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Video Orbits of the Projective Group: A Simple
Approach to Featureless Estimation of Parameters

Steve Mann,Member, IEEE,and Rosalind W. Picard,Member, IEEE

Abstract—We present direct featureless methods for estimating
the eight parameters of an “exact” projective (homographic)
coordinate transformation to register pairs of images, together
with the application of seamlessly combining a plurality of images
of the same scene, resulting in a single image (or new image
sequence) of greater resolution or spatial extent. The approach
is “exact” for two cases of static scenes: 1) images taken from
the same location of an arbitrary three-dimensional (3-D) scene,
with a camera that is free to pan, tilt, rotate about its optical axis,
and zoom, or 2) images of a flat scene taken from arbitrary loca-
tions. The featureless projective approach generalizes interframe
camera motion estimation methods that have previously used an
affine model (which lacks the degrees of freedom to “exactly”
characterize such phenomena as camera pan and tilt) and/or
which have relied upon finding points of correspondence between
the image frames. The featureless projective approach, which
operates directly on the image pixels, is shown to be superior in
accuracy and ability to enhance resolution. The proposed methods
work well on image data collected from both good-quality and
poor-quality video under a wide variety of conditions (sunny,
cloudy, day, night). These new fully automatic methods are also
shown to be robust to deviations from the assumptions of static
scene and no parallax.

Index Terms—Motion estimation, personal imaging, projective
geometry, video orbits.

I. INTRODUCTION

M ANY problems require finding the coordinate transfor-
mation between two images of the same scene or object.

Whether to recover camera motion between video frames,
to stabilize video images, to relate or recognize photographs
taken from two different cameras, to compute depth within
a three-dimensional (3-D) scene, or for image registration
and resolution enhancement, it is important to have both a
precise description of the coordinate transformation between
a pair of images or video frames, and some indication as
to its accuracy. Traditionalblock matching(e.g., as used in
motion estimation) is really a special case of a more general
coordinate transformation. In this paper, we demonstrate a
new solution to themotion estimationproblem using a more
general estimation of a coordinate transformation, and pro-
pose techniques for automatically finding the eight-parameter
projective coordinate transformation that relates two frames
taken of the same static scene. We show, both by theory
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and example, how the new approach is more accurate and
robust than previous approaches which relied on affine coordi-
nate transformations, approximations to projective coordinate
transformations, and/or the finding of point correspondences
between the images. The new techniques take as input two
frames, and automatically output the eight parameters of the
“exact” model, to properly register the frames. They do not
require the tracking or correspondence of explicit features, yet
are computationally easy to implement. Although the theory
we present makes the typical assumptions of static scene and
no parallax, we show that the new estimation techniques are
robust to deviations from these assumptions. In particular, we
apply the direct featureless projective parameter estimation
approach to image resolution enhancement and compositing,
illustrating its success on a variety of practical and difficult
cases, including some that violate the nonparallax and static
scene assumptions. An example image composite, made with
featureless projective parameter estimation, is reproduced in
Fig. 1, where the spatial extent of the image is increased
by panning the camera while compositing (e.g., by making a
panorama) and the spatial resolution is increased by zooming
the camera and by combining overlapping frames.

II. BACKGROUND

Hundreds of papers have been published on the problems
of motion estimation and frame alignment. (For review and
comparison, see [1].) In this section we review the basic
differences between coordinate transformations and emphasize
the importance of using the “exact” eight-parameter projective
coordinate transformation.

A. Coordinate Transformations

A coordinate transformation maps the image coordinates,
to a new set of coordinates, . The

approach to “finding the coordinate transformation” relies on
assuming it will take one of the forms in Table I, and then
estimating the parameters (two to 12 parameters depending on
the model) in the chosen form. An illustration showing the
effects possible with each of these forms is shown in Fig. 3.

The most common assumption (especially in motion esti-
mation for coding, and optical flow for computer vision) is
that the coordinate transformation between frames is trans-
lation. Tekalp et al. [1] have applied this assumption to
high-resolution image reconstruction. Although translation is
the least constraining and simplest to implement of the seven
coordinate transformations in Table I, it is poor at handling
large changes due to camera zoom, rotation, pan, and tilt.
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Fig. 1. Image composite made from three pictures (moving between two different locations) in a large room: One was taken looking straight ahead (outlined
in a solid line), one was taken panning to the left (outlined in a dashed line), and the third was taken panning to the right with substantial zoom-in (outlined
in a dot-dash line). The second two have undergone a coordinate transformation to put them into the same coordinates as the one outlined in a solid line
(which we call thereference frame). This composite, made from NTSC-resolution images, occupies about 2000 pixels across and, in places, shows good
detail down to the pixel level. Note increased sharpness in regions visited by the zooming-in, compared to other areas. (See magnified portions of composite
at sides.) This composite only shows the result of combining three images, but in the final production, many more images were used, resulting in a high
resolution full-color composite showing most of the room (figure reproduced from [6], courtesy of IS&T.).

TABLE I
IMAGE COORDINATE TRANSFORMATIONS DISCUSSED IN THIS PAPER

Zheng and Chellappa [3] considered the image registration
problem using a subset of the affine model—translation, rota-
tion, and scale. Other researchers [4], [5] have assumed affine
motion (six parameters) between frames. For the assumptions
of static scene and no parallax, the affine model exactly
describes rotation about the optical axis of the camera, zoom
of the camera, and pure shear, which the camera does not
do, except in the limit as the lens focal length approaches
infinity. The affine model cannot capture camera pan and tilt,
and therefore cannot properly express the “keystoning” and
“chirping” we see in the real world. (By “chirping” we mean
the effect of increasing or decreasing spatial frequency with
respect to spatial location, as illustrated in Fig. 2.) Conse-
quently, the affine model attempts to fit the wrong parameters
to these effects. Even though it has fewer parameters, we find
that the affine model is more susceptible to noise because it
lacks the correct degrees of freedom needed to properly track
the actual image motion.

