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Abstract

This paper presents an approach to unsupervised seg-
mentation of moving and static objects occurring in a video.
Objects are, in general, spatially cohesive and character-
ized by locally smooth motion trajectories. Therefore, they
occupy regions within each frame. The shape and location
of these regions vary slowly from frame to frame. Thus,
video segmentation can be done by tracking regions across
the frames such that the resulting tracks are locally smooth.
To this end, we use a low-level segmentation to extract re-
gions in all frames. Then, similar regions are transitively
matched and clustered across the video. Region similarity is
defined with respect to geometric and motion properties of
region contours. To match region contours, we formulate a
new circular dynamic-time warping (CDTW) algorithm that
generalizes DTW to closed contours, without compromising
the optimality and low complexity of DTW. Our quantitative
evaluation and comparison with the state of the art suggest
that the proposed approach is a competitive alternative to
currently prevailing point-based methods.

1. Introduction

This paper presents an approach to unsupervised video
object segmentation (VOS). Our goal is to delineate the
boundaries of all moving and static objects occurring in
an arbitrary video. In general, objects are spatially cohe-
sive, and characterized by locally smooth motion trajec-
tories. Therefore, they occupy regions within each video
frame. Also, assuming relatively slow camera motions, the
shape and location of these regions vary slowly from frame
to frame. Thus, VOS can be formulated as tracking regions
across the frames, such that the resulting tracks are locally
smooth. This will partition the spatiotemporal video vol-
ume into tubes that are coherent in space and time. Since
region boundaries coincide with object boundaries, a cross
section of the tubes and any video frame will delineate all
objects present in the frame.

VOS is a prerequisite step of a wide range of higher-
level vision algorithms, including activity recognition [2, 9],

video summarization and retrieval [6, 8], and nonphotoreal-
istic video rendering [21, 3]. Most prior work focuses on a
simplified formulation of VOS – that of motion segmenta-
tion [18, 22]. Typically, these methods require that the num-
ber of moving objects or layers is pre-specified, and cannot
handle long videos [18, 22]. Also, motion segmentation us-
ing optical flow rests on the assumption of brightness con-
stancy, which is violated at boundaries that move, resulting
in poor estimates of object contours [14, 16].

Currently, the two predominant approaches to VOS are
tracking interest points, and perceptual grouping of pixels
from all frames. There is a number of unsatisfying aspects
about both of them. Point-based approaches group the tra-
jectories of keypoints with similar motions [2, 8]. However,
tracking points yields only a confidence map of the objects’
vicinity – not segmentation. To improve robustness, mul-
tiple points that fall within a fixed size and shape window
are jointly tracked along a pre-specified number of consecu-
tive frames. These ad hoc choices increase complexity that
is proportional to the product of scales and locations of the
scanning windows. As interest points do not capture the
spatial cohesiveness of objects, this approach usually suf-
fers from multiple overlapping object detections. These are
usually resolved by making heuristic assumptions about the
numbers, sizes, and shapes of objects present in the video.
In the second approach, VOS is formulated as clustering of
pixels from all frames. The pixels are represented in a mul-
tidimensional feature space spanned over pixel photometric,
2D space, and motion properties. The clustering gathers ev-
idence of pixel groupings simultaneously in all dimensions
of the feature space by using, e.g., Gaussian mixture mod-
els [10], meanshift [4, 20], spectral clustering [5], and dom-
inant sets [19]. This, however, becomes infeasible for even
moderate size videos. Attempts have been made to heuristi-
cally split the video into small parts, and use out-of-sample
data clustering [5, 19].

