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Figure 1: Example video sequences of reformatted VIPER and newly created Cityscapes-VPS annotations for video panoptic segmentation.

Abstract

Panoptic segmentation has become a new standard of

visual recognition task by unifying previous semantic seg-

mentation and instance segmentation tasks in concert. In

this paper, we propose and explore a new video extension of

this task, called video panoptic segmentation. The task re-

quires generating consistent panoptic segmentation as well

as an association of instance ids across video frames. To

invigorate research on this new task, we present two types

of video panoptic datasets. The first is a re-organization

of the synthetic VIPER dataset into the video panoptic for-

mat to exploit its large-scale pixel annotations. The sec-

ond is a temporal extension on the Cityscapes val. set,

by providing new video panoptic annotations (Cityscapes-

VPS). Moreover, we propose a novel video panoptic seg-

mentation network (VPSNet) which jointly predicts object

classes, bounding boxes, masks, instance id tracking, and

semantic segmentation in video frames. To provide appro-

priate metrics for this task, we propose a video panoptic

quality (VPQ) metric and evaluate our method and several

other baselines. Experimental results demonstrate the ef-

fectiveness of the presented two datasets. We achieve state-

of-the-art results in image PQ on Cityscapes and also in

VPQ on Cityscapes-VPS and VIPER datasets. The datasets

and code will be released.

† This work was done during an internship at Adobe Research.

1. Introduction

As an effort to unify existing recognition tasks, object

classification, detection, and segmentation and to leverage

the possible complementariness of these tasks into a single

complete task, Kirillov et al. [16] proposed a holistic seg-

mentation of all foreground instances and background re-

gions in a scene and named the task panoptic segmentation.

Since then, a large number of works [7, 8, 10, 15, 17–20, 24,

31, 37, 40] have proposed learning-based approaches to this

new benchmark task, confirming its importance to the field.

In this paper, we extend the panoptic segmentation in the

image domain to the video domain. Different from image

panoptic segmentation, the new problem aims at a simulta-

neous prediction of object classes, bounding boxes, masks,

instance id associations, and semantic segmentation, while

assigning unique answers to each pixel in a video. Figure 1

illustrates sample video sequences of ground truth annota-

tions for this problem. Naturally, we name the new task

video panoptic segmentation (VPS). The new task opens

up possibilities for applications that require a holistic and

global view of video segmentation such as autonomous

driving, augmented reality, and video editing. In particu-

lar, temporally dense panoptic segmentation of a video can

work as intermediate-level representations for even higher-

level video understanding tasks such as temporal reasoning

or action-actor recognition which anticipates the behaviors
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of objects and humans. To best of our knowledge, this is the

first work to address video panoptic segmentation problem.

Thanks to the existence of panoptic segmentation bench-

marks such as COCO [23], Cityscapes [5], and Mapil-

lary [25], the panoptic image segmentation has success-

fully driven active participation of the community. How-

ever, the direction towards the video domain has not yet ex-

plored, probably due to the lack of appropriate datasets and

evaluation metrics. While video object/instance segmenta-

tion datasets are available these days, no dataset permits di-

rect training of video panoptic segmentation (VPS). This is

not surprising when considering its extremely high cost of

collecting such data. To improve the situation, we make

an important first step in the direction of panoptic video

segmentation, by presenting two types of datasets. First,

we adapt the synthetic VIPER [32] dataset into the video

panoptic format and create corresponding metadata. Sec-

ond, we collect a new video panoptic segmentation dataset,

named Cityscapes-VPS, that extends the public Cityscapes

to a video level by providing every five video frames with

pixel-level panoptic labels that are temporally associated

with respect to the public image-level annotations.

In addition, we propose a video panoptic segmentation

network (VPSNet) to provide a baseline method for this

new task. On top of UPSNet [37], which is a state-of-the-

art method for image panoptic segmentation, we design our

VPSNet to take an additional frame as the reference to cor-

relate time information at two levels: pixel-level fusion and

object-level tracking. To pick up the complementary feature

points in the reference frame, we propose a flow-based fea-

ture map alignment module along with an asymmetric atten-

tion block that computes similarities between the target and

reference features to fuse them into one-frame shape. More-

over, to associate object instances across time, we add an

object track head [38] which learns the correspondence be-

tween the instances in the target and reference frames based

on their RoI feature similarity. It establishes a baseline for

the VPS task and gives us insights into the main algorithmic

challenges it presents.