The eight-parameterprojectivemodel gives the desired eight
parameters that exactly account for all possible zero-parallax
camera motions; hence, there is an important need for a
featureless estimator of these parameters. To the best of our
knowledge, the only algorithms proposed to date for such an
estimator are [6], and shortly after, [7]. In both of these, a
computationally expensive nonlinear optimization method was
presented. In [6], a direct method was also proposed. This
direct method uses simple linear algebra, and is noniterative

insofar as methods such as Levenberg–Marquardt and the like
are in no way required. The proposed method instead uses
repetition with the correct law of composition on the projective
group, going from one pyramid level to the next by application
of the group’s law of composition. Because the parameters
of the projective coordinate transformation had traditionally
been thought to be mathematically and computationally too
difficult to solve, most researchers have used the simpler affine
model or other approximations to the projective model. Before
we propose and demonstrate the featureless estimation of the
parameters of the “exact” projective model, it is helpful to
discuss some approximate models.

Going from first order (affine), to second order, gives
the 12-parameter “biquadratic” model. This model properly
captures both the chirping (change in spatial frequency with
position) and converging lines (keystoning) effects associated
with projective coordinate transformations, but does not
constrain chirping and converging to work together (the
example in Fig. 3 being chosen with zero convergence
yet substantial chirping, illustrates this point). Despite its
larger number of parameters, there is still considerable
discrepancy between a projective coordinate transformation
and the best-fit biquadratic coordinate transformation. Why
stop at second order? Why not use a 20-parameter “bicubic
model”? While an increase in the number of model parameters
will result in a better fit, there is a tradeoff, where the
model begins to fit noise. The physical camera model fits
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(d)
Fig. 2. The “projective chirping” phenomenon. (a) Real-world object
that exhibits periodicity generates a projection (image) with “chirp-
ing”—“periodicity-in-perspective.” (b) Center raster of image. (c) Best-fit
projective chirp of formsin f2�[(ax+b)=(cx+1)]g. (d) Graphical depiction
of exemplar 1-D projective coordinate transformation ofsin (2�x1) into a
“projective chirp” function,sin (2�x2) = sin f2�[(2x1 � 2)=(x1 + 1)]g.
The range coordinate as a function of the domain coordinate forms a
rectangular hyperbola with asymptotes shifted to center at thevanishing
point x1 = �1=c = �1 and “exploding point,”x2 = a=c = 2, and with
“chirpiness” c0 = c

2
=(bc � a) = �1=4.

exactly in the 8-parameter projective group; therefore, we
know that “eight is enough.” Hence, it seems reasonable to
have a preference for approximate models with exactly eight
parameters.

The eight-parameter bilinear model is perhaps the most
widely-used [8] in the fields of image processing, medical
imaging, remote sensing, and computer graphics. This model
is easily obtained from the biquadratic model by removing the
four and terms. Although the resulting bilinear model
captures the effect of converging lines, it completely fails to
capture the effect of chirping.

The eight-parameterpseudoperspectivemodel [9] and an
eight-parameter “relative-projective” model both do, in fact,
capture both the converging lines and the chirping of a
projective coordinate transformation. The pseudoperspective
model, for example, may be thought of as first, removal of two
of the quadratic terms ( ), which results in a
ten parameter model (the-chirp of [10]) and then constraining
the four remaining quadratic parameters to have two degrees
of freedom. These constraints force the “chirping effect”
(captured by and ) and the “converging effect”
(captured by and ) to work together in the “right”
way to match, as closely as possible, the effect of a projective
coordinate transformation. By setting , the
chirping in the -direction is forced to correspond with the
converging of parallel lines in the-direction (and likewise
for the -direction).

Of course, the desired “exact” eight parameters come from
the projective model, but they have been perceived as being
notoriously difficult to estimate. The parameters for this model
have been solved by Tsai and Huang [11], but their solution
assumed that features had been identified in the two frames,
along with their correspondences. The main contribution of
this paper is a simple featureless means of automatically
solving for these eight parameters.

Other researchers have looked at projective estimation in the
context of obtaining 3-D models. Faugeras and Lustman [12],
Shashua and Navab [13], and Sawhney [14] have considered
the problem of estimating the projective parameters while
computing the motion of a rigid planar patch, as part of a larger
problem of finding 3-D motion and structure using parallax
relative to an arbitrary plane in the scene. Kumaret al. [15]
have also suggested registering frames of video by computing
the flow along theepipolar lines, for which there is also an
initial step of calculating the gross camera movement assuming
no parallax. However, these methods have relied on feature
correspondences, and were aimed at 3-D scene modeling.
Our focus is not on recovering the 3-D scene model, but on
aligning two-dimensional (2-D) images of 3-D scenes. Feature
correspondences greatly simplify the problem; however, they
also have many problems. The focus of this paper is simple
featureless approaches to estimating the projective coordinate
transformation between image pairs.

B. Camera Motion: Common Assumptions and Terminology

Two assumptions are typical in this area of research. The
first assumption is that the scene is constant—changes of scene
content and lighting are small between frames. The second
assumption is that of an ideal pinhole camera—implying
unlimited depth of field with everything in focus (infinite
resolution) and implying that straight lines map to straight
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TABLE II
THE TWO “N O PARALLAX ” CASES FOR A STATIC SCENE

Fig. 3. Pictorial effects of the six coordinate transformations of Table I, arranged left to right by number of parameters. Note that translation leaves
the original house figure unchanged, except in its location. Most importantly, only the four rightmost coordinate transformations affect the periodicity of
the window spacing (inducing the desired “chirping” which corresponds to what we see in the real world). Of these four, only theprojective coordinate
transformation preserves straight lines. The eight-parameter projective coordinate transformation “exactly” describes the possible image motions (“exact”
meaning under the idealized zero-parallax conditions).

lines.1 Consequently, the camera has three degrees of freedom
in 2-D space and eight degrees of freedom in 3-D space:
translation ( ), zoom (scale in each of the image
coordinates and ), and rotation (rotation about the optical
axis, pan, and tilt. These two assumptions are also made in
this paper.

In this paper, an “uncalibrated camera” refers to one in
which the principal point2 is not necessarily at the center
(origin) of the image and the scale is not necessarily isotropic.3

We assume that the zoom is continually adjustable by the
camera user, and that we do not know the zoom setting, or
whether it changed between recording frames of the image
sequence. We also assume that each element in the camera
sensor array returns a quantity that is linearly proportional to
the quantity of light received.4 With these assumptions, the
exact camera motion that can be recovered is summarized in
Table II.