In this paper, we adopt an alternative, hybrid formula-
tion. We initially conduct a perceptual grouping of pixels
in the spatial domain, i.e., segment each frame, and then
track the resulting regions. This is appealing, since there
are many fast and effective algorithms for image segmen-
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Figure 1. Two example video framest andt+1 (shown twice). In framet, the leftmost tree is split into two segmentsit andkt (yellow),
and in framet+1 the tree is one segmentjt+1 (red). The candidate matches in framet+1 of it andkt are marked yellow. The two plots
show the cost of matching boundary pixels of(it, jt+1) and(kt, jt+1). CDTW identifies the longest, best matching boundary parts (yellow
rectangles and control points). The region pairs are transitively clustered across the video if they are spatially adjacent and have similar
intrinsic and motion properties. Each cluster correspondsto a discovered and delineated object occurring in the video.

tation. Also, there are, in general, fewer segments than in-
terest points to be tracked, which will allow us to handle
relatively long videos. The higher descriptive power of re-
gions relative to points can be efficiently used to specify
more robust tracking algorithms. Since region boundaries
delineate objects, tracking the right combination of regions
will immediately result in VOS, unlike tracking points.

Despite the aforementioned advantages, there is a very
limited work on VOS by tracking regions [7, 15, 3]. This,
in part, is due to the well-known irrepeatability of image
segmentation across the video sequence. In particular, a
low-contrast boundary between two regions in one frame
may be undetected in the subsequent frame, resulting in
a merger of the low-contrast regions. Conversely, a large
region that contains small variations of brightness may be
split into a set of smaller, more homogeneous regions in
the next frame. The merges and splits cause changes in the
number, size, shape, and layout of regions in two consecu-
tive frames showing the same object, as illustrated in Fig.1.
Therefore, any region tracking algorithm that makes the fol-
lowing assumptions: (i) properties of regions remain nearly
the same between two consecutive frames, and (ii) for every
region in one frame there exists a single corresponding re-
gion in another frame (i.e., one-to-one correspondence) will
yield poor performance. Existing methods to region track-
ing are often based on these two assumptions [7, 15, 3].

1.1. Contributions

This paper presents important properties of regions that
remain invariant even under the aforementioned merges and
splits in segmentation. We make use of these invariances,
and thus enable robust region tracking. In particular, the
merging and splitting may occur only between spatially ad-
jacent regions (whose boundaries touch). The merging hap-
pens along shared, low-contrast boundaries – whereas the
remaining, non-shared boundaries remain intact, as shown

in Fig. 1. Also, the splitting introduces new boundaries, but
does not change the old ones. Therefore, identifying parts
of region contours that remain intact from frame to frame
will facilitate region tracking.

To meet reasonable runtime requirements, it is critical
that the matching of region contours be computationally ef-
ficient. To this end, we formulate a new circular dynamic
time warping (CDTW) algorithm. CDTW identifies the
longest, best matching boundary parts of two regions. It
generalizes the well-known DTW to cyclic sequences [17].
CDTW first estimates the optimal position where to break
and thus open the two region contours, and then applies
DTW to these two sequences of pixels. The optimal break-
ing points are estimated in terms of the cumulative cost of
all pixel matches along the two contours. In particular, we
select the pair of points with the maximum likelihood that
the associated cumulative cost is minimum and most stable.
CDTW preserves all the attractive properties of DTW. That
is, CDTW achieves the optimal solution with complexity
that is linear in the number of pixels in the two contours.

1.2. Overview of Our Approach

The block-diagram of our approach is shown in Fig.1.
Step 1: Given a video, each frame is segmented into regions
by using any available low-level segmenter (e.g., mean-
shift). Step 2: Regions from every two consecutive frames
are matched. To avoid matching redundant, unlikely region
pairs, we find for each regioni in framet its matching can-
didates in framet+1. The candidates are those regions that
overlap with the estimated area ofi’s displacement in frame
t+1. We use the standard Lucas-Kanade method to estimate
the likely area ofi’s displacement in the next frame.Step 3:
Contours of the candidate region pairs are matched by us-
ing CDTW. The matched contour parts are interpreted as
unaffected by region merging and splitting, and their asso-
ciated similarity is used as the similarity of photometric and
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geometric properties of the two regions. We also estimate
motion parameters of the region pair from the displacement
of their matched boundary parts.Step 4: The matched re-
gion pairs are transitively clustered across the video if they
are spatially adjacent and similar in terms of photometric,
geometric, and motion properties. The clustering is for-
mulated as relaxation labeling (RL) over the region pairs,
which simultaneously identifies all clusters without requir-
ing any input parameters. Both CDTW and this clustering
are aimed at overcoming segmentation instability across the
video. Each cluster represents a spatially and temporally
coherent tube of the video volume, i.e., a discovered and
delineated object present in the video.