We adapt the standard image panoptic quality (PQ) mea-

sure to fit the video panoptic quality (VPQ) format. Specif-

ically, the metric is obtained from a span of several frames,

where the sequence of each panoptic segment within the

span is considered a single 3D tube prediction to produce an

IoU with the ground truth tube. The longer the time-span,

the more challenging it is to obtain IoU over a threshold

and to be counted as a true-positive for the final VPQ score.

We evaluate our proposed method with several other naive

baselines using the VPQ metric.

Experimental results demonstrate the effectiveness of the

two presented datasets. Our VPSNet achieves state-of-the-

art image PQ on Cityscapes and VIPER. More importantly,

in terms of VPQ, it outperforms the strong baseline [38]

and other simple candidate methods, while still presenting

algorithmic challenges of the VPS task.

We summarize the contribution of this paper as follows.

1. To our best knowledge, it is the first time that video

panoptic segmentation (VPS) is formally defined and

explored.

2. We present the first VPS datasets by re-formatting the

virtual VIPER dataset and creating new video panop-

tic labels based on the Cityscapes benchmark. Both

datasets are complementary in constructing an accu-

rate VPS model.

3. We propose a novel VPSNet which achieves state-of-

the-art image panoptic quality (PQ) on Cityscapes and

VIPER, and compare it with several baselines on our

new datasets.

4. We propose a video panoptic quality (VPQ) metric to

measure the spatial-temporal consistency of predicted

and ground truth panoptic segmentation masks. The

effectiveness of our proposed datasets and methods is

demonstrated by the VPQ evaluation.

2. Related Work

Panoptic Segmentation: The joint task of thing and stuff

segmentation is reinvented by Kirillov et al. [16] in the form

of combining the semantic segmentation and instance seg-

mentation tasks and is named panoptic segmentation. Since

then, much research [7, 8, 10, 15, 17–20, 24, 31, 37, 40] has

been actively gathered to propose new approaches to this

unified task, which is now a de facto standard of visual

recognition task. A naive baseline introduced in [16] is

to train the two sub-tasks separately then fuse the results

by heuristic rules. More advanced approaches to this prob-

lem present a unified, end-to-end model. Li et al. [20] pro-

pose AUNet which leverages mask level attention to trans-

fer knowledge from the instance head to the semantic head.

Li et al. [18] suggest a new objective function to enforce

consistency between things and stuff pixels when merging

them into a single segmentation result. Liu et al. [24] design

a spatial ranking module to address the occlusion between

the predicted instances. Xiong et al. [37] introduce a non-

parametric panoptic head to predict instance id and resolve

the conflicts between things and stuff segmentation.

Video Semantic Segmentation: As a direct extension of

semantic segmentation to videos, all pixels in a video are

predicted as different semantic classes. However, the re-

search in this field has not gained much attention and not

currently popular compared to its counterpart in the im-

age domain. One possible reason is the lack of available

training data with temporally dense annotation, as research

progress depends greatly on the existence of datasets. De-

spite the absence of a dataset for Video Semantic Segmen-
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tation (VSS), several approaches have been proposed in the

literature [14, 21, 26, 33, 43]. Temporal information is uti-

lized via optical flow to improve the accuracy or efficiency

of the scene labeling performance. Different from our set-

ting, VSS does not require either discriminating object in-

stances or explicit tracking of the objects across frames. Our

new Cityscapes-VPS is a super-set of a VSS dataset and thus

is able to benefit this independent field as well.

Video Instance Segmentation: Even more recently,

Yang et al. [38] proposed a Video Instance Segmentation

(VIS) problem to extend image instance segmentation to

videos. It combines several existing tasks: video object seg-

mentation [1, 3, 4, 27, 30, 35, 36, 39] and video object detec-

tion [9,42,43], and aims at simultaneous detection, segmen-

tation, and tracking of instances in videos. They propose

Mask-Track R-CNN which has a tracking branch added to

Mask R-CNN [11] to jointly learn these multiple tasks. The

object association is trained based on object feature similar-

ity learning, and the learned features are used together with

other cues such as spatial correlation and detection confi-

dence to track the objects at inference. The first difference

to our setting is that VIS only deals with foreground thing

objects but not background stuff regions. Moreover, the

problem permits overlaps between predicted object masks

and even multiple predictions for a single instance, while

our task requires algorithms to assign a single label to all

things and stuff pixels. Last but not least, their dataset con-

tains a small number of objects (∼ 5) per frame, whereas

we deal with a much larger number of objects (> 20 on

average), which makes our task even more challenging.

