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Video Orbits of the Projective Group: A Simple
Approach to Featureless Estimation of Parameters

Steve MannMember, IEEE,and Rosalind W. Picardylember, IEEE

Abstract—We present direct featureless methods for estimating and example, how the new approach is more accurate and
the eight parameters of an “exact” projective (homographic) robust than previous approaches which relied on affine coordi-
coordinate transformation to register pairs of images, together naq transformations, approximations to projective coordinate

with the application of seamlessly combining a plurality of images . . .
of the same scene, resulting in a single image (or new imagetransformatlons, and/or the finding of point correspondences

sequence) of greater resolution or spatial extent. The approach between the images. The new techniques take as input two
is “exact” for two cases of static scenes: 1) images taken from frames, and automatically output the eight parameters of the
the same location of an arbitrary three-dimensional (3-D) scene, “exact” model, to properly register the frames. They do not

with a camera that is free to pan, tilt, rotate about its optical axis, . . ..
and zoom, or 2) images of a flat scene taken from arbitrary loca- "€AUIré the tracking or correspondence of explicit features, yet

tions. The featureless projective approach generalizes interframe are computationally easy to implement. Although the theory

camera motion estimation methods that have previously used an we present makes the typical assumptions of static scene and
affine model (which lacks the degrees of freedom to “exactly” no parallax, we show that the new estimation techniques are
characterize such phenomena as camera pan and filt) and/or o st 1o deviations from these assumptions. In particular, we

which have relied upon finding points of correspondence between . . . .
the image frames. The featureless projective approach, which apply the direct featureless projective parameter estimation

operates directly on the image pixels, is shown to be superior in @pproach to image resolution enhancement and compositing,
accuracy and ability to enhance resolution. The proposed methods illustrating its success on a variety of practical and difficult
work well on image data collected from both good-quality and cases; including some that violate the nonparallax and static

poor-quality video under a wide variety of conditions (sunny, ; ; i ;
cloudy, day, night). These new fully automatic methods are also scene assumptions. An example image composite, made with

shown to be robust to deviations from the assumptions of static featureless projective parameter estimation, is reproduced in

scene and no parallax. Fig. 1, where the spatial extent of the image is increased
Index Terms—Motion estimation, personal imaging, projective by panning the camera. while cor.npo.snllng (e.g., by maklng a
geometry, video orbits. panorama and the spatial resolution is increased by zooming

the camera and by combining overlapping frames.

. INTRODUCTION II. BACKGROUND

ANY problems require finding the coordinate transfor-  1y,ndreds of papers have been published on the problems

mation between two images of the same scene or objegf- motion estimation and frame alignment. (For review and
Whether to recover camera motion between video framegymnparison, see [1].) In this section we review the basic
to stabilize video images, to relate or recognize photograpligerences between coordinate transformations and emphasize

taken from two different cameras, to compute depth withife jmnortance of using the “exact” eight-parameter projective
a three-dimensional (3-D) scene, or for image registratioR) ;- qinate transformation

and resolution enhancement, it is important to have both a

precise description of the coordinate transformation betwegn Coordinate Transformations

a pair of images or video frames, and some indication as : : . .
X - . . A coordinate transformation maps the image coordinates,

to its accuracy. Traditionablock matching(e.g., as used in

_ T H t [t T
motion estimatiopis really a special case of a more general _ [= y]" to a new set of coordinates; = [2', y'] . The

coordinate transformatianin this paper, we demonstrate aapproach to “finding the coordinate transformation” relies on

new solution to thanotion estimatiorproblem using a more asium![pg ItthWI” take (t)ne Otf th? fi);ms n Tatble (Ij and dthen
general estimation of a coordinate transformation, and pr stimating the parameters (two to 12 parameters depending on

pose techniques for automatically finding the eight-paramef é‘ee model) in the chosen form. An illustration showing the

projective coordinate transformation that relates two fram&§€Cts possible with each of these forms is shown in Fig. 3.

taken of the same static scene. We show, both by theoryThe most common assumption (especially in motion esti-

mation for coding, and optical flow for computer vision) is
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Fig. 1. Image composite made from three pictures (moving between two different locations) in a large room: One was taken looking straight aleead (outli

in a solid line), one was taken panning to the left (outlined in a dashed line), and the third was taken panning to the right with substantial zdioedin (out

in a dot-dash line). The second two have undergone a coordinate transformation to put them into the same coordinates as the one outlined in a solid line
(which we call thereference frame This composite, made from NTSC-resolution images, occupies about 2000 pixels across and, in places, shows good
detail down to the pixel level. Note increased sharpness in regions visited by the zooming-in, compared to other areas. (See magnified portiasitgeof comp

at sides.) This composite only shows the result of combining three images, but in the final production, many more images were used, resulting in a high
resolution full-color composite showing most of the room (figure reproduced from [6], courtesy of IS&T.).

Biquadratic = G + QoY + G y2y + T + Geryy + g

Y = gyt + Qe + 42y’ @t gy oy | bfe. €R

TABLE |
IMAGE COORDINATE TRANSFORMATIONS DISCUSSED IN THIS PAPER

Model i Coordinate transformation from x to x’ | Parameters
Translation x=x+b bc R?
Affine X =Ax+b A €R™? b e R?
Bilinear 2" = Quroy Y + Gpo® + Goryy + go

Y = Gy Y+ Gye® + Gyl + 9y bfg. € R
Projective x' = ?T—’;% A € R¥2 b ce R?
Relative-projective /= % +x A c R*2 b,cec R?
Pseudo-perspective | @’ = qur,@ + oy + g + qaz? + (][yiEJ

/’I:qy1£+(1yyy+qy +qazy+qﬂy o €R

’

Zheng and Chellappa [3] considered the image registratiorsofar as methods such as Levenberg—Marquardt and the like
problem using a subset of the affine model—translation, rotare in no way required. The proposed method instead uses
tion, and scale. Other researchers [4], [5] have assumed affiapetition with the correct law of composition on the projective
motion (six parameters) between frames. For the assumptigmsup, going from one pyramid level to the next by application
of static scene and no parallax, the affine model exacty the group’s law of composition. Because the parameters
describes rotation about the optical axis of the camera, zoafthe projective coordinate transformation had traditionally
of the camera, and pure shear, which the camera does been thought to be mathematically and computationally too
do, except in the limit as the lens focal length approachdgficult to solve, most researchers have used the simpler affine
infinity. The affine model cannot capture camera pan and tifhodel or other approximations to the projective model. Before
and therefore cannot properly express the “keystoning” ameé propose and demonstrate the featureless estimation of the
“chirping” we see in the real world. (By “chirping” we meanparameters of the “exact” projective model, it is helpful to
the effect of increasing or decreasing spatial frequency witliscuss some approximate models.
respect to spatial location, as illustrated in Fig. 2.) Conse-Going from first order (affine), to second order, gives
quently, the affine model attempts to fit the wrong parametdare 12-parameter “biquadratic” model. This model properly
to these effects. Even though it has fewer parameters, we foaptures both the chirping (change in spatial frequency with
that the affine model is more susceptible to noise becausedisition) and converging lines (keystoning) effects associated
lacks the correct degrees of freedom needed to properly tragikh projective coordinate transformations, but does not
the actual image motion. constrain chirping and converging to work together (the