C. Video Orbits

Tsai and Huang [11] pointed out that the elements of the
projectivegroup give the true camera motions with respect to
a planar surface. They explored the group structure associated
with images of a 3-D rigid planar patch, as well as the associ-
atedlie algebra, although they assume that the correspondence
problem has been solved. The solution presented in this paper
(which does not require prior solution of correspondence) also
relies on projective group theory. We briefly review the basics
of this theory, before presenting the new solution in the next
section.

1When using low-cost wide-angle lenses, there is usually some barrel
distortion which we correct using the method of [16].

2The principal point is where the optical axis intersects the film.
3 Isotropic means that magnification in thex andy directions is the same.

Our assumption facilitates aligning frames taken from different cameras.
4This condition can be enforced over a wide range of light intensity levels,

by using the Wyckoff principle [17], [18].

1) Projective Group in One-Dimensional (1-D) Coordi-
nates: A group is a set upon which there is defined an
associative law of composition (closure, associativity), which
contains at least one element (identity) who’s composition
with another element leaves it unchanged, and for which every
element of the set has aninverse.

A group of operators together with aset of operands form
a so-calledgroup operation.5

In this paper, coordinate transformations are the operators
(group), and images are the operands (set). When the coordi-
nate transformations form a group, then two such coordinate
transformations, and , acting in succession, on an image
(e.g., acting on the image by doing a coordinate trans-
formation, followed by a further coordinate transformation
corresponding to , acting on that result) can be replaced
by a single coordinate transformation. That single coordinate
transformation is given by thelaw of compositionin the group.

Theorbit of a particular element of the set, under the group
operation [19] is the new set formed by applying to it, all
possible operators from the group.

In this paper, the orbit is a collection of pictures formed from
one picture through applying all possible projective coordinate
transformations to that picture. We refer to this set as the
“video orbit” of the picture in question. Image sequences
generated by zero-parallax camera motion on a static scene
contain images that all lie in the same video orbit.

For simplicity, we review the theory first for the projective
coordinate transformation in one dimension.6 A member of
this group of coordinate transformations:

(where the images are functions of one vari-
able, ) is denoted by , and has inverse .
The law of composition is given by

5Also known as agroup actionor G-set.
6In this 2-D world, the “camera” consists of a center of projection (pinhole

“lens”) and a line (1-D sensor array or 1-D “film”).
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. In almost all practical engineering
applications, , so we will divide through by , and
denote the coordinate transformation by

. When and , the projective group
becomes the affine group of coordinate transformations, and
when and , it becomes the group of translations.

Of the coordinate transformations presented in the previous
section, only the projective, affine, and translation operations
form groups.

The equivalent two cases of Table II for this hypothetical
“flatland” world of 2-D objects with 1-D pictures correspond to
the following. In the first case, a camera is at a fixed location,
and free to zoom and pan. In the second case, a camera is free
to translate, zoom, and pan, but the imaged object must be
flat (i.e., lie on a straight line in the plane). The resulting two
(1-D) frames taken by the camera are related by the coordinate
transformation from to , given by [20] as

(1)

where , and
, is the location of the

singularity in the domain. We should mention that, the degree
of perspective, has been given the interpretation of a chirp-rate
[20].

The coordinate transformations of (1) form a group oper-
ation. This result, and the proof of this group’s isomorphism
to the group corresponding to nonsingular projections of a flat
object are given in [21].

2) Projective Group in 2-D Coordinates:The theory for
the projective, affine, and translation groups also holds for
the familiar 2-D images taken of the 3-D world. The “video
orbit” of a given 2-D frame is defined to be the set of all
images that can be produced by applying operators from the
2-D projective group to the given image. Hence, we restate
the coordinate transformation problem: Given a set of images
that lie in the same orbit of the group, we wish to find for
each image pair, that operator in the group that takes one
image to the other image.

If two frames, say, and , are in the same orbit, then
there is an group operation such that the mean-squared
error (MSE) between and is zero. In practice,
however, we find which element of the group takes one image
“nearest” the other, for there will be a certain amount of
parallax, noise, interpolation error, edge effects, changes in
lighting, depth of focus, etc. Fig. 4 illustrates the operator
acting on frame , to move it nearest to frame . (This figure
does not, however, reveal the precise shape of the orbit, which
occupies an eight-dimensional space.)

Summarizing, the eight-parameter projective group captures
the exact coordinate transformation between pictures taken
under the two cases of Table II. The primary assumptions
in these cases are that of no parallax, and of a static scene.
Because the eight-parameter projective model is “exact,” it
is theoretically the right model to use for estimating the
coordinate transformation. Examples presented in this paper

demonstrate that it also performs better in practice than the
other proposed models.

III. FRAMEWORK: MOTION PARAMETER

ESTIMATION AND OPTICAL FLOW

To lay the framework for our new results, we will re-
view existing methods of parameter estimation for coordinate
transformations. This framework will apply to both existing
methods as well as our new methods. The purpose of this
review is to bring together a variety of methods that appear
quite different, but which actually can be described in a more
unified framework, which we present here.

The framework we give breaks existing methods into two
categories: feature-based, and featureless. Of the featureless
methods, we consider two subcategories: i) methods based
on minimizing MSE (generalized correlation, direct nonlin-
ear optimization) and ii) methods based on spatiotemporal
derivatives and optical flow. Note that variations such as
multiscalehave been omitted from these categories; multiscale
analysis can be applied to any of them. The new algorithms we
develop in this paper (with final form given in Section IV) are
featureless, and based on (multiscale if desired) spatiotemporal
derivatives.

Some of the descriptions of methods below will be pre-
sented for hypothetical 1-D images taken of 2-D “scenes” or
“objects.” This simplification yields a clearer comparison of
the estimation methods. The new theory and applications will
be presented subsequently for 2-D images taken of 3-D scenes
or objects.