3. Problem Definition

Task Format: For a video sequence with T frames, we set

a temporal window that spans k consecutive frames. Given

a k-span snippet It:t+k = {It, It+1, ..., It+k}, we define

a tube prediction as a track of its frame-level segments as

û(ci,zi) = {ŝt, ..., ŝt+k}(ci,zi), for semantic class c and in-

stance id z of the tube. Note that instance id zi for a thing

class can be larger than 0, e.g., car-0, car-1, ... , whereas it

is always 0 for a stuff class, e.g., sky. All pixels in the video

are grouped by such tuple prediction, and they will result in

a set of stuff and things video tubes that are mutually ex-

clusive to each other. The ground truth tube is defined sim-

ilarly, with a slight adjustment concerning the annotation

frequency as described below. The goal of video panoptic

segmentation is to accurately localize all the semantic and

instance boundaries throughout a video and assign correct

labels to those segmented video tubes.

Evaluation Metric: By the construction of the VPS prob-

lem, no overlaps are possible among video tubes. Thus,

AP metric used in object detection or segmentation cannot

be used to evaluate the VPS task. Instead, we borrow the

Figure 2: Tube matching and video panoptic quality (VPQ)

metric. An IoU is obtained by matching predicted and ground

truth tubes. A frame-level false positive segment penalizes the

whole predicted tube to get a low IoU. Each VPQk is computed

by sliding the window through a video, and averaged by the num-

ber of frames. k indicate the temporal window size. VPQk is then

averaged over different k values, to get a final VPQ score.

panoptic quality (PQ) metric in image panoptic segmenta-

tion with modifications adapted to our new task.

Given a snippet It:t+k, we denote a set of the ground

truth and predicted tubes as U t:t+k and Û t:t+k. A set of

True Positive matches is defined as TP = {(u, û) ∈ U × Û
: IoU (u, û) > 0.5 }. False Positives (FP) and False Nega-

tives (FN) are defined accordingly. When the annotation is

given every λ frames, the matching only considers the an-

notated frame indices t : t+ k : λ (start : end : stride) in

a snippet, e.g., when k = 10 and λ = 5, frame t, t+5 and t+10

are considered. We slide the k-span window with a stride λ

throughout a video, starting from frame 0 to the end, i.e., t

goes by 0 : T − k : λ (We assume frame 0 is annotated).

Each stride constructs a new snippet, where we compute the

IoUs, TP, FP and FN as above.

At a dataset level, the snippet-level IoU, |TP|, |FP| and

|FN| values are collected across all predicted videos. Then,

the dataset-level VPQ metric is computed per each class c,

and averaged across all classes as,

V PQk =
1

Nclasses

∑

c

∑
(u,û)∈TPc

IoU(u, û)

|TPc|+
1
2 |FPc|+

1
2 |FNc|

, (1)

where 1
2 |FP | + 1

2 |FN | in the denominator is to penalize

unmatched tubes, as suggested in the image PQ metric.

By definition, k = 0 will make the metric equivalent to

the image PQ metric, and k = T -1 will construct a set of

whole video-long tubes. Any cross-frame inconsistency of

semantic or instance label prediction will result in a low

tube IoU, and may drop the match out of the TP set, as il-

lustrated in Figure 2. Therefore, the larger window size

we have, the more challenging it is to get a high VPQ

score. In practice, we include different window sizes k ∈
{0, 5, 10, 15} to provide a more comprehensive evaluation.

The final VPQ is computed by averaging over K = 4 as,
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V PQ = 1
K

∑
k V PQk.

Having different k values enables a smooth transition

from the existing image PQ evaluation to videos, encour-

aging the image-to-video transition of further technical de-

velopments for this pioneering field to leap forward.

Hyper-parameter: We set k as a user-defined parameter.

Having such a fixed temporal window size regularizes the

difficulty of IoU matching across video samples of different

lengths. On the other hand, the difficulty of matching whole

T -long tubes, extremely varies with the video length, e.g.,

when T = 10 and T = 1000.