The eight-parametqurojectivemodel gives the desired eightexample in Fig. 3 being chosen with zero convergence
parameters that exactly account for all possible zero-parallget substantial chirping, illustrates this point). Despite its
camera motions; hence, there is an important need forlaager number of parameters, there is still considerable
featureless estimator of these parameters. To the best of discrepancy between a projective coordinate transformation
knowledge, the only algorithms proposed to date for such and the best-fit biquadratic coordinate transformation. Why
estimator are [6], and shortly after, [7]. In both of these, stop at second order? Why not use a 20-parameter “bicubic
computationally expensive nonlinear optimization method wasodel”? While an increase in the number of model parameters
presented. In [6], a direct method was also proposed. Tw#l result in a better fit, there is a tradeoff, where the
direct method uses simple linear algebra, and is noniterativeodel begins to fit noise. The physical camera model fits
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The eight-parameter bilinear model is perhaps the most
widely-used [8] in the fields of image processing, medical
imaging, remote sensing, and computer graphics. This model
is easily obtained from the biquadratic model by removing the
four 22 andy? terms. Although the resulting bilinear model
captures the effect of converging lines, it completely fails to
capture the effect of chirping.

The eight-parametepseudoperspectivenodel [9] and an
eight-parameter “relative-projective” model both do, in fact,
capture both the converging lines and the chirping of a
projective coordinate transformation. The pseudoperspective
model, for example, may be thought of as first, removal of two
of the quadratic termsqy(s,» = q,,2 = 0), which results in a
ten parameter model (tlechirp of [10]) and then constraining
the four remaining quadratic parameters to have two degrees
of freedom. These constraints force the “chirping effect”
(captured byq,,» and q,-,2) and the “converging effect”
(captured byy,’ ., andq,.,) to work together in the “right”
way to match, as closely as possible, the effect of a projective
coordinate transformation. By setting, = q,,2 = q,/4y, the
chirping in thezx-direction is forced to correspond with the
converging of parallel lines in the-direction (and likewise
for the y-direction).

Of course, the desired “exact” eight parameters come from
the projective model, but they have been perceived as being
notoriously difficult to estimate. The parameters for this model
have been solved by Tsai and Huang [11], but their solution
assumed that features had been identified in the two frames,
along with their correspondences. The main contribution of
this paper is a simple featureless means of automatically
solving for these eight parameters.

Other researchers have looked at projective estimation in the
context of obtaining 3-D models. Faugeras and Lustman [12],
Shashua and Navab [13], and Sawhney [14] have considered
the problem of estimating the projective parameters while
computing the motion of a rigid planar patch, as part of a larger
problem of finding 3-D motion and structure using parallax
relative to an arbitrary plane in the scene. Kursaial. [15]
have also suggested registering frames of video by computing
the flow along theepipolar lines, for which there is also an
) ) initial step of calculating the gross camera movement assuming

domain coordinate value no parallax. However, these methods have relied on feature
AV/\/\/\/\/\/\A/\/\/\/\A/\/\/\/ ” X correspondences, and were aimed at 3-D scene modeling.

Our focus is not on recovering the 3-D scene model, but on

(d) aligning two-dimensional (2-D) images of 3-D scenes. Feature

Fig. 2. The “projective chirping” phenomenon. (a) Real-world objecEOrrespondences greatly simplify the problem; however, they
that exhibits periodicity generates a projection (image) with “chirpalso have many problems. The focus of this paper is simple

ing"—"“periodicity-in-perspective.” (b) Center raster of image. (c) Best-fi ; ; i At ;
projective chirp of formsin {2x[(er + b),/(cr+ 1)]}. (d) Graphical depiction featureless .approaches t.o esumat!ng the projective coordinate
of exemplar 1-D projective coordinate transformationsof (2721) into a transformation between image pairs.

“projective chirp” function,sin (2wa2) = sin {27[(221 — 2)/(21 + 1)]}.

The range coordinate as a function of the domain coordinate forms a

rectangular hyperbola with asymptotes shifted to center atvirgshing f - ; ;
pointz; = —1/¢ = —1 and “exploding point,”zs = a/¢ = 2, and with B. Camera Motion: Common Assumptions and Terminology

‘chirpiness”c’ = ¢*/(be — a) = —1/4. Two assumptions are typical in this area of research. The
first assumption is that the scene is constant—changes of scene
exactly in the 8-parameter projective group; therefore, wamntent and lighting are small between frames. The second
know that “eight is enough.” Hence, it seems reasonable assumption is that of an ideal pinhole camera—implying
have a preference for approximate models with exactly eigimlimited depth of field with everything in focus (infinite
parameters. resolution) and implying that straight lines map to straight
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TABLE I
THE Two “NoO PARALLAX" CASES FOR A STATIC SCENE
Scene assumptions Camera assumptions
Case 1: arbitrary 3-D free to zoom, rotate, pan, and tilt, fixed center of projection
Case 2: planar free to zoom, rotate, pan, and tilt, free to translate
Non-chirping models Chirping models

(RELATIVE- (PSEUDO-
(ORIGINAL) (AFFINE) (BILINEAR) (PROJECTIVE) PROJECTIVE) PERSPECTIVE) (BIQUADRATIC)

Fig. 3. Pictorial effects of the six coordinate transformations of Table |, arranged left to right by number of parameters. Note that transkion leav
the original house figure unchanged, except in its location. Most importantly, only the four rightmost coordinate transformations affect the periodicity of
the window spacing (inducing the desired “chirping” which corresponds to what we see in the real world). Of these four, pnbjettizve coordinate
transformation preserves straight lines. The eight-parameter projective coordinate transformation “exactly” describes the possible inagéeramti’
meaning under the idealized zero-parallax conditions).

lines! Consequently, the camera has three degrees of freedom1) Projective Group in One-Dimensional (1-D) Coordi-
in 2-D space and eight degrees of freedom in 3-D spacwtes: A group is a set upon which there is defined an
translation X, Y, Z), zoom (scale in each of the imageassociative law of compositiortlpsure associativity, which
coordinatest andy), and rotation (rotation about the opticalcontains at least one elemeritentity) who's composition
axis, pan, and tilt. These two assumptions are also madewiith another element leaves it unchanged, and for which every
this paper. element of the set has anverse