A. Feature-Based Methods

Feature-based methods [22], [23] assume that point cor-
respondences in both images are available. In the projective
case, given at least three correspondences between point pairs
in the two 1-D images, we will find the element,

that maps the second image into the first. Let
be the points in one image, and let

be the corresponding points in the other image. Then
. Rearranging yields ,

so that , and can be found by solving linear
equations in three unknowns, as follows:

(2)

using least squares if there are more than three correspondence
points. The extension from 1-D “images” to 2-D images is
conceptually identical; for the affine and projective models,
the minimum number of correspondence points needed in 2-D
is three and four, respectively.

A major difficulty with feature-based methods is finding the
features. Good features are often hand-selected, or computed,
possibly with some degree of human intervention [24]. A
second problem with features is their sensitivity to noise
and occlusion. Even if reliable features exist between frames
(e.g., line markings on a playing field in a football video,
see Section V-B), these features may be subject to signal
noise and occlusion (e.g., running football players blocking
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(a) (b)

Fig. 4. Video orbits. (a) The orbit of frame 1 is the set of all images that can
be produced by acting on frame 1 with any element of the operator group.
Assuming that frames 1 and 2 are from the same scene, frame 2 will be close
to one of the possible projective coordinate transformations of frame 1. In
other words, frame 2 “lies near the orbit of” frame 1. (b) By bringing frame
2 along its orbit, we can determine how closely the two orbits come together
at frame 1.

a feature). The emphasis in the rest of this paper will be on
robust featureless methods.

B. Featureless Methods Based on Generalized
Cross-Correlation

The purpose of this section is for completeness: We will
consider first what is perhaps the most obvious approach
(generalized cross-correlation in 8-D parameter space) in order
to motivate a different approach provided in Section III-C, the
motivation arising from ease of implementation and simplicity
of computation.

Cross-correlation of two frames is a featureless method of
recovering translation model parameters. Affine and projective
parameters can also be recovered using generalized forms of
cross-correlation.

Generalized cross-correlation is based on an inner-product
formulation which establishes a similarity metric between two
functions, say, and , where is an approximately
coordinate-transformed version of, but the parameters of the
coordinate transformation, are unknown.7 We can find, by
exhaustive search (applying all possible operators,, to ),
the “best” as the one that maximizes the inner product

(3)

where we have normalized the energy of each coordinate-
transformed before making the comparison. Equivalently,
instead of maximizing a similarity metric, we can minimize
some distance metric, such as MSE, given by

. Solving (3) has an advantage over finding
MSE when one image is not only a coordinate-transformed
version of the other, but is also an amplitude-scaled version,
as generally happens when there is an automatic gain control
or an automatic iris in the camera.

In one dimension, the orbit of an image under the affine
group operation is a family ofwavelets, while the orbit of an
image under the projective group of coordinate transformations

7In the presence of additive white Gaussian noise, this method, also
known as “matched filtering,” leads to a maximum likelihood estimate of
the parameters [25].

is a family of “projective chirplets” [26],8 the objective func-
tion (3) being the cross-chirplet transform. A computationally
efficient algorithm for the cross-wavelet transform has recently
been presented [29]. (See [30] for a good review on wavelet-
based estimation of affine coordinate transformations.)

Adaptive variants of the chirplet transforms have been
previously reported in the literature [31]. However, there
are still many problems with the adaptive chirplet approach;
thus, for the remainder of this paper, we consider featureless
methods based on spatiotemporal derivatives.

C. Featureless Methods Based on Spatio-Temporal Derivatives

1) Optical Flow (“Translation Flow”): When the change
from one image to another is small, optical flow [32] may be
used. In one dimension, the traditional optical flow formulation
assumes each point in frame is a translated version of
the corresponding point in frame , and that and

are chosen in the ratio , the translational
flow velocity of the point in question. The image brightness

is described by

(4)

where is the translational flow velocity of the point in
the case of pure translation, where is constant across the
entire image. More generally, though, a pair of 1-D images are
related by a quantity, at each point in one of the images.

Expanding the right hand side of (4) in a Taylor series,
and canceling zeroth-order terms gives the well-known optical
flow equation: , where and are
the spatial and temporal derivatives, respectively, and
denotes higher order terms. Typically, the higher order terms
are neglected, giving the expression for the optical flow at
each point in one of the two images

(5)

2) Weighing the Difference Between “Affine Fit” and
“Affine Flow”: A comparison between two similar ap-
proaches is presented, in the familiar and obvious realm of
linear regression versus direct affine estimation, highlighting
the obvious differences between the two approaches. This
difference, in weighting, motivates new weighting changes,
which will later simplify implementations pertaining to the
new methods.

Given the optical flow between two images,and , we
wish to find the coordinate transformation to apply toto
register it with . We now describe two approaches based on
the affine model:9 i) finding the optical flow at every point,
and then fitting this flow with an affine model (“affine fit”),
and ii) rewriting the optical flow equation in terms of an affine
(not translation) motion model (“affine flow”).

Wang and Adelson have proposed fitting an affine model to
the optical flow field [33] between two 2-D images. We briefly

8Symplectomorphisms of the time-frequency plane [27], [28] have been
applied to signal analysis, giving rise to the so-called q-chirplet [26], which
differs from the projective chirplet discussed here.

9The 1-D affine model is a simple yet sufficiently interesting (non-Abelian)
example selected to illustrate differences in weighting.
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examine their approach with 1-D images; the reduction in
dimensions simplifies analysis and comparison to affine flow.
Denote coordinates in the original image,, by , and in the
new image, , by . Suppose that is a dilated and translated
version of , so for every corresponding pair

. Equivalently, the affine model of velocity [normalizing
], , is given by . We can

expect a discrepancy between the flow velocity,, and the
model velocity, , due to either errors in the flow calculation,
or to errors in the affine model assumption, so we apply linear
regression to get the best least-squares fit by minimizing

(6)

The constants and that minimize over the entire patch
are found by differentiating (6), and setting the derivatives to
zero. This results in what we call the affine fit equations

(7)

Alternatively, the affine coordinate transformation may be
directly incorporated into the brightness change constraint (4).
Bergenet al. [34] have proposed this method, which we will
call affine flow, to distinguish it from the “affine fit” model
of Wang and Adelson (7). Let us show how affine flow and
affine fit are related. Substituting directly
into (5) in place of and summing the squared error