We empirically observed that, in our Cityscapes-VPS

dataset (λ = 5), many object associations are disconnected

by significant scene changes when k > 15. Given a new

annotation frequency (1/λ), the k shall be reset, which will

accordingly set a level of difficulty for the dataset.

4. Dataset Collection

Existing Image-level Benchmarks: There are several pub-

lic datasets which have dense panoptic segmentation an-

notations: Cityscapes [5], ADE20k [41], Mapillary [25],

and COCO [23]. However, none of these datasets matches

the requirement for our video panoptic segmentation task.

Thus, we need to prepare a suitable dataset for the develop-

ment and evaluation of video panoptic segmentation meth-

ods. We pursue several directions when collecting VPS

datasets. First, both the quality and quantity of the anno-

tation should be high, of which the former is a common

problem in some of the existing polygon-based segmenta-

tion datasets and the latter is limited by the extreme cost of

panoptic annotations. More importantly, it should be easily

adaptable to and extensible from the existing image-based

panoptic datasets, so that it can promote the research com-

munity to seamlessly transfer the knowledge between the

image and video domains. With the above directions in

mind, we present two VPS datasets by 1) reformatting the

VIPER dataset and 2) creating new video panoptic annota-

tions based on the Cityscapes dataset.

Revisiting VIPER dataset: To maximize both the quality

and quantity of the available annotations for the VPS task,

we take advantage of the synthetic VIPER dataset [32] ex-

tracted from the GTA-V game engine. It includes pixel-wise

annotations of semantic and instance segmentations for 10

thing and 13 stuff classes on 254K frames of ego-centric

driving scenes at 1080× 1920 resolution. As shown in Fig-

ure 1-(top row), we tailor their annotations into our VPS

format and create metadata in a popular COCO style, so that

it can be seamlessly plugged into recent recognition models

such as Mask-RCNN [11].

Cityscapes-VPS: Instead of building our dataset from

scratch in isolation, we build our benchmark on top of the

public Cityscapes dataset [5], which is the most popular

YT-VIS City re-VIPER City-VPS

Videos 2540 3475 124 500

Frames 108k 3475 184k 3000

Things 40 8 10 8

Stuff x 11 13 11

Instances 4297 60 K 31 K 10 K

Masks 115 K 60 K 2.8 M 56 K

Temporal X x X X

Dense (Panoptic) x X X X

Table 1: High-level statistics of our reformatted VIPER and new

Cityscapes-VPS with previous video instance / semantic segmen-

tation datasets. YT-VIS and City stands for YouTube-VIS and

Cityscapes respectively. We count only trainval data with labels.

dataset for panoptic segmentation, together with COCO.

It consists of image-level annotated frames of ego-centric

driving scenarios, where each labeled frame is the 20th

frame in a 30 frame video snippet. There are 2965, 500,

and 1525 such sampled images paired with dense panoptic

annotations for 8 thing and 11 stuff classes for training, val-

idation, and testing, respectively. Specifically, we select the

validation set to build our own video-level extended dataset.

We sample every five frames from each of the 500 videos,

and then ask human annotators to carefully label each pixel

with all 19 classes, and assign temporally consistent in-

stance ids to the thing objects, as shown in Figure 1-(bottom

row). Our resulting dataset provides dense panoptic anno-

tations for 3000 frames at 1024 × 2048 resolution with in-

stance id association across frames within each video. The

new benchmark is referred to as Cityscapes-VPS.

Our new dataset Cityscapes-VPS is not only the first

benchmark for video panoptic segmentation but also a use-

ful benchmark for other vision tasks such as video instance

segmentation and video semantic segmentation; the lat-

ter has also been suffering lack of well-established video

benchmark. We show some high-level statistics of the re-

formatted VIPER and new Cityscapes-VPS, and related

datasets in Table. 1.

5. Proposed Method

Unlike static images, videos have rich temporal and mo-

tion context, and a VPS model should faithfully use this

information to capture the panoptic movement of all things

and stuff classes in a video. We propose a video panop-

tic segmentation network (VPSNet). Given an input video

sequence, VPSNet performs object detection, mask pre-

diction, tracking, and semantic segmentation all simultane-

ously. This section describes our network architecture and

its implementation in detail.