In this paper, an “uncalibrated camera” refers to one in A group of operators together with setof operands form
which the principal poirft is not necessarily at the centera so-calledgroup operatior®
(origin) of the image and the scale is not necessarily isotrbpic. In this paper, coordinate transformations are the operators
We assume that the zoom is continually adjustable by tkgroup), and images are the operands (set). When the coordi-
camera user, and that we do not know the zoom setting, raate transformations form a group, then two such coordinate
whether it changed between recording frames of the imafgansformationsp; andp2, acting in succession, on an image
sequence. We also assume that each element in the canfei@, p; acting on the image by doing a coordinate trans-
sensor array returns a quantity that is linearly proportional formation, followed by a further coordinate transformation
the quantity of light receiveti.With these assumptions, thecorresponding tgp,, acting on that result) can be replaced
exact camera motion that can be recovered is summarizedina single coordinate transformation. That single coordinate

Table 1. transformation is given by thaw of compositionn the group.
Theorbit of a particular element of the set, under the group
C. Video Orbits operation [19] is the new set formed by applying to it, all

Tsai and Huang [11] pointed out that the elements of trPé)ss'ble operators from the group.

projectivegroup give the true camera motions with respect to In this paper, the orbit is a collection of pictures formed from

a planar surface. They explored the group structure associale picture through applying all possible projective coordinate

with images of a 3-D rigid planar patch, as well as the assogiggsformg.ttl?nsf tt?] tha_t tp|cture. we tr_efer Ito this set as the
atedlie algebrg although they assume that the correspondencvé €0 orbit ot the picture in question. Image sequences
gperated by zero-parallax camera motion on a static scene

problem has been solved. The solution presented in this pa N . . .
8nta|n images that all lie in the same video orbit.

(which does not require prior solution of correspondence) al e X ) _—
For simplicity, we review the theory first for the projective

relies on projective group theory. We briefly review the basics dinate t ¢ ton i di o b f
of this theory, before presenting the new solution in the ne%?.or inate transtormation in one dimens Mmember o
this group of coordinate transformations:= (ax +b)/(cz +

section. ; . .
d), Vad # bc (where the images are functions of one vari-
1when using low-cost wide-angle lenses, there is usually some bargghle, z) is denoted byp, 4 .. 4, and has inverse_q 5 . _q.

distortion which we correct using the method of [16]. Th e : .
o o . . ) e law of composition is given b o =
2The principal point is where the optical axis intersects the film. P 9 Ye, f,9:h © Pa,b,c,d

3Isotropic means that magnification in theandy directions is the same.
Our assumption facilitates aligning frames taken from different cameras. SAlso known as agroup actionor G-set

4This condition can be enforced over a wide range of light intensity levels, 8In this 2-D world, the “camera” consists of a center of projection (pinhole
by using the Wyckoff principle [17], [18]. “lens”) and a line (1-D sensor array or 1-D “film”).
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Dactef, be+df, ag+ch, bg+an- IN almost all practical engineeringdemonstrate that it also performs better in practice than the
applications,d # 0, so we will divide through byd, and other proposed models.
denote the coordinate transformation= (az+0b)/(cx+1) by
' = pa,b,c ©x. Wheng # 0 ande = 0, the projective group
becomes the affine group of coordinate transformations, and
whena = 1 ande¢ = 0, it becomes the group of translations.
Of the coordinate transformations presented in the previous'o lay the framework for our new results, we will re-
section, only the projective, affine, and translation operatioMi€W existing methods of parameter estimation for coordinate
form groups. transformations. This framework will apply to both existing
The equivalent two cases of Table Il for this hypotheticanethods as well as our new methods. The purpose of this
“flatland” world of 2-D objects with 1-D pictures correspond td€view is to bring together a variety of methods that appear
the following. In the first case, a camera is at a fixed locatiofitite different, but which actually can be described in a more
and free to zoom and pan. In the second case, a camera is #eiied framework, which we present here.
to translate, zoom, and pan, but the imaged object must belhe framework we give breaks existing methods into two
flat (i.e., lie on a straight line in the plane). The resulting twéategories: feature-based, and featureless. Of the featureless

(1-D) frames taken by the camera are related by the coordingtethods, we consider two subcategories: i) methods based

I1l. FRAMEWORK: MOTION PARAMETER
ESTIMATION AND OPTICAL FLOW

transformation frome; to z», given by [20] as on minimizing MSE (generalized correlation, direct nonlin-
ear optimization) and ii) methods based on spatiotemporal
Ty = 25 tan {amtan <ﬂ> _ 9} Yy # o derivatives and optical flow. Note that variations such as
#1 multiscalehave been omitted from these categories; multiscale
_ax + b VL #o @ analysis can be applied to any of them. The new algorithms we
cry 1’ ! ! develop in this paper (with final form given in Section 1V) are
wherea = zo/z1, b = —z tan(6), ¢ = tan(6)/z, and feaFure.Iess, and based on (multiscale if desired) spatiotemporal
01 = z tan(n/2 + 0) = —1/c, is the location of the derivatives.

singularity in the domain. We should mention taathe degree  SOMe of the descriptions of methods below inll be pre-
of perspective, has been given the interpretation of a chirp-rated for hypothetical 1-D images taken of 2-D “scenes” or
[20]. “objects.” This simplification yields a clearer comparison of

The coordinate transformations of (1) form a group Opepje estimation methods. The new theory and applications will
ation. This result, and the proof of this group’s isomorphist€ Presented subsequently for 2-D images taken of 3-D scenes

to the group corresponding to nonsingular projections of a fi2f OPiects.
object are given in [21].

2) Projective Group in 2-D CoordinatesThe theory for A. Feature-Based Methods
the projective, affine, and translation groups also holds for eature-based methods [22], [23] assume that point cor-
the familiar 2-D images taken of the 3-D world. The “videGespondences in both images are available. In the projective
orbit” of a given 2-D frame is defined to be the set of alfase, given at least three correspondences between point pairs
images that can be produced by applying operators from tipe the two 1-D images, we will find the elemenp =
2-D projective group to the given image. Hence, we restalg j } ¢ P that maps the second image into the first. Let
the coordinate transformation problem: Given a set of images . = 1, 2, 3. ... be the points in one image, and leg
that lie in the same orbit of the group, we wish to find fope the corresponding points in the other image. Then=
each image pair, that operator in the group that takes ONEr+b)/(cxi+1). Rearranging yieldazy, +b—zx2)c = 2},
image to the other image. so thata, b, and ¢ can be found by solving: > 3 linear