Note that our approach is intended to serve as an ini-
tial computational step of a wide range of higher-level algo-
rithms. Therefore, it is based purely on low- and mid-level
cues. We do not make any specific assumptions about: ob-
ject intrinsic, layout, and motion properties, number of ob-
jects, and camera motion that are common in prior work.
In addition, we do not require any input parameters (ex-
cept those required by image segmentation). As a result,
the extracted space-time video tubes may correspond to
distinct objects, but also to groups of objects (or parts) if
members of the group are adjacent and have similar mo-
tions. A top-down inference may subsequently improve our
purely bottom-up results with much less effort than if it
were to start from all pixels or interest points of all frames.
Our approach is capable of handling partial occlusion, scale
changes, and in-plane rotation. Complete occlusions and
abrupt affine transforms usually require higher-level reason-
ing which is beyond our scope.

In the sequel, Sec.2 describes CDTW, Sec.3 explains
region clustering, and Sec.4 presents experimental results.

2. CDTW

This section presents our Step 3 – region matching –
where the goal is to identify the longest, best matching
boundary parts of two regions. Such formulation of region
matching is aimed at addressing segmentation instability,
because parts of region boundaries are invariant to the re-
gion merging and splitting. A large volume of work on
shape matching is not suitable for our purposes, due to the
associated high complexity. Matching point clouds repre-
senting region boundary pixels can be computationally effi-
cient [13]. However, this approach ignores an important cue
that boundary pixels form an ordered sequence in the im-
age. Therefore, it is typically inferior to methods based on
aligning pixel sequences [12, 11]. These methods are based
on DTW that guarantees the optimal alignment of two open
contours withM andN pixels, with complexityO(MN).
Because of these attractive properties, in this paper, we seek
to extend DTW to cyclic sequences, and use it for region
matching. Below, we first review the classical DTW and

some of its generalizations, and then present our CDTW.
Define two sequences of points,bi={bi1, .., biM} and

bj={bj1, .., bjN}. Let f={(biu, bjv) : u=1..M, v=1..N},
denote a many-to-many mapping betweenbi andbj . Also,
let c(bi·, bj·) denote the cost of matching two points. Given
start and end matches,(bi1, bj1) and (biM , bjN ), DTW
finds the optimal many-to-many matching of the remaining
points,f∗, that respects their ordering and is characterized
by the minimum total cost,f∗ = argminf

∑

f c(biu, bjv).
DTW first constructs anM×N cumulative cost matrix,
C, whose each elementc(biu, bjv) is recursively com-
puted via its vertical, horizontal, and diagonal neighbors
c(biu, bj(v−1)), c(bi(u−1), bjv), c(bi(u−1), bj(v−1)). Then,
DTW uses the dynamic programming to find the mini-
mum cumulative-cost path,π∗, betweenc(bi1, bj1) and
c(biM , bjN ) in C, as illustrated in Fig.2. Elements ofC
that are included inπ∗ represent the optimal matches inf∗,
and the associated minimum costc(π∗) =

∑

f∗ c(biu, bjv).
Note that vertical or horizontal moves inπ∗ are the result
of many-to-many matching. This allows robust matching of
contours with different lengths and deformations.