(8)

over the whole image, differentiating, and equating the result
to zero, gives a linear solution for bothand , as follows:

(9)

To see how this result compares to the affine fit, we rewrite
(6)

(10)

and observe, comparing (8) and (10) that affine flow is
equivalent to a weighted least-squares fit, where the weighting
is given by . Thus, the affine flow method tends to put more
emphasis on areas of the image that are spatially varying than
does the affine fit method. Of course, one is free to separately
choose the weighting for each method in such a way that
affine fit and affine flow methods both give the same result.
Both our intuition and our practical experience tends to favor
the affine flow weighting, but, more generally, perhaps we
should ask, what is the best weighting? Lucas and Kanade
[35], among others, have considered weighting issues, though

the rather obvious difference in weighting between fit and flow
does not appear to have been pointed out previously in the
literature. The fact that the two approaches provide similar
results, yet have drastically different weightings, suggests that
we can exploit the choice of weighting. In particular, we will
observe in Section III-C3 that we can select a weighting that
makes the implementation easier.

Another approach to the affine fit involves computation of
the optical flow field using the multiscale iterative method
of Lucas and Kanade, andthen fitting to the affine model.
An analogous variant of the affine flow method involves
multiscale iteration as well, but in this case the iteration and
multiscale hierarchy are incorporated directly into the affine
estimator [34]. With the addition of multiscale analysis, the
“fit” and “flow” methods differ in additional respects beyond
just the weighting. Our intuition and experience indicates that
the direct multiscale affine flow performs better than the affine
fit to the multiscale flow. Multiscale optical flow makes the
assumption that blocks of the image are moving with pure
translational motion, and then, paradoxically, the affine fit
refutes this pure-translation assumption. However, fit provides
some utility over flow when it is desired to segment the image
into regions undergoing different motions [36], or to gain
robustness by rejecting portions of the image not obeying the
assumed model.

3) “Projective Fit” and “Projective Flow”—New Tech-
niques: Analogous to the affine fit and affine flow of the
previous section, we now propose the two new methods:
“projective fit” and “projective flow.” For the 1-D affine
coordinate transformation, the graph of the range coordinate
as a function of the domain coordinate is a straight line;
for the projective coordinate transformation, the graph of the
range coordinate as a function of the domain coordinate is a
rectangular hyperbola [Fig. 2(d)]. The affine fit case used linear
regression; however, in the projective case we usehyperbolic
regression. Consider the flow velocity given by (5) and the
model velocity

(11)

and minimize the sum of the squared difference, as was done
in (6), to

(12)

As discussed earlier, the calculation can be simplified by
judicious alteration of the weighting, in particular, multiplying
each term of the summation (12) by , and solving, gives

(13)

where theregressoris .
For projective flow, we substitute

into (8). Again, weighting by gives

(14)
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(the subscript denotes weighting has taken place) resulting
in a linear system of equations for the parameters

(15)

where . Again, to show
the difference in the weighting between projective flow and
projective fit, we can rewrite (15)

(16)

where is that defined in (13).
4) The Unweighted Projectivity Estimator:If we do not

wish to apply thead hoc weighting scheme, we may still
estimate the parameters of projectivity in a simple manner,
still based on solving a linear system of equations. To do this,
we write the Taylor series of

(17)

and use the first three terms, obtaining enough degrees of
freedom to account for the three parameters being estimated.
Letting

, and ,
and differentiating with respect to each of the three parameters
of , setting the derivatives equal to zero, and verifying with
the second derivatives, gives the following linear system of
equations for “unweighted projective flow”:

(18)

In Section IV, we will extend this derivation to 2-D images.

IV. M ULTISCALE IMPLEMENTATIONS IN TWO DIMENSIONS

In the previous section, two new techniques, projective-
fit and projective-flow, were proposed. Now we describe
these algorithms for 2-D images. The brightness constancy
constraint equation for 2-D images [32] that gives the flow
velocity components in the and directions, analogous to
(5) is

(19)

As is well known, the optical flow field in two dimensions
is underconstrained.10 The model ofpure translationat every
point has two parameters, but there is only one (19) to solve,
thus it is common practice to compute the optical flow over
some neighborhood, which must be at least two pixels, but is
generally taken over a small block, 33, 5 5, or sometimes
larger (e.g., the entire image, as in this paper).

10Optical flow in one dimension did not suffer from this problem.

Our task is not to deal with the 2-D translational flow, but
with the 2-D projected flow, estimating the eight parameters
in the coordinate transformation

(20)

The desired eight scalar parameters are denoted by
, and .

Analogous to (10), we have, in the 2-D case

(21)

Where the sum can be weighted,as it was in the 1-D case, as

(22)

Differentiating with respect to the free parameters , and
, and setting the result to zero gives a linear solution, we get

(23)

where
.

A. “Unweighted Projective Flow”

As with the 1-D images, we make similar assumptions in
expanding (20) in its own Taylor series, analogous to (17).
If we take the Taylor series up to second-order terms, we
obtain the biquadratic model mentioned in Section II-A. As
mentioned in Section II-A, by appropriately constraining the
12 parameters of the biquadratic model, we obtain a variety of
eight-parameter approximate models. In our algorithms for es-
timating the “exact unweighted” projective group parameters,
we use one of these approximate models in an intermediate
step.11

The Taylor series for the bilinear case gives

(24)

Incorporating these into the flow criteria yields a simple set of
eight linear equations in eight unknowns, as follows:

(25)

where .
For the relative-projective model, is given by

(26)

and for the pseudoperspective model,is given by

(27)

11Use of an approximate model that does not capture chirping or preserve
straight lines can still lead to the true projective parameters as long as the
model captures at least eight degrees of freedom.
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In order to see how well the model describes the coordinate
transformation between two images, say,and , one might
warp12 to , using the estimated motion model, and then
compute some quantity that indicates how different the resam-
pled version of is from . The MSE between the reference
image and the warped image might serve as a good measure
of similarity. However, since we are really interested in how
the exact modeldescribes the coordinate transformation, we
assess the goodness of fit by first relating the parameters of the
approximate model to the exact model, and then find the MSE
between the reference image and the comparison image after
applying the coordinate transformation of the exact model. A
method of finding the parameters of the exact model, given
the approximate model, is presented in Section IV-A1.