If two frames, Say,fl and f2, are in the same Orbit, thenequations in three unknownsl as follows:
there is an group operatiop such that the mean-squared
1" =[] )

error (MSE) betweerf; and f; = p o f5 is zero. In practice, [z, 1 —zfai]la b ¢
however, we find which element of the group takes one image
“nearest” the other, for there will be a certain amount afsing least squares if there are more than three correspondence
parallax, noise, interpolation error, edge effects, changespaints. The extension from 1-D “images” to 2-D images is
lighting, depth of focus, etc. Fig. 4 illustrates the opergtor conceptually identical; for the affine and projective models,
acting on framef,, to move it nearest to framg . (This figure the minimum number of correspondence points needed in 2-D
does not, however, reveal the precise shape of the orbit, whishthree and four, respectively.
occupies an eight-dimensional space.) A major difficulty with feature-based methods is finding the
Summarizing, the eight-parameter projective group capturestures. Good features are often hand-selected, or computed,
the exact coordinate transformation between pictures takegossibly with some degree of human intervention [24]. A
under the two cases of Table Il. The primary assumptiosecond problem with features is their sensitivity to noise
in these cases are that of no parallax, and of a static scesad occlusion. Even if reliable features exist between frames
Because the eight-parameter projective model is “exact,”(#.g., line markings on a playing field in a football video,
is theoretically the right model to use for estimating theee Section V-B), these features may be subject to signal
coordinate transformation. Examples presented in this papeise and occlusion (e.g., running football players blocking
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is a family of “projective chirplets” [26f,the objective func-
tion (3) being the cross-chirplet transform. A computationally
efficient algorithm for the cross-wavelet transform has recently
been presented [29]. (See [30] for a good review on wavelet-
f based estimation of affine coordinate transformations.)
Adaptive variants of the chirplet transforms have been
previously reported in the literature [31]. However, there
A A are still many problems with the adaptive chirplet approach;
(a) (b) thus, for the remainder of this paper, we consider featureless
Fig. 4. Video orbits. (a) The orbit of frame 1 is the set of all images that cdW€thods based on spatiotemporal derivatives.

be produced by acting on frame 1 with any element of the operator group.

Assuming that frames 1 and 2 are from the same scene, frame 2 will be clgse = | Methods B d S io-T | Derivati
to one of the possible projective coordinate transformations of frame 1. - eatureless Methods Based on Spatio-Temporal Derivatives

other words, frame 2 “lies near the orbit of” frame 1. (b) By bringing frame 1) Optical Flow (“Translation F|OW")' When the change

2 along its orbit, we can determine how closely the two orbits come togethfer . . s

at frame 1. rom one image to another is small, optical flow [32] may be
used. In one dimension, the traditional optical flow formulation

o ) ) assumes each point in frame ¢ is a translated version of
a feature). The emphasis in the rest of this paper will be @, corresponding point in frame+ At, and thatAz and

robust featureless methods. At are chosen in the ratidz/At = uy, the translational
flow velocity of the point in question. The image brightness
B. Featureless Methods Based on Generalized E(z, t) is described by

Cross-Correlation
The purpose of this section is for completeness: We will B(z,t) = B(z + Az, t+ Af), V(2 8) (4)

consider first what is perhaps the most obvious approagiiere . is the translational flow velocity of the point in
(generalized cross-correlation in 8-D parameter space) in Orgg case of pure translation, whesg is constant across the
to motn_/ate a_d_lfferent approach_ provided m_Sectlon I_II-C,_ t_hSntire image. More generally, though, a pair of 1-D images are
motivation arising from ease of implementation and simplicity,|5eq by a quantityy(z) at each point in one of the images.
of computauon._ . Expanding the right hand side of (4) in a Taylor series,
Cross-correlation of two frames is a featureless method 9f§ canceling zeroth-order terms gives the well-known optical
recovering translation model parameters. Affine and projectiyg,,, equationu; E, + E, + h.o.t. = 0, whereE, and E, are
parameters can also be recovered using generalized formg;af spatial and temporal derivatives, respectively, Andt.

cross-correfation. denotes higher order terms. Typically, the higher order terms

Gener_alized.cross-corlrelation i; t?aged on an inner-prodleﬁ:é neglected, giving the expression for the optical flow at
formulation which establishes a similarity metric between twg, -, point in one of the two images

functions, sayg andh, whereh =~ p o g is an approximately

coordinate-transformed version @f but the parameters of the urb, + By = 0. (5)
coordinate transformatiorp are unknowr!. We can find, by o _ _ .
exhaustive search (applying all possible operatptsto &), 2) Weighing the Difference Between “Affine Fit” and

the “best”p as the one that maximizes the inner product “Affine Flow” A comparison between two similar ap-
proaches is presented, in the familiar and obvious realm of

/Oo () ploh(x) de ©) linear regression versus direct affine estimation, highlighting
—0 /Oo p—t o h(z) dx the obvious differences between the two approaches. This
o difference, in weighting, motivates new weighting changes,

which will later simplify implementations pertaining to the

where we have normalized the energy of each coordina}ge-w methods

transformedh before making the comparison. Equivalently, Given the optical flow between two images.and h, we

di : h : Suish to find the coordinate transformation to apply /tato
SciTe |star210e metrlf:, such as MSE, given jb_‘?oo[g(a:).— . register it withg. We now describe two approaches based on
p~ o A(x)]*dx. Solving (3) has an advantage over finding,e affine mode?: i) finding the optical flow at every point,
MSE when one image is not only a coordinate-transformeghy then fitting this flow with an affine model (“affine fit’),
version of the other, but is also an amplitude-scaled versiQg jj) rewriting the optical flow equation in terms of an affine
as generally happens when there is an automatic gain contmt translation) motion model (“affine flow”).
or an automatic iris in the camera. Wang and Adelson have proposed fitting an affine model to

In one dimension, the orbit of an image under the affingg gptical flow field [33] between two 2-D images. We briefly
group operation is a family ofvavelets while the orbit of an

image under the projective group of coordinate transformationg Symplectomorphisms of the time-frequency plane [27], [28] have been
applied to signal analysis, giving rise to the so-called g-chirplet [26], which
7In the presence of additive white Gaussian noise, this method, adiifers from the projective chirplet discussed here.
known as “matched filtering,” leads to a maximum likelihood estimate of °The 1-D affine model is a simple yet sufficiently interesting (non-Abelian)
the parameters [25]. example selected to illustrate differences in weighting.
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examine their approach with 1-D images; the reduction the rather obvious difference in weighting between fit and flow
dimensions simplifies analysis and comparison to affine flodoes not appear to have been pointed out previously in the
Denote coordinates in the original imagg,by x, and in the literature. The fact that the two approaches provide similar
new image/, by z’. Suppose that is a dilated and translatedresults, yet have drastically different weightings, suggests that
version of g, so 2’ = ax + b for every corresponding pair we can exploit the choice of weighting. In particular, we will
(z’, z). Equivalently, the affine model of velocity [normalizingobserve in Section II-C3 that we can select a weighting that
At = 1], wy, = 2’ —z, is given byu,,, = (a—1)x+b. We can makes the implementation easier.
expect a discrepancy between the flow velocity, and the  Another approach to the affine fit involves computation of
model velocity u,,, due to either errors in the flow calculationthe optical flow field using the multiscale iterative method
or to errors in the affine model assumption, so we apply lineaf Lucas and Kanade, anithen fitting to the affine model.
regression to get the best least-squares fit by minimizing An analogous variant of the affine flow method involves
9 multiscale iteration as well, but in this case the iteration and
€pir = Z (i — 1p)? = Z <um + E) . (6) Mmultiscale hierarchy are incorporated directly into the affine
B estimator [34]. With the addition of multiscale analysis, the