There are a number of extensions of DTW for matching
cyclic sequences that guarantee the optimal solution. For
example, a brute-force approach, referred to as BCDTW,
recomputes DTW for every cyclic shift of one of the two
sequences, increasing complexity toO(MN2). Also, A∗-
like algorithms add new source and termination elements to
C, and then search forπ between these two new elements
[12, 11]. Their complexity is betweenO(MN log N) and
O(MN2). However, for our video object segmentation,
this complexity is too prohibitive. There are also a num-
ber of extensions that do not guarantee the optimal solu-
tion, but have low complexity. For example, ACDTW [1]
achieves currently the best accuracy vs. complexity trade-
off in matching MPEG-7 silhouettes. ACDTW concate-
natesC to itself, [CC], and then searches for the optimal
path under a number of ad hoc constraints; e.g., it favors
the path slope to beN/M , and penalizes a large number of
successive vertical or horizontal moves in the path.

Unlike the related work, our objective is to avoid any
heuristic assumptions and preserve complexity ofO(MN)
in deriving our CDTW. We reason that if the start and end
points ofbi andbj were known, we could directly use DTW
with its nice properties. Therefore, we formulate CDTW as
the problem of identifying the start and end points ofbi and
bj . Note that it only suffices to identify a single true match
between any two pointsbiu andbjv along the optimal path,
and then declare them as the start points;biu and bjv are
also the end points, becausebi andbj are cyclic. Below, we
first introduce some notation, and then derive our CDTW.

Let π
∗ denote the optimal path inC of two closed con-

toursbi andbj . Let m=(bi·, bj·) denote a pair of points
from the two contours, andCm denote all elements ofC
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in the vicinity of m. By construction ofC, for anym in
C, we immediately know a bottom-up path,π↑m, from the
bottom row ofC to m with the minimum cumulative cost,
as well as a top-down path,π↓m, from the top row ofC to
m with the minimum cumulative cost. Letπm denote the
union of these paths,πm = π↑m ∪ π↓m. Note that even if
m ∈ π

∗, in general,πm 6= π
∗, becauseπ∗ starts and ends

at the same element ofC, whereasπ↑m andπ↓m start from
matrix elements different fromm.

The main rationale behind our derivation of CDTW is
that if m lies onπ

∗, or is located in a vicinity ofπ∗, then it
is very likely thatπm andπ

∗ will share many elements of
C, πm∼π

∗. This means that the cumulative costs of these
paths will be relatively small and closec(πm)≃c(π∗). As a
corollary, if m∈π∗, for elements ofC in the vicinity of m,
n∈Cm, we expect thatπn∼π

∗, andc(πn)≃c(πm)≃c(π∗).
Otherwise, ifπm andπn were very different fromπ

∗ in
this case, it would mean thatπ∗ consistently discards the
minimum cost elements ofC (the strict proof of this claim is
beyond our scope). Conversely, ifm andn lie in the remote
areas ofC from π

∗ thenc(πm)>c(π∗) andc(πn)>c(π∗),
otherwiseπ∗ is not optimal.

From the above rationale, to estimate the optimal posi-
tion where to break and open closed contoursbi andbj , we
find an element ofC, m∗, with the maximum probability
that it lies on the optimal pathπ∗. This probability is max-
imum if the cost of the associated “greedy” pathc(πm∗) is
minimum and stable, i.e., if all elementsn of C in the vicin-
ity of m∗, n ∈ Cm, also generate similarly minimum costs
c(πn). More formally:

m∗=max
m∈C

P (m ∈ π
∗),

=max
m∈C

P ({πm∼π
∗}, {∀n∈Cm, πn∼πm}),

=max
m∈C

P ({πm∼π
∗})

∏

n∈Cm

P ({πn∼πm}|{πm∼π
∗}).

(1)
The probabilities used for computing (1) are specified using
the above rationale, as

P ({πm ∼ π
∗}) ∝ exp(−µc(πm)),

P ({πn∼πm}|{πm∼π
∗}) ∝ exp(−λ|c(πn)−c(πm)|),

(2)
where1/λ and1/µ are the ML estimates of the mean val-
ues of the corresponding exponential distributions over the
elements ofC.

