
Video Pixel Networks

Nal Kalchbrenner 1 Aäron van den Oord 1 Karen Simonyan 1 Ivo Danihelka 1

Oriol Vinyals 1 Alex Graves 1 Koray Kavukcuoglu 1

Abstract

We propose a probabilistic video model, the

Video Pixel Network (VPN), that estimates the

discrete joint distribution of the raw pixel val-

ues in a video. The model and the neural ar-

chitecture reflect the time, space and color struc-

ture of video tensors and encode it as a four-

dimensional dependency chain. The VPN ap-

proaches the best possible performance on the

Moving MNIST benchmark, a leap over the pre-

vious state of the art, and the generated videos

show only minor deviations from the ground

truth. The VPN also produces detailed sam-

ples on the action-conditional Robotic Pushing

benchmark and generalizes to the motion of

novel objects.

1. Introduction

Video modelling has remained a challenging problem due

to the complexity and ambiguity inherent in video data.

Current approaches range from mean squared error mod-

els based on deep neural networks (Srivastava et al., 2015a;

Oh et al., 2015), to models that predict quantized image

patches (Ranzato et al., 2014), incorporate motion pri-

ors (Patraucean et al., 2015; Finn et al., 2016) or use adver-

sarial losses (Mathieu et al., 2015; Vondrick et al., 2016).

Despite the wealth of approaches, future frame predictions

that are free of systematic artifacts (e.g. blurring) have been

out of reach even on relatively simple benchmarks like

Moving MNIST (Srivastava et al., 2015a).

We propose the Video Pixel Network (VPN), a generative

video model based on deep neural networks, that reflects

the factorization of the joint distribution of the pixel val-

ues in a video. The model encodes the four-dimensional

structure of video tensors and captures dependencies in the

time dimension of the data, in the two space dimensions of

1Google DeepMind, London, UK. Correspondence to: Nal
Kalchbrenner <nalk@google.com>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

each frame and in the color channels of a pixel. This makes

it possible to model the stochastic transitions locally from

one pixel to the next and more globally from one frame to

the next without introducing independence assumptions in

the conditional factors. The factorization further ensures

that the model stays fully tractable; the likelihood that the

model assigns to a video can be computed exactly. The

model operates on pixels without preprocessing and pre-

dicts discrete multinomial distributions over raw pixel in-

tensities, allowing the model to estimate distributions of

any shape.

The architecture of the VPN consists of two parts: reso-

lution preserving CNN encoders and PixelCNN decoders

(van den Oord et al., 2016b). The CNN encoders preserve

at all layers the spatial resolution of the input frames in

order to maximize representational capacity. The outputs

of the encoders are combined over time with a convolu-

tional LSTM that also preserves the resolution (Hochreiter

& Schmidhuber, 1997; Shi et al., 2015). The PixelCNN

decoders use masked convolutions to efficiently capture

space and color dependencies and use a softmax layer to

model the multinomial distributions over raw pixel values.

The network uses dilated convolutions in the encoders to

achieve larger receptive fields and better capture global mo-

tion. The network also utilizes newly defined multiplicative

units and corresponding residual blocks.

We evaluate VPNs on two benchmarks. The first is the

Moving MNIST dataset (Srivastava et al., 2015a) where,

given 10 frames of two moving digits, the task is to pre-

dict the following 10 frames. In Sect. 5 we show that

the VPN achieves 87.6 nats/frame, a score that is near the

lower bound on the loss (calculated to be 86.3 nats/frame);

this constitutes a significant improvement over the pre-

vious best result of 179.8 nats/frame (Patraucean et al.,

2015). The second benchmark is the Robotic Pushing

dataset (Finn et al., 2016) where, given two natural video

frames showing a robotic arm pushing objects, the task is to

predict the following 18 frames. We show that the VPN not

only generalizes to new action sequences with objects seen

during training, but also to new action sequences involv-

ing novel objects not seen during training. Random sam-

ples from the VPN preserve remarkable detail throughout

the generated sequence. We also define a baseline model

Video Pixel Networks

R

G

B

FtF<t

x

F1F0 F2

F̂0 F̂3F̂1

F1F0 F2 F3

R

G

B

FtF<t

x

F1F0 F2

F̂0 F̂3F̂1

BaselineVideo Pixel Network

PixelCNN

Decoders

CNN

Decoders

Resolution Preserving

CNN Encoders

F̂2 F̂2

Figure 1. Dependency map (top) and neural network structure (bottom) for the VPN (left) and the baseline model (right). F̂t denotes

the estimated distribution over frame Ft, from which Ft is sampled. Dashed lines denote masked convolutional layers.

that lacks the space and color dependencies. Through eval-

uation we confirm that these dependencies are crucial for

avoiding systematic artifacts in generated videos.

2. Model

In this section we define the probabilistic model imple-

mented by Video Pixel Networks. Let a video x be a four-

dimensional tensor of pixel values xt,i,j,c, where the first

(temporal) dimension t ∈ {0, ..., T} corresponds to one of

the frames in the video, the next two (spatial) dimensions

i, j ∈ {0, ..., N} index the pixel at row i and column j in

frame t, and the last dimension c ∈ {R,G,B} denotes one

of the three RGB channels of the pixel. We let each xt,i,j,c

be a random variable that takes values from the RGB color

intensities of the pixel.