The constants andb that minimizee ;; over the entire patch .f't and *flow” methods differ in additional respects beyond

are found by differentiating (6), and setting the derivatives yst the Welght.mg' Our.mtumon and experience indicates that
) . A . e direct multiscale affine flow performs better than the affine

zero. This results in what we call the affine fit equations .. . . .

fit to the multiscale flow. Multiscale optical flow makes the

x

ZxEt assumption that blocks of the image are moving with pure

doat > x . translational motion, and then, paradoxically, the affine fit
z x {a - 1} _ | B 7) refutes this pure-translation assumption. However, fit provides
b o Z E, ) some utility over flow when it is desired to segment the image

1
zx:a:, zﬂ; into regions undergoing different motions [36], or to gain
E, robustness by rejecting portions of the image not obeying the

. : . . assumed model.
Alternatively, the affine coordinate transformation may be 3) “Projective Fit" and “Projective Flow—New Tech-

directly incorporated into the brightness change constraint (ﬁqueS' Analogous to the affine fit and affine flow of the

Bergen_et al. [34] ha\{e _pm‘?ose_d this method,_ Whi_Ch we WiIIprevious section, we now propose the two new methods:
call affine flow, to distinguish it from the “affine fit” model .

£ W d Adel L how h fine fl gprojective fit" and “projective flow.” For the 1-D affine
of vang an elson ( )'. e't us show how attin€ Tlow anf,,ginate transformation, the graph of the range coordinate
affine fit are related. Substituting,, = (az + b)

. i d —  directly as a function of the domain coordinate is a straight line;
into (5) in place ofuy and summing the squared error for the projective coordinate transformation, the graph of the
€ flow = Z (um Ey + E)? (8) range coordinate as a function of the domain coordinate is a
— rectangular hyperbola [Fig. 2(d)]. The affine fit case used linear

regression; however, in the projective case we luggerbolic

over the whole image, differentiating, and equating the res'r‘étgression Consider the flow velocity given by (5) and the
to zero, gives a linear solution for bothandb, as follows: model velocity

> #?E% ) aE? > zE.E,
and minimize the sum of the squared difference, as was done

a—1| _
S wE2 Y B2 [ b } | Y EE
’ ’ ’ in (6), to

To see how this result compares to the affine fit, we rewrite

(6)

, ax +b
m=T —x= - 11
) U T o-r= 1 T (11)

ar+b E, 2
= - — 1. 12

As discussed earlier, the calculation can be simplified by
and observe, comparing (8) and (10) that affine flow jydicious alteration of the_ weighting, in particular, _multiplying
equivalent to a weighted least-squares fit, where the weightifgCch term of the summation (12) byz+1), and solving, gives

is given byE?2. Thus, the affine flow method tends to put more

emphasis on areas of the image that are spatially varying thanlz (/)(a;)(/)T(x)] [a, b, C]T - Z <$ _ &>d)(a:) (13)
does the affine fit method. Of course, one is free to separately | = - By

choose the weighting for each method in such a way that .

affine fit and affine flow methods both give the same resufhere theregressoris ¢ = [z, 1, 2E;/E, — z?]".

Both our intuition and our practical experience tends to favor FOr Projective flow, we substitute,, = (az+b)/(cz+1)—x
the affine flow weighting, but, more generally, perhaps w8t (8). Again, weighting by(cz + 1) gives

should ask, what is the best weighting? Lucas and Kanade

[35], among others, have considered weighting issues, thoudt — Z [azE, +bE, +c(zE, — 2’ E,) + E; —zE,]* (14)

U/rnEac + Et 2
Efit = Z <T> (10)

x
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(the subscripty denotes weighting has taken place) resulting Our task is not to deal with the 2-D translational flow, but

in a linear system of equations for the parameters with the 2-D projected flow, estimating the eight parameters
in the coordinate transformation
(Z ¢w¢5) [a, b, ] = Z (xEy — Et)dw  (15) , e Alz, y]* +b Ax+b
xX=171= = . (20)
_ Y T, yT+1  cITx+1
where ¢, = [zE., E,, zE; — 2*E,]*. Again, to show

he desired eight scalar parameters are denotedp by
A, b;c 1], A e R*”? b e R*!, andc € R**.
Analogous to (10), we have, in the 2-D case

the difference in the weighting between projective flow an
projective fit, we can rewrite (15)

(Z E£¢¢T)[a7 bv C]T = Z Ez(wa - Et)d) (16) Eflow = Z (uaEx + Et)Q
2
where ¢ is that defined in (13). B Ax+b TE B o1
4) The Unweighted Projectivity Estimatotf we do not - cITx+1 X x L (21)

wish to apply thead hoc weighting scheme, we may still ) ) )
estimate the parameters of projectivity in a simple mannéf/here the sum can be weighted,as it was in the 1-D case, as

still based on solving a linear system of equations. To do thisew _ Z {[Ax+b—(cTx+1)x]TEx+(cTx+1)E )2 (22)
we write the Taylor series of;,,
Differentiating with respect to the free parametésb, and

U +2 = b+(a—be)z+(be—a)ex® +(a—be)a®+--- (17) ¢, and setting the result to zero gives a linear solution, we get

and use the first three terms, obtaining enough degrees of (Z </></>T)[a11, a1z, by, az1, Az, by, c1, co]”
freedom to account for the three parameters being estimated. T

Letting e = 3 (=h.0.)% = S {[b + (a — be — 1) + (be — =2 (<"Es - E)¢

a)ex®lEy+ B}, qz = (be—a)e, i = a—be—1,andqo = b, where ¢ = [E.(z,y, 1), E,(z, y, 1), 2E; — 22E, —
and differentiating with respect to each of the three parametetsy, yE, — wyE, — y*E,).

of q, setting the derivatives equal to zero, and verifying with
the second derivatives, gives the following linear system 93‘
equations for “unweighted projective flow”: '

(23)

“Unweighted Projective Flow”
As with the 1-D images, we make similar assumptions in

S atE2 > 2PE2 ) 2?E? 0 expanding (20) in its own Taylor series, analogous to (17).
Z$3E§ Z$2E£ Zng @ If we take t_he Taylc_)r series up tq seco_nd—ordq terms, we
5 o ) ) o obtain the biquadratic model mentioned in Section II-A. As
Zx L, Zanz ZEaz mentioned in Section II-A, by appropriately constraining the
ZxQExEt 12 parameters of the biquadratic model, we obtain a variety of
__ Z“UE E (18) eight-parameter approximate models. In our algorithms for es-
x4/t . . « . ” . .
timating the “exact unweighted” projective group parameters,
ZEwEt we use one of these approximate models in an intermediate

tept!