After identifying m∗, we run the standard DTW onC
starting fromm∗, and thus obtainπ∗. The associated cost
c(π∗) is directly used as the cost of matching the two re-
gions. For small, fixed neighborhoodsCm, the complexity
of CDTW isO(MN).

In our implementation, we use the following definition
of the cost of matching two boundary pixels,c(biu, bjv). At
each pixelu of the boundary of regioni, we compute the

Figure 2. The cost matrix of matches between boundary pixelsof
region 1 and region 2. The matching results of three algorithms
are shown as three folded paths in the cost matrix, and in the three
rectangles containing region 2. The corresponding paths and rect-
angles have the same color. The methods BCDTW (blue path and
rectangle) and ACDTW [1] (cyan path and rectangle) yield match-
ing errors (see the control points). Our CDTW (yellow path and
rectangle) has no matching errors despite serious challenges.

standard log-polar shape-context descriptor with 21 bins.
The shape descriptor is aligned with the image’s gradient
direction atu on the boundary. The size of the descriptor
is dynamically adjusted for every region to be a small per-
centage (1%) of the region size. This allows us a certain
degree of scale and in-plane-rotation invariance. The shape
descriptor and boundary contrast atu together form vector
biu, and thus we computec(biu, bjv)=‖biu−bjv‖. Fig. 2
shows that our CDTW outperforms the method ACDTW of
[1], with significantly lower complexity.

3. Region Tracking

This section presents our Step 3, where the goal is to
cluster similar, adjacent regions across the video. The sim-
ilarity is defined in terms of region photometric, geometric,
and motion properties. In Sec.2, we explained how to com-
pute the cost of matching region photometric and geometric
properties,c(i, j) = c(π∗), by using CDTW. The similar-
ity of this matching is defined ass(i, j) = exp(−c(i, j)).
Next, we explain how to estimate the similarity of motion
parameters characterizing region pairs.

If i moves so that it appears as regionj in the next
frame, then the matched pairs of boundary pixels ofi and
j can be used to estimatei’s motion parameters. We de-
fine these motion parameters as the homography matrix
H(i, j). H(i, j) is estimated using the standard RANSAC
algorithm on the pixel matches that lie along the optimal
pathπ

∗(i, j), found by CDTW. The similarity of the mo-
tions of region pairs(i, j) and(k, l), denoted ass(i, j, k, l),
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is estimated by using the Frobenius norms(i, j, k, l) =
exp(−‖H(i, j)−H(k, l)‖F ).

The similaritiess(·) are used for tracking regions across
the video. To this end, as mentioned in Sec.1, we com-
pute s(·) for each regionit in frame t and its allowed
candidate matches{jt+1, kt+1, . . . } in frame t+1. Then,
we construct an attributed graph,G, that will allow us
to transitively cluster similar and adjacent regions. InG,
nodes are the region pairs, and arcs connect the region pairs
whose respective members are the same or spatially adja-
cent (i.e., boundaries touch), as illustrated in Fig.1. For ex-
ample, node(it, jt+1) is connected to(it, lt+1), (kt, jt+1),
(jt+1, mt+2), because regionsit andjt+1 appear in these
graph nodes. Also,(it, jt+1) is connected to(nt, ot+1) if
regionsit andnt are spatially adjacent, orjt+1 andot+1

are adjacent. Such graph connectivity facilitates the transi-
tive grouping of only spatially adjacent regions into a single
cluster. InG, the attribute of each node(i, j) is s(i, j), and
the attribute of each arc((i, j), (k, l)) is s(i, j, k, l).

After constructingG, we cluster the regions from all
video frames by using relaxation labeling (RL) onG. It
is worth noting that we have tried to use other formulations
of graph partitioning. For example, we have implemented
loopy belief propagation on the MRF, usingG and the unary
and pairwise potentials defined in terms ofs(·). In all our
experiments, RL is faster and outperforms the loopy-BP for-
mulation. Recent formulations of graph partitioning based
on learning the potential functions are not applicable for our
purposes, because, as mentioned in Sec.1, our approach is
aimed at addressing unsupervised object segmentation in ar-
bitrary videos. Below, we explain our RL formulation.