5.1. Network Design

Overview: By the nature of the VPS task, temporal incon-

sistency in any of the class label and instance id will re-

sult in low video quality of these panoptic segmentation se-
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Figure 3: Overall architecture of our VPSNet.

quences. More strict requirements are therefore in place for

the thing classes. With this consideration in mind, we de-

sign our VPSNet to use video context in two levels: pixel

level and object level. The first is to leverage neighboring

frame features for the downstream multi-task branches and

the second is to explicitly model cross-frame instance as-

sociation specifically for tracking. Each module for feature

fusion and object tracking is not totally new in isolation,

but they both are jointly used for the first time for the task

of video panoptic segmentation. We call each of them Fuse

and Track module throughout the paper. The overall model

architecture is shown in Figure 3.

Baseline: We build upon an image-level panoptic segmen-

tation network. While not being sensitive to any specific

design of a baseline network, we choose the state-of-the-art

method, UPSNet [37], which adopts Mask R-CNN [11] and

deformable convolutions [6] for instance and semantic seg-

mentation branches respectively with a panoptic head that

combines these two branches. One of the several modifi-

cations is that we do not use unknown class predictions for

the simplicity of the algorithm. Also, we have an extra non-

parametric neck layer, which is inspired by Pang et al. [28].

They use balanced semantic features to enhance the pyra-

midal neck representations. Different from theirs, our main

design purpose is to have a representative feature map itself

at a single resolution level. For this reason, our extra neck

consists of only the gather and redistribute steps with no ad-

ditional parameters. First, at the gather step, the input fea-

ture pyramid network (FPN) [22] features {p2, p3, p4, p5}
are resized to the highest resolution i.e., the same size as p2,

and element-wise summed over multiple levels, to produce

f . Then, this representative feature is redistributed to the

original features by a residual addition.

Fuse at Pixel Level: The main idea is to leverage video

context to improve the per-frame feature by temporal fea-

ture fusion. At each time step t, the feature extractor

is given a target frame It and one (or more) reference

frame(s) It−τ , then produces FPN features {p2, p3, p4, p5}t
and {p2, p3, p4, p5}t−τ . We sample the reference frame

with τ ∈ {t− 5 : t+ 5}

We propose an align-and-attend pipeline at in between

the gather and redistribute steps. Given the gathered fea-

tures ft and ft−τ , our align module learns flow warping to

align the reference feature ft−τ onto the target feature ft.

The align module receives an initial optical flow φinit
t→t−τ

computed by FlowNet2 [13], and refine it for more accurate

deep feature flow. After concatenating these aligned fea-

tures, our attend module learns spatial-temporal attention

to reweight the features and fuse the time dimension into

one to get gt, which is then redistributed to {p2, p3, p4, p5}t
which are then fed forward to the downstream instance and

semantic branches.

Track at Object Level: Here, the goal is to track all ob-

ject instances in It with respect to those in It−τ . Along

with the multi-task heads for panoptic segmentation, we

add the MaskTrack head [38] which is used in a state-

of-the-art video instance segmentation method. It learns

a m × n feature affinity matrix A between generated n

RoI proposals {r1, r2...rn}t from It and m RoI features

{r1, r2...rm}t−τ from It−τ . For each pair {ri,t, rj,t−τ}, a

Siamese fully-connected layer embeds them into single vec-

tors {ei,t, ej,t−τ}, then the cosine similarity is measured by

Aij = cosine(ei,t, ej,t−τ ).

MaskTrack is designed for still images and only utilizes

appearance features, and does not use any video features

during training. To handle this problem, we couple the

tracking branch with the temporal fusion module. Specifi-

cally, every RoI features {r1, r2...rn}t are first enhanced by

the above temporal fused feature, gt, from multiple frames,

and thus become more discriminative before being fed into
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the tracking branch. Therefore, from a standpoint of the in-

stance tracking, our VPSNet synchronizes it on both pixel-

level and object-level. The pixel-level module aligns local

feature of the instance to transfer it between the reference

and target frames, and the object-level module focuses more

on distinguishing the target instance from other reference

objects by the similarity function on the temporally aug-

mented RoI features. During training, the tracking head in

our VPSNet is the same as [38]. During the inference stage,

we add an additional cue from the panoptic head: the IoU

of things logits. The IoU of instance logits can be viewed as

a deformation factor or spatial correlation between frames

and our experiments show that it improves the video panop-

tic quality for things classes.