: . . o . S
In Section IV, we will extend this derivation to 2-D images. The Taylor series for the bilinear case gives

Um +T = Qz’ zylY + (qgr;’ac + 1)-T + qz'ylY + qz’
Um + Y =Qyey?y + @yaz +(qyy + Dy + gy (24)

IV. MULTISCALE IMPLEMENTATIONS IN TWO DIMENSIONS

In the previous section, two new techniques, projective-
fit and projective-flow, were proposed. Now we describcorporating these into the flow criteria yields a simple set of
these algorithms for 2-D images. The brightness constargight linear equations in eight unknowns, as follows:

constraint equation for 2-D images [32] that gives the flow
velocity components in the andy directions, analogous to {Z [p(x, y)d)T(a:,y)]}q =Y Ed(z,y) (25
(5) is x,y @,y
u’E, + E, ~ 0. (19) Where¢” = [Ey(zy, z, y, 1), Ey(vy, z, y, 1)].
For the relative-projective modet; is given by
As is well known, the optical flow field in two dimensions o7 = [Eulz, v, 1), By(z, v, 1), Ey(z, )] (26)

is underconstrainetf. The model ofpure translationat every . o

point has two parameters, but there is only one (19) to soiad for the pseudoperspective modglis given by
thus it is common practl_ce to compute the optlcal_ flow over o7 = [Ey(z, y, 1), E,(x, y, 1),

some neighborhood, which must be at least two pixels, but is 25 B B 2 27
generally taken over a small block 33, 5 x 5, or sometimes (@° By + 2yBy, 2yBe +y By )] 27)
larger (e.g., the entire image, as in this paper). 11yse of an approximate model that does not capture chirping or preserve

straight lines can still lead to the true projective parameters as long as the
100ptical flow in one dimension did not suffer from this problem. model captures at least eight degrees of freedom.
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In order to see how well the model describes the coordinaé;e q
transformation between two images, sgyand h, one might - estq —»|q_to_p > D
warp'? h to ¢, using the estimated motion model, and ther @ -

compute some quantity that indicates how different the resam-
pled version ofh is from g. The MSE between the reference
image and the warped image might serve as a good measure
of similarity. However' since we are. really mtereSted_m hO\““-Iig. 5. Method of computation of eight parametgrdetween two images
the exact modeldescribes the coordinate transformation, Wgom the same pyramid levey, andi. The approximate model parameters
assess the goodness of fit by first relating the parameters ofalferelated to the exact model parameierin a feedback system.
approximate model to the exact model, and then find the MSE
between the reference image and the comparison image aftafye remind the reader that the four corners aoé feature
applying the coordinate transformation of the exact model. & respondences as used in the feature-based methods of
method of finding the parameters of the exact model, givefyction 111-A, but rather are used so that the two featureless
the ap‘)‘prommat_e model, |§ presente_d in Sectlo_n IV-Al. models (approximate and exact) can be related to one another.
1) “Four-Point Method” for Relating Approximate Model ¢ s important to realize the full benefit of finding the
to Exact Model: Any of the approximations above, after beingyy ¢t parameters. While the “approximate model” is sufficient
related to the exact projective model, tend to behave well in thg: sma|l deviations from the identity, it is not adequate to
neighborhood of the identitA = I, b = 0, ¢ = 0. In one- gegcribe large changes in perspective. However, if we use it
dimension, we explicitly expanded the model Taylor serig§ (rack small changes incrementally, and each time relate
about the identity; here, although we do not exphmtly do thigpese small changes to the exact model (20), then we can
we shall assume that the terms of the Taylor series of tgc mylate these small changes usingléhve of composition
model correspond to those taken about the identity. In the 1:8ged by the group structure. This is an especially favorable
case, we solve the three linear equations in three unknowisiripution of the group framework. For example, with a
to estimate the parameters of the approximate motion modglieq sequence, we can accommodate very large accumulated
and then relate the terms in this Taylor series to the ex@g{anges in perspective in this manner. The problems with
parametersg, b, and ¢ (which involves solving another setc,mylative error can be eliminated, for the most part, by
of three equations in three unknowns, the second set be{hsiantly propagating forward the true values, computing the
nonlinear, although very easy to solve). _ residual using the approximate model, and each time relating
In the extension to two dimensions, the estimate step s to the exact model to obtain a goodness-of-fit estimate.
straightforward, but the relate step is more difficult, because 2) Overview of Algorithm for Unweighted Projective Flow:
we now have eight nonlinear equations in eight unknowngeoy is an outline of the algorithm; details of each step are
relating the terms in the Taylor series of the approximate modg| subsequent sections.
to the desired exact model parameters. Instead of solvingrrgmes from an image sequence are compared pairwise to
these equations directly, we now propose the following simplgst whether or not they lie in the same orbit:

procedure for relating the parameters of the approximate modeb A Gaussian pyramid of three or four levels is constructed
to those of the exact model, which we call the “four-point for each frame in the sequence

method”. The parametens are estimated at the top of the pyramid,

1) Select four ordered pairs (e.g., the four corners of the

bounding box containing the region under analysis, or
the four corners of the image if the whole image is under
analysis). Here suppose, for simplicity, that these points3)
are the corners of the ur{gquare:s = [s1, s2, s3, s4] =

[(0, 0)7, (0, )T, (1,0)%, (1, 1)7].

between the two lowest-resolution images of a frame
pair, g and A, using the iterative method depicted in
Fig. 5.

The estimategb is applied to the next higher-resolution
(finer) image in the pyramidp o g, to make the two
images at that level of the pyramid nearly congruent

2) Apply the coordinate transformation using the Taylor before estimating the between them.
series for the approximate model [e.g., (24)] to these 4) The process continues down the pyramid until the
points: r = w,(s). highest-resolution image in the pyramid is reached.