To simplify notation, we will use lettersa andb to de-
note nodes ofG (e.g., a = (i, j) and b = (k, l)). RL
assigns labelλa ∈ {0, 1} to eacha ∈ G. All nodes
that are connected by arcs inG and haveλa = 1 are
grouped within the same cluster. Nodes that are not con-
nected inG and haveλa = 1 belong to different clus-
ters. All nodes withλa = 0 do not belong to any clus-
ter. Thus, RL simultaneously identifies all clusters present
in G, without requiring any input parameters. For each
a ∈ G, RL iteratively computes the likelihoodp(λa) by
collecting evidence on the labels of neighboring nodes ofa,
N(a)={b : b 6=a, a, b are connected by an arc inG}, as:

p(λa) ← p(λa)[1+q(λa)]/
∑

λa
p(λa)[1+q(λa)],(3)

q(λa) =
∑

b∈N(a)

∑

λb
r(λa, λb)p(λb) (4)

wherer(λa, λb) is the correlation between the events thata
has labelλa andb has labelλb. r(·) is defined as a function
of costsc(·) andh(·). Also, we have thatr(·)∈[−1, 1].

To definer(·) we use the following intuition. If both
shapes and motions of region pairsa andb are similar then
a andb should belong to the same cluster, i.e.,r(1, 1) = 1;
otherwise,r(1, 1) should work to repela from b so that

they do not end up in the same cluster, i.e.,r(1, 1) = −1.
Also, if region paira is a good match andb is a poor
match, or vice versa, thena and b should belong to the
same cluster only if they move the same, i.e.,r(1, 0) = −1
and r(0, 1) = −1; otherwise, if a and b move differ-
ently then RL should keep them in separate clusters, i.e.,
r(1, 0) = 1 andr(0, 1) = 1. Finally, if a andb are com-
plete mismatches in terms of shapes and motions then they
should not be clustered together, i.e.,r(0, 0) = 1. Suppose
for the moment that the similarities are Boolean variables,
s(a), s(b), s(a, b) ∈ {0, 1}. By listing exhaustively all 0
and 1 combinations ofs(a), s(b), s(a, b), and the resulting
suitable values ofr(·) we arrive at a disjunctive normal form
(DNF) that is equivalent to the following Boolean formula:

r(λa, λb) = 2
[

[s(a) · s(b)] XOR s(a, b)
]

− 1 . (5)

Real values of the correlation,r(·)∈[−1, 1], can be obtained
by definings(·)=1−s(·) and using real values ofs(·) in (5).

The likelihoodsp(λa), ∀a∈G, are initialized to ran-
dom values. After convergence, RL assigns the maximum-
likelihood label to eacha in G. Each obtained cluster
of the region pairs represents a spatially and temporally
coherent subvolume of the 3D space-time video volume.
CDTW of two regions whose boundary length is104 pix-
els takes about 0.2sec in our C-implementation on a 3GHz
2GB RAM PC. All steps of our VOS (excluding low-level
segmentation) on 100 frames, each of size512×512, take
about 30sec in the same implementation.