5.2. Implementation Details

We follow most of the settings and hyper-parameters of

Mask R-CNN and other panoptic segmentation models such

as UPSNet [37]. Hereafter, we only explain those which are

different. Throughout the experiments, we use ResNet-50

FPN [12, 22] as the feature extractor.

Training: We implement our models in PyTorch [29] with

MMDetection [2] toolbox. We use the distributed training

framework with 8 GPUs. Each mini-batch has 1 image per

GPU. We use the ground truth box of a reference frame to

train the track head. We crop random 800 × 1600 pixels

out of 1024 × 2048 Cityscapes and 1080 × 1920 VIPER

images after randomly scaling each frame by 0.8 to 1.25 ×.

Due to the high resolution of images, we downsample the

logits for semantic head and panoptic head to 200×400 pix-

els. Besides the RPN losses, our VPSNet contains 6 task-

related loss functions in total: bbox head (classification and

bounding-box), mask head, semantic head, panoptic head,

and track head. We set all loss weights to 1.0 to make their

scales to be roughly on the same order of magnitude.

We set the learning rate and weight decay as 0.005 and

0.0001 for all datasets. For VIPER, we train for 12 epochs

and apply lr decay at 8 and 11 epochs. For both Cityscapes

and Cityscapes-VPS, we train for 144 epochs and apply lr

decay at 96 and 128 epochs. For the pretrained models, we

import COCO- or VIPER-pretrained Base model parame-

ters and initialize the remaining layers, e.g., Fuse (align-

and-attend) and Track modules, by Kaiming initialization.

Inference: Given a new testing video, our method pro-

cesses each frame sequentially in an online fashion. At

each frame, our VPSNet first generates a set of instance

hypotheses. As a mask pruning process, we perform the

class-agnostic non-maximum suppression with the box IoU

threshold as 0.5 to filter out some redundant boxes. Then

the remaining boxes are sorted by the predicted class prob-

abilities and kept if the probability is larger than 0.6. For the

first frame of a video sequence, we assign instance ids ac-

cording to the order of the probability. For all other frames,

Our feat. feat. obj. PQ PQTh PQSt

methods align attend match

Base 52.1 47.2 56.2

Align X 52.3 47.3 56.4

Attend X 50.7 45.8 54.8

Fuse X X 53.0 48.3 57.0

Track X 53.0 47.9 57.2

FuseTrack X X X 55.4 52.2 58.0

Table 2: Image panoptic segmentation results on VIPER.

Method Backbone PQ PQTh PQSt

AUNet [20] ResNet-101 59.0 54.8 62.1

PanopticFPN [15] ResNet-101 58.1 52.0 62.5

DeeperLab [40] Xception-71 56.5 - -

Seamless [31] ResNet-50 59.8 54.6 63.6

AdaptIS [34] ResNet-50 59.0 55.8 61.3

TASCNet [18] ResNet-50 55.9 50.6 59.8

UPSNet [37] ResNet-50 59.3 54.6 62.7

TASCNet+CO [18] ResNet-50 59.2 56.0 61.5

UPSNet+CO [37] ResNet-50 60.5 57.0 63.0

VPSNet-Base+CO ResNet-50 60.6 57.0 63.2

VPSNet-Fuse+CO ResNet-50 61.6 57.7 64.4

VPSNet-Fuse+VP ResNet-50 62.2 58.0 65.3

Table 3: Image panoptic segmentation results on Cityscapes.

‘+CO’ and ‘+VP’ indicate the model is pretrained on COCO and

VIPER, respectively.

the remaining boxes after pruning are matched to identified

instances from previous frames based on the learned affinity

A, and are assigned instance id accordingly. After process-

ing all frames, our method produces a sequence of panoptic

segmentation, each pixel of which contains a unique cate-

gory label and instance label throughout the sequence. For

both IPQ and VPQ evaluation, we test all available models

with single scale testing.

6. Experimental Results

In this section, we present the experimental results on the

two proposed video-level datasets, VIPER and Cityscapes-

VPS, as well as the conventional image-level Cityscapes

benchmark. In particular, we mainly investigate the results

in two aspects: image-level prediction and cross-frame as-

sociation, which will be reflected in the IPQ and VPQ, re-

spectively. We demonstrate the contributions of each of the

proposed pixel-level Fuse and object-level Track modules

in the performance of video panoptic segmentation. Here is

the information on the dataset splits used in experiments.