3) Finally, the correspondences betweesnds are treated

just like features. This results in four easy to solve linear
equations

[a:’k} :[a:k, Yk, 1, 0, 0, 0, —zp2%, —UrZy
yi 07 07 07 Lky Yk 17 _‘/Eky;g7 _ykyi

B. Multiscale Iterative Implementation

The Taylor-series formulations we have used implicitly
assume smoothness; the performance is improved if the images
are blurred before estimation. To accomplish this, we do not

Ntz Garys Doty Gy Gyrys Dy, oy ¢y (28) downsample critically after lowpass filtering in the pyramid.

wherel < k < 4. This results in the exact eight

However, after estimation, we use the original (unblurred)

images when applying the final coordinate transformation.
The strategy we present differs from the multiscale iterative

12The termwarp is appropriate here, since the approximate model does n@mne) sFrategy Of Bergeret al., 'n one llmportant respect
preserve straight lines. beyond simply an increase from six to eight parameters. The

parametersp.
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difference is the fact that we have two motion models, the “exork also deals with noncommutative groups, in particular, in
act motion model” (20) and the “approximate motion modelthe incorporation of scale in the Heisenberg grétip.
namely the Taylor series approximation to the motion model Estimating the parameters of a commutative group is com-
itself. The approximate motion model is used to repetitivelputationally efficient, e.g., through the use of Fourier cross-
converge to the exact motion model, using the algebeaioof spectra [41]. We exploit this commutativity for estimating the
compositionafforded by the exact projective group model. Iparameters of the noncommutative 2-D projective group by
this strategy, the exact parameters are determined at each Ifival estimating the parameters that commute. For example,
of the pyramid, and passed to the next level. The steps involwed improve performance if we first estimate the two pa-
are summarized schematically in Fig. 5, and described bela@meters of translation, correct for the translation, and then
1) Initialize: Sethy = h and setpg o to the identity Proceed to estimate the eight projective parameters. We can
operator. also simultaneously estimate both the isotropic-zoom and
2) Repeatf =1 --- K): the rotation about the optical axis by applying a log-polar
a) Estimatethe eight or more terms of the approximat&o‘?rd'nate transformation followgd by a translgtlon estlmatpr.
This process may also be achieved by a direct application
of the Fourier—-Mellin transform [42]. Similarly, if the only
difference betweeg and# is a camera pan, then the pan may
be estimated through a coordinate transformation to cylindrical
Eoordinates, followed by a translation estimator.
In practice, we run through the following “commutative ini-
¢) ResampleApply thelaw of compositiorto accumu-  tjalization” before estimating the parameters of the projective
late the effect of thQ)k'S. Denote these CompOSitegroup of coordinate transformations.

paramiter_f_ht_)y)oﬁ :Idp’Flo po:k—l'l T?hen sethy, :ﬁ . 1) Assume that is merely a translated version gf
Po,% © '.( 'S Should have nearly e same etiec a) Estimate this translation using the method of Girod
as applyingpy to hx—1, except that it will avoid [41]
additional interpolation and antialiasing errors you . - . .

. . b) Shift h by the amount indicated by this estimate.
would get by resampling an already resampled image c)) Computeythe MSE between the Sf):ifl‘ledindg and

8)). - o
(D - compare to the original MSE before shifting.
Repeat until either the error betweép and g falls below d) If an improvement has resulted, use the shifted
a threshold, or until some maximum number of iterations is from now on '

achieved. After the first iteration, the parameigsgend to be , : ,
near the identity since they account for the residual betweenz) Assume thaﬁ_L is merely a rotated and isotropically
the “perspective-corrected” imadgg and the “true” imagey. zoomed version of;.
We find that only two or three iterations are usually needed @) Estimate the two parameters of this coordinate trans-
for frames from nearly the same orbit. formation.

A rectangular image assumes the shape of an arbitrary b) Apply these parameters ta
quadrilateral when it undergoes a projective coordinate trans-  €) If an improvement has resulted, use the coordinate-
formation. In coding the algorithm, we pad the undefined transformed (rotated and scalédfrom now on.
portions with the quantity NaN, a standard IEEE arithmetic 3) Assume thak is merely an “x-chirped” (panned) version
value, so that any calculations involving these values auto- of g, and, similarly, “x-dechirp”h. If an improvement

model between two image framesandhy_;. This
results in approximate model parametegs

b) Relate the approximate parametetg, to the ex-
act parameters using the “four point method.” Th
resulting exact parameters apg.

matically inherit NaN without slowing down the computations. results, use the “x-dechirpedi from now on. Repeat
The algorithm (in Matlab on an HP 735) takes about 6 s per  for y (tilt.)
repetition for a pair of 320x 240 images. Compensating for one step may cause a change in choice

of an earlier step. Thus, it might seem desirable to run
through the commutative estimates iteratively. However, our
) ) ] ) experience on lots of real video indicates that a single pass
There is a fundamental uncertainty [37] involved in thggyally suffices, and in particular, will catch frequent situations
simultaneous estimation of parameters of a noncommutatiygere there is a pure zoom, a pure pan, a pure ftilt, etc.,
group, akin to the Heisenberg uncertainty relation of quappth saving the rest of the algorithm computational effort, as
tum mechanics. In contrast, for a commutativgroup (in el as accounting for simple coordinate transformations such
the absence of noise), we can obtain the exact coording\hen one image is an upside-down version of the other.
transformation. _ o (Any of these pure cases corresponds to a single parameter
Segman [38] considered the problem of estimating thgoyp, which is commutative.) Without the “commutative
parameters of a commutative group of coordinate transformapialization”step, these parameter estimation algorithms are
tions, in particular, the parameters of the affine group [39]. Hb"fone to get caught in local optima, and thus never converge
to the global optimum.

C. Exploiting Commutativity for Parameter Estimation

13A commutative (or Abelian) group is one in which elements of the group #While the Heisenberg group deals with translation and frequency-
commute, for example, translation along thexis commutes with translation translation (modulation), some of the concepts could be carried over to
along they-axis, so the 2-D translation group is commutative. other more relevant group structures.
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Fig. 6. Frames from original image orbit, transmitted from the wearable computer system (“Weaf€afh¥g.entire sequence, consisting of 20 color
frames, is available [46] together with examples of applying the proposed algorithm to this data.

YT

Fig. 7. Frames from original image video orbit after a coordinate transformation to move them along the orbit to the reference frame (c). The
coordinate-transformed images are alike except for the region over which they are defined. Note that the regions are not parallelograms; thus, method
based on the affine model fail.
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V. PERFORMANCE AND APPLICATIONS 1) Cumulative Error In practice, the estimated coordinate

Fig. 6 shows some frames from a typical image sequence. transformations between pairs of images register them

Fig. 7 shows the same frames brought into the coordinate
system of frame (c), that is, the middle frame was chosen
as thereference frame

Given that we have established a means of estimating
the projective coordinate transformation between any pair of
images, there are two basic methods we use for finding the
coordinate transformations between all pairs of a longer image )
sequence. Because of the group structure of the projective
coordinate transformations, it suffices to arbitrarily select one
frame and find the coordinate transformation between every
other frame and this frame. The two basic methods are
described below.

1) Differential Parameter EstimationThe coordinate

only approximately, due to violations of the assumptions
(e.g., objects moving in the scene, center of projection
not fixed, camera swings around to bright window and
automatic iris closes, etc.). When a large number of
estimated parameters are composed, cumulative error
sets in.

Finite Spatial Extent of Image Pland heoretically, the
images extend infinitely in all directions, but, in practice,
images are cropped to a rectangular bounding box.
Therefore, a given pair of images (especially if they are
far from adjacent in the orbit) may not overlap at all;
hence, it is not possible to estimate the parameters of
the coordinate transformation using those two frames.