1) “Four-Point Method” for Relating Approximate Model
to Exact Model: Any of the approximations above, after being
related to the exact projective model, tend to behave well in the
neighborhood of the identity . In one-
dimension, we explicitly expanded the model Taylor series
about the identity; here, although we do not explicitly do this,
we shall assume that the terms of the Taylor series of the
model correspond to those taken about the identity. In the 1-D
case, we solve the three linear equations in three unknowns
to estimate the parameters of the approximate motion model,
and then relate the terms in this Taylor series to the exact
parameters, , , and (which involves solving another set
of three equations in three unknowns, the second set being
nonlinear, although very easy to solve).

In the extension to two dimensions, the estimate step is
straightforward, but the relate step is more difficult, because
we now have eight nonlinear equations in eight unknowns,
relating the terms in the Taylor series of the approximate model
to the desired exact model parameters. Instead of solving
these equations directly, we now propose the following simple
procedure for relating the parameters of the approximate model
to those of the exact model, which we call the “four-point
method”.

1) Select four ordered pairs (e.g., the four corners of the
bounding box containing the region under analysis, or
the four corners of the image if the whole image is under
analysis). Here suppose, for simplicity, that these points
are the corners of the unit{square:

.
2) Apply the coordinate transformation using the Taylor

series for the approximate model [e.g., (24)] to these
points: .

3) Finally, the correspondences betweenand are treated
just like features. This results in four easy to solve linear
equations

(28)

where . This results in the exact eight
parameters, .

12The termwarp is appropriate here, since the approximate model does not
preserve straight lines.

Fig. 5. Method of computation of eight parametersp between two images
from the same pyramid level,g andh. The approximate model parametersq
are related to the exact model parametersp in a feedback system.

We remind the reader that the four corners arenot feature
correspondences as used in the feature-based methods of
Section III-A, but rather are used so that the two featureless
models (approximate and exact) can be related to one another.

It is important to realize the full benefit of finding the
exact parameters. While the “approximate model” is sufficient
for small deviations from the identity, it is not adequate to
describe large changes in perspective. However, if we use it
to track small changes incrementally, and each time relate
these small changes to the exact model (20), then we can
accumulate these small changes using thelaw of composition
afforded by the group structure. This is an especially favorable
contribution of the group framework. For example, with a
video sequence, we can accommodate very large accumulated
changes in perspective in this manner. The problems with
cumulative error can be eliminated, for the most part, by
constantly propagating forward the true values, computing the
residual using the approximate model, and each time relating
this to the exact model to obtain a goodness-of-fit estimate.

2) Overview of Algorithm for Unweighted Projective Flow:
Below is an outline of the algorithm; details of each step are
in subsequent sections.

Frames from an image sequence are compared pairwise to
test whether or not they lie in the same orbit:

1) A Gaussian pyramid of three or four levels is constructed
for each frame in the sequence.

2) The parameters are estimated at the top of the pyramid,
between the two lowest-resolution images of a frame
pair, and , using the iterative method depicted in
Fig. 5.

3) The estimated is applied to the next higher-resolution
(finer) image in the pyramid, , to make the two
images at that level of the pyramid nearly congruent
before estimating the between them.

4) The process continues down the pyramid until the
highest-resolution image in the pyramid is reached.

B. Multiscale Iterative Implementation

The Taylor-series formulations we have used implicitly
assume smoothness; the performance is improved if the images
are blurred before estimation. To accomplish this, we do not
downsample critically after lowpass filtering in the pyramid.
However, after estimation, we use the original (unblurred)
images when applying the final coordinate transformation.

The strategy we present differs from the multiscale iterative
(affine) strategy of Bergenet al., in one important respect
beyond simply an increase from six to eight parameters. The
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difference is the fact that we have two motion models, the “ex-
act motion model” (20) and the “approximate motion model,”
namely the Taylor series approximation to the motion model
itself. The approximate motion model is used to repetitively
converge to the exact motion model, using the algebraiclaw of
compositionafforded by the exact projective group model. In
this strategy, the exact parameters are determined at each level
of the pyramid, and passed to the next level. The steps involved
are summarized schematically in Fig. 5, and described below.

1) Initialize: Set and set to the identity
operator.

2) Repeat ( ):

a) Estimatethe eight or more terms of the approximate
model between two image frames,and . This
results in approximate model parameters

b) Relate the approximate parameters to the ex-
act parameters using the “four point method.” The
resulting exact parameters are.

c) Resample:Apply the law of compositionto accumu-
late the effect of the ’s. Denote these composite
parameters by . Then set

. (This should have nearly the same effect
as applying to , except that it will avoid
additional interpolation and antialiasing errors you
would get by resampling an already resampled image
[8]).

Repeat until either the error between and falls below
a threshold, or until some maximum number of iterations is
achieved. After the first iteration, the parameterstend to be
near the identity since they account for the residual between
the “perspective-corrected” image and the “true” image .
We find that only two or three iterations are usually needed
for frames from nearly the same orbit.

A rectangular image assumes the shape of an arbitrary
quadrilateral when it undergoes a projective coordinate trans-
formation. In coding the algorithm, we pad the undefined
portions with the quantity NaN, a standard IEEE arithmetic
value, so that any calculations involving these values auto-
matically inherit NaN without slowing down the computations.
The algorithm (in Matlab on an HP 735) takes about 6 s per
repetition for a pair of 320 240 images.

C. Exploiting Commutativity for Parameter Estimation

There is a fundamental uncertainty [37] involved in the
simultaneous estimation of parameters of a noncommutative
group, akin to the Heisenberg uncertainty relation of quan-
tum mechanics. In contrast, for a commutative13 group (in
the absence of noise), we can obtain the exact coordinate
transformation.

