ting results pasted on a blue background. More experiments can
be found in our accompanying video, including more video clips,
complete video tube and overriding layers, and video object cut and
paste results.

7 Conclusion
In this paper, we have proposed a video object cut-out system,
which separates a video object from a complicated background, and

Clip #1 #2 #3 #4

Width, Height 444,504 720,540 406,534 620, 550

Number of frames 88 101 67 61

Number of segments 2 2 2 3

Number of key frames 19 12 12 12

Pre-processing (sec.) ≈ 200 ≈ 250 ≈ 160 ≈ 250

Build 3D graph (sec.) ≈ 60 ≈ 80 ≈ 40 ≈ 75

Solve 3D graph cut (sec.) ≈ 3 ≈ 3.6 ≈ 3 ≈ 7.5

Number of video tubes 9 7 4 4 15 19 5 4 12

Solve all video tubes (sec.) 2.6 2.7 4.3 1.1 5.2 5.8 3.4 3.3 3.8

Table 1: Complexity and processing time.

preserves the details of the boundaries. Using a novel 3D graph
cut based segmentation approach, our system can capture complex
shape deformations with the input of only a few key frame mattes.
Moreover, using local color models, the boundaries are well located
even when colors are ambiguous. A bi-directional feature tracking
algorithm is designed to track the regions of local color models.
The resulting object sequence is ready to be composed onto other
backgrounds.

In the future, we also plan to extend our system to light fields.
Another interesting problem for future work is how to simultane-
ously cut out several moving objects from a video sequence.

Acknowledgment We would like to thank the anonymous
reviewers for their constructive critiques. Many thanks to Yingqing
Xu and Beijing Dancing Academy for help on video sources.
Many thanks to Steve Lin for his great help in video production
and proofreading, and to Zhengyou Zhang for his comments.

References

AGARWALA, A., HERTZMANN, A., SEITZ, S., AND SALESIN, D. H. 2004.

Keyframe-based tracking for rotoscoping and animation. In Proceedings of ACM
SIGGRAPH 2004, 584–591.

APOSTOLOFF, N. E., AND FITZGIBBON, A. W. 2004. Bayesian video matting using

learnt image priors. In Proceedings of CVPR 2004, I: 407–414.

BELLMAN, R. E. 1957. Dynamic Programming. Princeton University Press, Prince-

ton, NJ.

BLACK, M. J., AND ANANDA, P. 1996. The robust estimation of multiple motions:

Parametric and piecewise-smooth flow fields. In Computer Vision and Image Un-
derstanding, vol. 63, 75–104.

BLAKE, A., AND ISARD, M. 1998. Active contours. In Springer Verlag, London.

BLAKE, A., ROTHER, C., BROWN, M., P.PEREZ, AND P.TORR. 2004. Interactive

image segmentation using an adaptive gmmrf model. In Proceedings of ECCV, I:

428–441.

BOYKOV, Y., AND JOLLY, M. P. 2001. Interactive graph cuts for optimal boundary

& region segmentation of objects in n-d images. In Proceedings of ICCV 2001, I:

105–112.

CHUANG, Y.-Y., CURLESS, B., SALESIN, D. H., AND SZELISKI, R. 2001. A

bayesian approach to digital matting. In Proceedings of CVPR 2001, II: 264–271.

CHUANG, Y.-Y., AGARWALA, A., CURLESS, B., SALESIN, D. H., AND SZELISKI,

R. 2002. Video matting of complex scenes. In Proceedings of ACM SIGGRAPH
2002, 243–248.

DRORI, I., LEYVAND, T., COHEN-OR, D., AND YESHURUN, H. 2004. Interactive

object segmentation in video by fitting splines to graph cuts. In ACM SIGGRAPH
2004 Posters Session.

KASS, M., WITKIN, A., AND TERZOPOULOS, D. 1987. Snakes: Active contour

models. International Journal on Computer Vision 1, 4, 321–331.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK, A. 2003. Graphcut

textures: Image and video synthesis using graph cuts. In Proceedings of ACM
SIGGRAPH 2003, 277–286.

LI, Y., SUN, J., TANG, C. K., AND SHUM, H. Y. 2004. Lazy snapping. In Proceed-
ings of ACM SIGGRAPH 2004, 303–308.

MITSUNAGA, T., YOKOYAMA, T., AND TOTSUKA, T. 1995. Autokey: Human

assisted key extraction. In Proceedings of ACM SIGGRAPH’95, 265–272.

MORTENSEN, E. N., AND BARRETT, W. A. 1999. Toboggan-based intelligent scis-

sors with a four parameter edge model. In Proceedings of CVPR 1999, II: 452–458.

ROTHER, C., BLAKE, A., AND KOLMOGOROV, V. 2004. Grabcut - interactive fore-

ground extraction using iterated graph cuts. In Proceedings of ACM SIGGRAPH
2004, 309–314.

SHUM, H., SUN, J., YAMAZAKI, S., LI, Y., AND TANG, C. 2004. Pop-up light field:

An interactive image-based modeling and rendering system. ACM Transaction of
Graphics 23, 2, 143–162.

SMITH, A. R., AND BLINN, J. F. 1996. Blue screen matting. In Proceedings of ACM
SIGGRAPH 1996, 259–268.

VINCENT, L., AND SOILLE, P. 1991. Watersheds in digital spaces: an efficient

algorithm based on immersion simulations. IEEE Tran. on PAMI 13, 6, 583–598.

(a) (b) (c)

Figure 7: Clip #2, frame 27. (a) 3D graph cut result is shown by the overlaid dashed line. The flag is a rapidly deforming object, but 3D graph cut can capture

the shape very well. (b) Dashed lines indicate the boundaries after both the local refinement and overriding operations. The white pixels record the actions of

foreground brushing and the black pixels for background brushing. (c) coherence matting result pasted on a blue screen.

(a) (b) (c) (d)

Figure 8: Clip #1, frame 84. (a) 3D graph cut result. Notice that the low contrast edges between the hair and the tree shadows, and the ambiguous edges

around the earring are difficult for global optimization of 3D graph cut. (b) Local refinement in the video tube windows can correct most errors, but some fine

details, especially thin structures, need manual override by the user. (c) Coherent matting result pasted on a blue screen. (d) Coherent matting result pasted on

another background with bright colors in contrast to the original dark one. Notice that the video object is extracted well with clear boundaries.

(a)

(b)

(c)

frame 9 frame 39 frame 53 frame 26

X

X

Y
Y

Z

Z

W
W

Figure 9: Clip #4. (a) 3D graph cut results. Please note that some subtle artifacts (X) are hardly visible in the still image, but they appear clearly in the video

as flickering artifacts. (b) Local video tubes are usually used to refine the low contrast regions (Y) and ambiguous edges (Z). Overriding operations are usually

necessary to eliminate artifacts caused by accidental shadow or texture changes (W), which do not appear in neighboring key frames. (c) Coherent matting

results pasted on a blue screen.