• VIPER: Based on its high quantity and quality of

the panoptic video annotation, we mainly experiment

with this benchmark. We follow the public train / val

split. For evaluation, we choose 10 validation videos

from day scenario, and use the first 60 frames of each

videos: total 600 images.

• Cityscapes: We use the public train / val split, and

evaluate our image-level model on the validation set.
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VPSNet variants Temporal window size
VPQ

on VIPER k = 1 k = 5 k = 10 k = 15

Base 52.1 / 47.2 / 56.2 29.4 / 0.8 / 53.2 29.3 / 0.6 / 53.2 29.0 / 0.5 / 52.8 34.9 / 12.3 / 54.1

Fuse 53.0 / 48.3 / 57.0 30.0 / 0.8 / 54.4 29.8 / 0.8 / 54.0 29.6 / 0.6 / 53.8 35.6 / 12.6 / 54.8

Track 53.0 / 47.9 / 57.2 47.1 / 39.3 / 53.6 42.7 / 30.0 / 53.2 40.4 / 25.4 / 52.8 45.8 / 35.7 / 54.2

FuseTrack Cls-Sort 55.4 / 52.2 / 58.0 30.5 / 0.8 / 55.2 30.1 / 0.6 / 54.6 29.8 / 0.5 / 54.3 36.5 / 13.5 / 55.5

FuseTrack IoU-Match 55.4 / 52.2 / 58.0 45.0 / 32.8 / 55.2 40.1 / 22.8 / 54.6 37.9 / 18.2 / 54.3 44.6 / 31.5 / 55.5

FuseTrack Disjoined 55.4 / 52.2 / 58.0 52.0 / 48.3 / 55.2 48.6 / 40.4 / 54.6 46.9 / 37.5 / 54.3 50.7 / 44.6 / 55.5

FuseTrack (VPSNet) 55.4 / 52.2 / 58.0 53.6 / 51.7 / 55.2 50.1 / 44.7 / 54.6 48.4 / 41.4 / 54.3 51.9 / 47.5 / 55.5

VPSNet variants Temporal window size
VPQ

on Cityscapes-VPS k = 1 k = 5 k = 10 k = 15

Track 61.6 / 54.9 / 66.5 54.3 / 39.9 / 64.9 50.7 / 34.6 / 62.4 47.8 / 30.7 / 60.4 53.6 / 40.0 / 63.6

FuseTrack (VPSNet) 62.7 / 56.9 / 66.8 56.9 / 44.5 / 65.9 53.3 / 40.4 / 62.7 51.4 / 36.9 / 61.9 56.1 / 44.7 / 64.3

Table 4: Video panoptic segmentation results on VIPER (top) and Cityscapes-VPS (bottom). All models are our VPSNet variants. Each

cell contains VPQ / VPQTh / VPQSt scores.

• Cityscapes-VPS: The created video panoptic anno-

tations are given with the 500 validation videos of

Cityscapes. We further split these videos into 400

training videos and 100 validation videos. Each video

consists of 30 consecutive frames, with every 5 frames

paired with the ground truth annotations. For each

video, all 30 frames are predicted, and only the 6

frames with ground truth are evaluated.

Image Panoptic Quality: One thing we can expect from

the VPS learning compared to its image-level counterpart

is whether it improves per-frame PQ by properly utilizing

spatial-temporal features. We evaluate our method with the

existing panoptic quality (PQ), recognition quality (RQ),

and segmentation quality (SQ). The results are presented

in Table 2 and Table 3.

First, we study the importance of the proposed Fuse and

Track modules to our image-level panoptic segmentation

performance on the VIPER dataset as shown in Table 2.

We find that both pixel-level and object-level modules have

complementary contributions, each improving the baseline

by +1% PQ. Without any of them, the PQ will drop by -

3.4%. The best PQ was achieved when these two modules

are used together.

We also experiment on the Cityscapes benchmark, to

provide a comparison with the state-of-the-art panoptic seg-

mentation methods. Our VPSNet with only the Fuse mod-

ule can be trained in this setting, since it only requires

a neighboring reference frame without any extra annota-

tions. In Table 3, we find that our VPSNet with Fuse mod-

ule outperforms the state-of-the-art baseline method [37] by

+1.0% PQ, which implies that it effectively exploits spatial-

temporal context to improve per-frame panoptic segmen-

tation. The pretraining on the VIPER dataset shows its

complementary effectiveness to either COCO or Cityscapes

dataset by boosting the score by +1.6% PQ from our base-

line, achieving 62.6% PQ.