Segman [38] considered the problem of estimating the
parameters of a commutative group of coordinate transforma-
tions, in particular, the parameters of the affine group [39]. His

13A commutative (or Abelian) group is one in which elements of the group
commute, for example, translation along thex-axis commutes with translation
along they-axis, so the 2-D translation group is commutative.

work also deals with noncommutative groups, in particular, in
the incorporation of scale in the Heisenberg group.14

Estimating the parameters of a commutative group is com-
putationally efficient, e.g., through the use of Fourier cross-
spectra [41]. We exploit this commutativity for estimating the
parameters of the noncommutative 2-D projective group by
first estimating the parameters that commute. For example,
we improve performance if we first estimate the two pa-
rameters of translation, correct for the translation, and then
proceed to estimate the eight projective parameters. We can
also simultaneously estimate both the isotropic-zoom and
the rotation about the optical axis by applying a log-polar
coordinate transformation followed by a translation estimator.
This process may also be achieved by a direct application
of the Fourier–Mellin transform [42]. Similarly, if the only
difference between and is a camera pan, then the pan may
be estimated through a coordinate transformation to cylindrical
coordinates, followed by a translation estimator.

In practice, we run through the following “commutative ini-
tialization” before estimating the parameters of the projective
group of coordinate transformations.

1) Assume that is merely a translated version of.

a) Estimate this translation using the method of Girod
[41].

b) Shift by the amount indicated by this estimate.
c) Compute the MSE between the shiftedand , and

compare to the original MSE before shifting.
d) If an improvement has resulted, use the shifted

from now on.

2) Assume that is merely a rotated and isotropically
zoomed version of .

a) Estimate the two parameters of this coordinate trans-
formation.

b) Apply these parameters to.
c) If an improvement has resulted, use the coordinate-

transformed (rotated and scaled)from now on.

3) Assume that is merely an “x-chirped” (panned) version
of , and, similarly, “x-dechirp” . If an improvement
results, use the “x-dechirped” from now on. Repeat
for (tilt.)

Compensating for one step may cause a change in choice
of an earlier step. Thus, it might seem desirable to run
through the commutative estimates iteratively. However, our
experience on lots of real video indicates that a single pass
usually suffices, and in particular, will catch frequent situations
where there is a pure zoom, a pure pan, a pure tilt, etc.,
both saving the rest of the algorithm computational effort, as
well as accounting for simple coordinate transformations such
as when one image is an upside-down version of the other.
(Any of these pure cases corresponds to a single parameter
group, which is commutative.) Without the “commutative
initialization”step, these parameter estimation algorithms are
prone to get caught in local optima, and thus never converge
to the global optimum.

14While the Heisenberg group deals with translation and frequency-
translation (modulation), some of the concepts could be carried over to
other more relevant group structures.
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Fig. 6. Frames from original image orbit, transmitted from the wearable computer system (“WearCam”).15 The entire sequence, consisting of 20 color
frames, is available [46] together with examples of applying the proposed algorithm to this data.

Fig. 7. Frames from original image video orbit after a coordinate transformation to move them along the orbit to the reference frame (c). The
coordinate-transformed images are alike except for the region over which they are defined. Note that the regions are not parallelograms; thus, methods
based on the affine model fail.

V. PERFORMANCE AND APPLICATIONS

Fig. 6 shows some frames from a typical image sequence.
Fig. 7 shows the same frames brought into the coordinate
system of frame (c), that is, the middle frame was chosen
as thereference frame.

Given that we have established a means of estimating
the projective coordinate transformation between any pair of
images, there are two basic methods we use for finding the
coordinate transformations between all pairs of a longer image
sequence. Because of the group structure of the projective
coordinate transformations, it suffices to arbitrarily select one
frame and find the coordinate transformation between every
other frame and this frame. The two basic methods are
described below.

1) Differential Parameter Estimation: The coordinate
transformations between successive pairs of images,

, estimated.
2) Cumulative Parameter Estimation: The coordinate

transformation between each image and the refer-
ence image is estimated directly. Without loss of
generality, select frame zero () as the reference
frame and denote these coordinate transformations as

.
Theoretically, these two methods are equivalent:

differential method

cumulative method (29)

However, in practice, the two methods differ for the fol-
lowing two reasons.

15Note that WearCam [47] is mounted sideways so that it can “paint” out
the image canvas with a wider “brush,” when sweeping across for a panorama.

1) Cumulative Error: In practice, the estimated coordinate
transformations between pairs of images register them
only approximately, due to violations of the assumptions
(e.g., objects moving in the scene, center of projection
not fixed, camera swings around to bright window and
automatic iris closes, etc.). When a large number of
estimated parameters are composed, cumulative error
sets in.

2) Finite Spatial Extent of Image Plane: Theoretically, the
images extend infinitely in all directions, but, in practice,
images are cropped to a rectangular bounding box.
Therefore, a given pair of images (especially if they are
far from adjacent in the orbit) may not overlap at all;
hence, it is not possible to estimate the parameters of
the coordinate transformation using those two frames.

The frames of Fig. 6 were brought into register using the dif-
ferential parameter estimation, and “cemented” together seam-
lessly on a common canvas. “Cementing” involves piecing the
frames together, for example, by median, mean, or trimmed
mean, or combining on a subpixel grid [21]. (Trimmed mean
was used here, but the particular method made little visible dif-
ference.) Fig. 8 shows this result (projective/projective), with
a comparison to two nonprojective cases. The first comparison
is to affine/affine where affine parameters were estimated
(also multiscale) and used for the coordinate transformation.
The second comparison, affine/projective, uses the six affine
parameters found by estimating the eight projective parameters
and ignoring the two chirp parameters(which capture the
essence of tilt and pan). These six parameters are more
accurate than those obtained using the affine estimation, as the
affine estimation tries to fit its shear parameters to the camera
pan and tilt. In other words, the affine estimation does worse
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Fig. 8. Frames of Fig. 7 “cemented” together on single image “canvas,” with comparison of affine and projective models. Note the good registration and nice
appearance of the projective/projective image despite the noise in the amateur television receiver, wind-blown trees, and the fact that the rotation of the camera
was not actually about its center of projection. Note also that the affine model fails to properly estimate the motion parameters (affine/affine), and even if the
“exact” projective model is used toestimatethe affine parameters, there is no affine coordinate transformation that will properly register all of the image frames.