4. Results

This section presents our quantitative and qualitative
evaluation on 94 videos. For quantitative evaluation, we
use the well-knownActivity database [9] that consists of
90 videos of 10 distinct human activities (e.g., walking,
jumping-jack, hand-waving, bending, etc.). Each activ-
ity has 9 videos, and each video has between 30 and 120
frames. The videos are manually segmented into the fore-
ground (person) and background to obtain the ground truth
VOS. In Activity videos, the person moves in front of a
fairly uniform, static background. This dataset tests our in-
variance to object articulation. We also use the following
four videos for qualitative evaluation and comparison: (1)
Kwanice-skater video; (2)Housesequence from CMU mo-
tion database; (3)Coastguardvideo; and (4)Gardenvideo.
These four videos introduce additional challenges: artic-
ulated object motions amidst the cluttered background (in
Kwan), affine transforms (inHouse), presence of dynamic
texture and non-static camera (water surface inCoast-
guard), camera motion and layered motions (inGarden).
Also, the videos contain shadows and motion blur that neg-
atively affect low-level segmentation.
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Quantitative results: Most prior work on VOS presents
only qualitative evaluation. Note that estimating the accu-
racy of tracking of points associated with a moving object
does not evaluate VOS. We useActivity videos to estimate:
(i) the average VOS errorǫ; and (ii) howǫ varies as a func-
tion of the total number of segments per frame. We also
consider two common low-level segmentation algorithms –
the meanshift and N-cuts – in order to evaluate our perfor-
mance vs. the quality of the low-level segmenter used.ǫ is
computed for each object occurring in the 3D video volume.
To this end, we consider the ground-truth (manually anno-
tated) subvolume of the object and all subvolumes extracted
by our approach. LetG denote all pixels from all frames
that belong to the ground-truth subvolume representing the
object. Also, letD denote all pixels from all frames that
belong to a subvolume extracted by our approach. Given
G, we automatically selectD that has the largest overlap
with G. If the ground-truth subvolumeG extends over more
frames than the selectedD, then we repeat the selection of
the best overlap withG over the remaining time intervals.
This is repeated until the entireG is covered. Note that at
each time instance only oneD is selected. Then, we com-
puteǫ(G)=

∑

intervalsminD
XOR(G,D)

G∪D
.

Tables1 and2 showǫ estimates onActivityvideos, com-
puted in the following four cases: the frames are only seg-
mented by the meanshift and N-cuts, and these low-level
segmentations are processed by our approach. Note that Ta-
bles 1 and 2 do not serve to compare our approach with
meanshift and N-cuts, but to quantify how much we im-
prove object segmentation performance when we account
for the region splits and mergers, and motion information.
The manual annotation ofActivity videos labels 1 object in
the foreground (moving person) and 3 objects in the back-
ground (ground, wall, window in the wall). As can be seen,
our approach succeeds in producing VOS that is spatially
and temporally coherent, despite a large degree of region
merging and splitting in the two base low-level segmen-
tations. Averaged over all 90Activity videos, the mean-
shift (resp. N-cuts) producesǫ=65% (resp. ǫ=12.5%) on
the foreground, whereas our algorithm yields onlyǫ=3.5%
(resp.ǫ=0.30%) on the foreground.

Fig. 3 shows howǫ varies as the number of regions
present in the N-cuts segmentation increases. As can be
seen, oversegmentation has negative effects on our perfor-
mance. The main reason is that N-cuts produces more un-
stable segmentations across the video frames as this number
increases, because new regions do not correspond to new
objects, and thus do not have repeatable boundaries.

Qualitative evaluation: Fig. 4 illustrates that our ap-
proach gives coherent VOS on example videos fromActiv-
ity database andCoastguardvideo, despite a large degree of
instability of the meanshift segmentation across the frames.
The camera motion inCoastguardvideo does not affect our

Background Foreground
Videos MeanShift Ours MeanShift Ours
Jack 14.03% 0.98% 59.11% 0.51%
Run 30.70% 0.35% 73.10% 5.39%
Skip 14.59% 0.53% 73.21% 5.52%
Walk 8.18% 0.68% 54.76% 2.51%

10 activities 16.88% 0.64% 65.04% 3.48%
Table 1. The VOS errorǫ averaged over the 9 videos for each hu-
man activity, and over 90 videos of all 10 activities fromActivity
database, using: (1) the meanshift only; and (2) our approach with
the meanshift.

Background Foreground
Videos NCut Ours NCut Ours
Bend 14.67% 3.92% 18.52% 0.03%
Jump 20.57% 9.24% 16.34% 0.05%

PJump 10.93% 2.27% 0.30% 0.30%
Side 21.93% 7.09% 12.92% 0.73%

Wave-1 15.95% 7.57% 3.89% 0.42%
Wave-2 12.71% 7.36% 23.14% 0.28%

10 activities 16.13% 6.24% 12.52% 0.30%
Table 2. (Same as Tab1): (1) N-cuts only; and (2) our approach
with N-cuts.