Video Panoptic Quality: We evaluate the spatial-temporal

consistency between the predicted and ground truth panop-

tic video segmentation. The quantitative results are shown

in Table 4. Different from the image panoptic segmentation,

our new task requires extra consistency in the instance ids

across frames, which makes the problem much more chal-

lenging for things than stuff classes. Not surprisingly, the

mean video panoptic quality of things classes (VPQTh) is

generally lower than that of stuff classes (VPQSt).

Since there is no prior work directly applicable to our

new task, we present several baseline VPS methods to pro-

vide a reference level. Specifically, we enumerate over dif-

ferent methods by replacing only the tracking branch of our

VPSNet. The alternative tracking methods are object sort-

ing by classification logit values (Cls-Sort), and flow-guided

object matching by mask IoU (IoU-Match). First, Cls-Sort

relies on semantic consistency of the same object between

frames. However, it fails to track objects possibly because

there are a number of instances of the same class in a frame,

e.g., car, person, thus making the class logit information

not enough for differentiating these instances. On the other

hand, IoU-Match is a simple yet strong candidate method

for our task by leveraging spatial correlation to determine

the instance labels, improving the image-level baseline by

+9.7% VPQ.

Our model with Track module further improves this by

+1.2% VPQ, by using the learned RoI feature matching al-

gorithm together with the semantic consistency and spatial

correlation cues. Our full model with both Fuse and Track

modules achieves the best performance by a great improve-

ment of +6.1% VPQ over the variant with only-Track mod-

ule, and +17.0% over the image-level base model. To show

the contribution of the fused feature solely on the object

matching performance, we experiment with a VPSNet vari-

ant where the fused feature is fed to all task branches except

for the tracking branch (Disjoined). The result implies that

the Fuse and Track modules share information, and syn-

ergize each other to learn more discriminative features for
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Figure 4: Sample results of VPSNet on VIPER and Cityscapes-VPS. Each row has four sampled frames from a video sequence of

VIPER (top two rows) and Cityscapes-VPS (bottom two rows). The last row includes failure cases when the crowded objects are crossing

each other. Objects with the same predicted identity have the same color.

both segmentation and tracking. We observed the consis-

tent tendency with our Cityscapes-VPS dataset, where our

full VPSNet (FuseTrack) achieves +2.5% VPQ higher than

the Track variant. Figure 4 shows the qualitative results of

our VPSNet on VIPER and Cityscapes-VPS.

Discussion: We find several challenges still remaining for

our new task. First, even the state-of-the-art video instance

tracking algorithm [38] and our VPSNet suffer a consider-

able performance drop as the temporal length increases. In

the context of video, possible improvements are expected to

made on handling a large number of instances and resolving

overlaps between these objects, e.g., Figure 4-(4th row), by

better modeling the temporal information [27, 43]. Second,

our task is still challenging for stuff classes as well consid-

ering the fact that the window size of 15 frames represents

only 0.5 ∼ 1 second in a video. The mutual exclusive-

ness between things and stuff class pixels could be further

exploited to encourage both semantic segmentation and in-

stance segmentation to regularize each other.

Another important future direction is to improve the ef-

ficiency of an algorithm as in several video segmentation

approaches [21, 33] by sampling keyframes and propagate

information in between to produce temporally dense panop-

tic segmentation results.

7. Conclusion

We present a new task named video panoptic segmen-

tation with two types of associated datasets. The first is

to adapt the synthetic VIPER dataset into our VPS format,

which can provide maximal quantity and quality of panoptic

annotations. The second is to create a new video panoptic

segmentation benchmark, Cityscapes-VPS which extends

the popular image-level Cityscapes dataset. We also pro-

pose a new method, VPSNet, by combining the temporal

feature fusion module and object tracking branch with a

single-frame panoptic segmentation network. Last but not

least, we suggest a video panoptic quality measure for eval-

uation to provide early explorations towards this task. We

hope the new task and new algorithm will drive the research

directions to step forward towards video understanding in

the real-world.
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