The frames of Fig. 6 were brought into register using the dif-
rential parameter estimation, and “cemented” together seam-
lessly on a common canvas. “Cementing” involves piecing the

transformation between each image and the refJFgmes togethgr, _for examplt;, _bylme_glag 1 m?ra-n, or (;rlmmed
ence image is estmated drecty. Without loss oS O° PERIRS O 2 E R B e e visibe
generality, select frame zerok) as the referencef rence.) Fi éshows?his result (projective/projective), with
frame and denote these coordinate transformations &8 ) F9. resutt {proj pro) o
o a comparison to two nonprojective cases. The first comparison
Po, 1, Po,2; Po, 3, . , is to affine/affine where affine parameters were estimated
Theoretically, these two methods are equivalent: : . .
_ _ (also multiscale) and used for the coordinate transformation.
differential method  The second comparison, affine/projective, uses the six affine
(29) parameters found by estimating the eight projective parameters
and ignoring the two chirp parametees(which capture the
essence of tilt and pan). These six parameferd are more
accurate than those obtained using the affine estimation, as the
I5Note that WearCam [47] is mounted sideways so that it can “paint” o@\ﬁine EStimation tries to fit its Shea‘f paran_]ae'?s to the camera
the image canvas with a wider “brush,” when sweeping across for a panorajpan and tilt. In other words, the affine estimation does worse

transformations between successive pairs of imag?s
i e
Po,1, P1,2, P2,3, - -, estimated.

2) Cumulative Parameter Estimatiomhe coordinate

Eo=po10op120 - 0pa_1 nkn
Ey =po, nEn cumulative method

However, in practice, the two methods differ for the fol
lowing two reasons.
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projeciive/propctive affine/projective

Fig. 8. Frames of Fig. 7 “cemented” together on single image “canvas,” with comparison of affine and projective models. Note the good registiagon and n
appearance of the projective/projective image despite the noise in the amateur television receiver, wind-blown trees, and the fact that tfichetzdinera

was not actually about its center of projection. Note also that the affine model fails to properly estimate the motion parameters (affine/affier)if anel ev
“exact” projective model is used &stimatethe affine parameters, there is no affine coordinate transformation that will properly register all of the image frames.

2PN P P IIRENENE
L T . £
b s T ef 2 ) 2 4 '

Fig. 9. Hewlett-Packard Claire image sequence, which violates the assumptions of the model (the camera location was not fixed, and the scene was
not completely static). Images appear in TV raster-scan order.

than the six affine parameters within the projective estimation.Consider the image sequence shown in Fig. 9. The com-
The affine coordinate transform is finally applied, giving theosite arising from bringing these 16 image frames into
image shown. Note that the coordinate-transformed framestlire coordinates of the first frame exhibited somewhat poor

the affine case are parallelograms. registration due to cumulative error; we use this sequence to
illustrate the importance of subcomposites.
A. Subcomposites and the Support Matrix The “differential support matrix?® for which the entry

Qm, n tells us how much frame overlaps with framen when

The following two situations have so far been dealt with. : .
expressed in the coordinates of framwe for the sequence of

1) Camera movement is small, so that any pair of frames. 9 appears in Fig. 10.

chosen from the video orl_3|t have a substantlgl amount o Examining the support matrix, and the mean-squared error
overlap when expressed in a common coordinate syst€fdyimates, the local maxima of the support matrix correspond
(Use differential parameter eSt'm_at'On') to the local minima of the mean-squared error estimates, sug-
2) Camera movement is monotonic, so that any eMMOf3sting the subcomposités {7, 8, 9, 10, 6, 5}, {1, 2, 3, 4}
that.accumulat_e along the registereq sequence are HHH {15, 14, 13, 12}. It is imp7ort7an7t t07 nz)te tha:t v:/hén the
particularly noticeable. (Use cumulative parameter eslizor js jow, if the support is also low, the error estimate might
mation.) not be valid. For example, if the two images overlap in only

In the example of Fig. 8, any cumulative errors are n@he pixel, then even if the error estimate is zero (e.g., perhaps
particularly noticeable because the camera motion is progres-
sive, that is, it does not reverse direction or loop around!>The “differential support matrix” is not necessarily symmetric, while the
on itseif. Now let us look at an example where the camef&TEIRClE Be Tt o o the coordinates of frame
motion loops bgck on .|tself and small errors, due to \{lolatloﬁreference frgme) is symmetric. P
of the assumptions (flxed camera location and static Scene)5Researchers at Sarnoff also consider the use of subcomposites, and refer

accumulate. to them agtiles [43], [44].
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(a) (b) () (d)

Fig. 10. Support matrix and mean-squared registration error defined by image sequence in Fig. 9 and the estimated coordinate transformations between
images. (a) Entries in table. The diagonals are one since every frame is fully supported in itself. The entries just above (or below) the diaberahgivet t

of pairwise support. For example, frames 0 and 1 share high mutual support (0.91). Frames 7-9 also share high mutual support (again 0.91)n@imgorrespo
density plot(more dense ink indicates higher values). (c) Mean-square registration error. (d) Corresponding density plot.

frames 0-4

-+ — —
frames $-11

compleied FIC

Fig. 11. Subcomposites are each made from subsets of the images that share high quantities of mutual support and low estimates of mutual error, and
then combined to form the final composite.

(b)

Fig. 12. Image composite made from 16 video frames taken from a television broadcast sporting event. Note the “Edgertonian” appearance, as each playe
traces out a stroboscopic-like path. The proposed method works robustly, despite the movement of players on the field. (a) Images are expressed in the
coordinates of the first frame. (b) Images are expressed in a new useful coordinate system corresponding to none of the original frames. Note the slight
distortion, due to the fact that football fields are not perfectly flat, but, rather, are raised slightly in the center.

that pixel has a value of 255 in both images), the alignmeBt Flat Subject Matter and Alternate Coordinates

is not likely good.
: I .. Many sports such as football or soccer are played on a
The selected subcomposites appear in Fig. 11. Estimatin arly flat field that forms a rigid planar patch over which the

the coordinate transformation between these subcomposi es,I . b ducted. Aft h of the f q
and putting them together into a common frame of referen@8@YS!S may be conducted. After each of the frames undergoes

results in a composite (Fig. 11) about 1200 pixels acro§§,e appropriate coordinate transformation to bring it into the
where the image is sharp despite the fact that the personSfHne coordinate system as the reference frame, the sequence
the picture was moving slightly and the camera operator wégn be played back showing only the players (and the image
also moving (violating the assumptions of both static scef@undaries) moving. Markings on the field (such as numbers
and fixed center of projection). and lines) remain at a fixed location, which makes subsequent
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analysis and summary of the video content easier. This dainiterativenature of the proposed methods be emphasized,
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