Figure 3. The VOS errorǫ on the foreground averaged over the 90
Activity videos vs. the total number of regions per frame, using:
(1) N-cuts only and (2) our approach with N-cuts.

results, because the superposition of the camera and boat
motions still produces a spatially and temporally coherent
subvolume in the video.

Fig. 5 shows comparison with the approach of [13] that
uses loopy-BP based many-to-many matching of meanshift
regions across the video, but ignores region motion parame-
ters. For fair comparison, our results presented in Fig.5 are
also obtained by ignoring the motion information in the ex-
pression (5), simplifying our approach only to CDTW and
RL on adjacent pairs of regions. As can be seen, our simpli-
fied approach gives more coherent VOS on these examples.
Fig.6 shows comparison with the approach of [19] that uses
dominant sets to conduct out-of-sample, space-time cluster-
ing of all pixels from the video. As expected, we are more
successful in delineating the boundaries of the entire treein
each frame ofGardenvideo, whereas these contours flicker
in the dominant-sets based VOS. The meanshift experiences
difficulties in segmenting the image area occupied by flower
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Figure 4. VOS of jumping-jack and skip videos fromActivity database, andCoastguardvideo: (top row) original sequence; (middle row)
VOS using only the meanshift of each frame; (bottom row) our approach with the meanshift. The extracted subvolumes are marked with
unique colors. We succeed in identifying that regions occupied by objects (person or coastguard boat) and split in the meanshift should be
tracked together. We also improve VOS on dynamic-texture areas, e.g., the trace of the boat’s motion on the water surface.

Figure 5. Comparison with [13] on House, Kwan, and the walk video fromActivitydatabase without accounting for the motion information:
(top row) original sequence; (middle row) results of [13]; (bottom row) results of our simplified approach (no motionparameters) with the
meanshift. The extracted subvolumes are marked with uniquecolors. We identify and track fewer subvolumes inHouseandKwan than
[13]. Also, in the example frames from the walk video, the approach of [13] merged the person’s head with the background, whereas we
successfully delineate the entire person in each frame.

texture. It produces numerous, unstable regions that are too
small to have any characteristic shape differences. These
small, blobby regions are easily confused by CDTW as sim-
ilar, which in turn produces errors in their tracking. We an-
ticipate that the use of a more sophisticated image segmen-
tation algorithm than the meanshift will improve our VOS
on such highly textured image areas.

5. Conclusion

We have argued that video object segmentation (VOS)
by tracking regions has many fundamental advantages over
the approaches based on tracking points or jointly cluster-
ing of all pixels from all video frames. Despite these advan-

tages, one of the major obstacles toward successful region-
based VOS seems to be a high degree of irrepeatability of
image segmentation characterizing currently available low-
level segmentation algorithms. We have presented impor-
tant region invariances to this irrepeatability – namely, that
parts of region boundaries remain intact under the region
merging and splitting. This observation has been used to
formulate matching regions across the frames as identify-
ing parts of region boundaries that match. We have general-
ized DTW to CDTW that is capable of optimally matching
closed region contours with linear complexity, without re-
sorting to heuristic assumptions. Tracking regions by using
our CDTW has been shown to produce competitive results
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Figure 6. Comparison with [19] on Gardensequence: (top row)
original sequence; (middle row) results of [19]; (bottom row) re-
sults of our approach with the meanshift. The extracted subvol-
umes are marked with unique colors. While the approach of [19]
merges the right part of the tree with the background, and suffers
from unreliable (flickering) detection of the tree contours, we suc-
cessfully delineate the entire tree in each frame. We fail totrack
the textured surface of flowers as a whole, because the meanshift
is very unstable in this area.

in comparison with the state of the art.
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