Fig. 9. Hewlett-Packard Claire image sequence, which violates the assumptions of the model (the camera location was not fixed, and the scene was
not completely static). Images appear in TV raster-scan order.

than the six affine parameters within the projective estimation.
The affine coordinate transform is finally applied, giving the
image shown. Note that the coordinate-transformed frames in
the affine case are parallelograms.

A. Subcomposites and the Support Matrix

The following two situations have so far been dealt with.

1) Camera movement is small, so that any pair of frames
chosen from the video orbit have a substantial amount of
overlap when expressed in a common coordinate system.
(Use differential parameter estimation.)

2) Camera movement is monotonic, so that any errors
that accumulate along the registered sequence are not
particularly noticeable. (Use cumulative parameter esti-
mation.)

In the example of Fig. 8, any cumulative errors are not
particularly noticeable because the camera motion is progres-
sive, that is, it does not reverse direction or loop around
on itself. Now let us look at an example where the camera
motion loops back on itself and small errors, due to violations
of the assumptions (fixed camera location and static scene),
accumulate.

Consider the image sequence shown in Fig. 9. The com-
posite arising from bringing these 16 image frames into
the coordinates of the first frame exhibited somewhat poor
registration due to cumulative error; we use this sequence to
illustrate the importance of subcomposites.

The “differential support matrix,”15 for which the entry
tells us how much frame overlaps with frame when

expressed in the coordinates of frame, for the sequence of
Fig. 9 appears in Fig. 10.

Examining the support matrix, and the mean-squared error
estimates, the local maxima of the support matrix correspond
to the local minima of the mean-squared error estimates, sug-
gesting the subcomposites16: ,
and . It is important to note that when the
error is low, if the support is also low, the error estimate might
not be valid. For example, if the two images overlap in only
one pixel, then even if the error estimate is zero (e.g., perhaps

15The “differential support matrix” is not necessarily symmetric, while the
“cumulative support matrix” for which the entryqm;n tells us how much
framen overlaps with framem when expressed in the coordinates of frame
0 (reference frame) is symmetric.

16Researchers at Sarnoff also consider the use of subcomposites, and refer
to them astiles [43], [44].
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Fig. 10. Support matrix and mean-squared registration error defined by image sequence in Fig. 9 and the estimated coordinate transformations between
images. (a) Entries in table. The diagonals are one since every frame is fully supported in itself. The entries just above (or below) the diagonal give the amount
of pairwise support. For example, frames 0 and 1 share high mutual support (0.91). Frames 7–9 also share high mutual support (again 0.91). (b) corresponding
density plot(more dense ink indicates higher values). (c) Mean-square registration error. (d) Corresponding density plot.

Fig. 11. Subcomposites are each made from subsets of the images that share high quantities of mutual support and low estimates of mutual error, and
then combined to form the final composite.

Fig. 12. Image composite made from 16 video frames taken from a television broadcast sporting event. Note the “Edgertonian” appearance, as each player
traces out a stroboscopic-like path. The proposed method works robustly, despite the movement of players on the field. (a) Images are expressed in the
coordinates of the first frame. (b) Images are expressed in a new useful coordinate system corresponding to none of the original frames. Note the slight
distortion, due to the fact that football fields are not perfectly flat, but, rather, are raised slightly in the center.

that pixel has a value of 255 in both images), the alignment
is not likely good.

The selected subcomposites appear in Fig. 11. Estimating
the coordinate transformation between these subcomposites,
and putting them together into a common frame of reference
results in a composite (Fig. 11) about 1200 pixels across,
where the image is sharp despite the fact that the person in
the picture was moving slightly and the camera operator was
also moving (violating the assumptions of both static scene
and fixed center of projection).

B. Flat Subject Matter and Alternate Coordinates

Many sports such as football or soccer are played on a
nearly flat field that forms a rigid planar patch over which the
analysis may be conducted. After each of the frames undergoes
the appropriate coordinate transformation to bring it into the
same coordinate system as the reference frame, the sequence
can be played back showing only the players (and the image
boundaries) moving. Markings on the field (such as numbers
and lines) remain at a fixed location, which makes subsequent
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analysis and summary of the video content easier. This data
makes a good test case for the algorithms because the video
was noisy and the players caused the assumption of static
scene to be violated.

Despite the players moving in the video, the proposed
method successfully registers all of the images in the orbit,
mapping them into a single high-resolution image composite
of the entire playing field. Fig. 12(a) shows 16 frames of video
from a football game combined into a single image composite,
expressed in the coordinates of the first image in the sequence.
The choice of coordinate system was arbitrary, and any of
the images could have been chosen as the reference frame.
In fact, a coordinate system other than one chosen from the
input images could also be used. In particular, a coordinate
system whereparallel lines never meet, and periodic structures
are “dechirped” [see Fig. 12(b)] lends itself well to machine
vision and player-tracking algorithms [45]. Even if the entire
playing field was never visible in any one image, collectively,
the video from an entire game will likely reveal every square
yard of playing surface at one time or another, hence enabling
us to make a composite of the entire playing surface.

VI. CONCLUSIONS

We proposed and demonstrated featureless estimation of the
projective coordinate transformation between two images. Not
just one method, but various methods were proposed, among
these, projective fit and projective flow, which estimate the
projective (homographic) coordinate transformation between
pairs of images, taken with a camera that is free to pan, tilt,
rotate about its optical axis, and zoom. The new approach
was also formulated and demonstrated within a multiscale
iterative framework. Applications to seamlessly combining
images in or near the same orbit of the projective group of
coordinate transformations were also presented. The proposed
approach solves for the eight parameters of the “exact” model
(the projective group of coordinate transformations), is fully
automatic, and converges quickly. The approach was also
explored together with the use of subcomposites, useful when
the camera motion loops back on itself.

The proposed method was found to work well on image
data collected from both good-quality and poor-quality video
under a wide variety of conditions (sunny, cloudy, day, night).
It has been tested with a head-mounted wireless video camera,
and performs successfully even in the presence of noise,
interference, scene motion (such as people walking through the
scene), lighting fluctuations, and parallax (due to movements
of the wearer’s head). It remains to be shown which variant of
the proposed approach is optimal, and under what conditions.
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