By applying the chain rule to factorize the video likeli-

hood p(x) as a product of conditional probabilities, we can

model it in a tractable manner and without introducing in-

dependence assumptions:

p(x) =

T∏

t=0

N∏

i=0

N∏

j=0

p(xt,i,j,B |x<,xt,i,j,R,xt,i,j,G)

× p(xt,i,j,G|x<,xt,i,j,R)p(xt,i,j,R|x<). (1)

Here x< = x(t,<i,<j,:)∪x(<t,:,:,:) comprises the RGB val-

ues of all pixels to the left and above the pixel at position

(i, j) in the current frame t, as well as the RGB values of

pixels from all the previous frames. Note that the factoriza-

tion itself does not impose a unique ordering on the set of

variables. We choose an ordering according to two criteria.

The first criterion is determined by the properties and uses

of the data; frames in the video are predicted according to

their temporal order. The second criterion favors orderings

that can be computed efficiently; pixels are predicted start-

ing from one corner of the frame (the top left corner) and

ending in the opposite corner of the frame (the bottom right

one) as this allows for the computation to be implemented

efficiently (van den Oord et al., 2016b). The order for the

prediction of the colors is chosen by convention as R, G

and B.

The VPN models directly the four dimensions of video ten-

sors. We use Ft to denote the t-th frame xt,:,:,: in the video

x. Figure 1 illustrates the fourfold dependency structure

for the green color channel value of the pixel x in frame Ft,

which depends on: (i) all pixels in all the previous frames

F<t; (ii) all three colors of the already generated pixels in

Ft; (iii) the already generated red color value of the pixel

x.

We follow the PixelRNN approach (van den Oord et al.,

2016b) in modelling each conditional factor as a discrete

multinomial distribution over 256 raw color values. This

allows for the predicted distributions to be arbitrarily mul-

timodal.

Video Pixel Networks

3×3 MU 3×3 MU
2c 2cc c c

1×1 CONV 1×1 CONVinput

identity

⊕

Figure 2. Structure of the residual multiplicative block (RMB) incorporating two multiplicative units (MUs).

2.1. Baseline Model

We compare the VPN model with a baseline model that

encodes the temporal dependencies in videos from previ-

ous frames to the next, but ignores the spatial dependencies

between the pixels within a frame and the dependencies be-

tween the color channels. In this case the joint distribution

is factorized by introducing independence assumptions:

p(x) ≈

T∏

t=0

N∏

i=0

N∏

j=0

p(xt,i,j,B |x<t,:,:,:)

× p(xt,i,j,G|x<t,:,:,:)p(xt,i,j,R|x<t,:,:,:). (2)

Figure 1 illustrates the conditioning structure in the base-

line model. The green channel value of pixel x only de-

pends on the values of pixels in previous frames. Various

models have been proposed that are similar to our baseline

model in that they capture the temporal dependencies only

(Ranzato et al., 2014; Srivastava et al., 2015a; Oh et al.,

2015)

2.2. Remarks on the Factorization

To illustrate the properties of the two factorizations, sup-

pose that a model needs to predict the value of a pixel x

and the value of the adjacent pixel y in a frame F , where

the transition to the frame F from the previous frames F<

is non-deterministic. For a simple example, suppose the

previous frames F< depict a robotic arm and in the cur-

rent frame F the robotic arm is about to move either left or

right. The baseline model estimates p(x|F<) and p(y|F<)
as distributions with two modes, one for the robot moving

left and one for the robot moving right. Sampling indepen-

dently from p(x|F<) and p(y|F<) can lead to two incon-

sistent pixel values coming from distinct modes, one pixel

value depicting the robot moving left and the other depict-

ing the robot moving right. The accumulation of these in-

consistencies for a few frames leads to known artifacts such

as blurring of video continuations. By contrast, in this ex-

ample, the VPN estimates p(x|F<) as the same bimodal

distribution, but then estimates p(y|x, F<) conditioned on

the selected value of x. The conditioned distribution is uni-

modal and, if the value of x is sampled to depict the robot

moving left, then the value of y is sampled accordingly to

also depict the robot moving left.

Generating a video tensor requires sampling T ·N2 ·3 vari-

ables, which for a second of video with resolution 64× 64
is in the order of 105 samples. This figure is in the order of

×

× ×

σ

tanh tanh

σ

σ

× MU(h,W)h
W4

W3

W2

W1

Figure 3. Structure of a multiplicative unit (MU). The squares

represent the three gates and the update. The circles represent

component-wise operations.

104 for generating a single image or for a second of audio

signal (van den Oord et al., 2016a), and it is in the order of

102 for language tasks such as machine translation (Kalch-

brenner & Blunsom, 2013).

3. Architecture

In this section we construct a network architecture ca-

pable of computing efficiently the factorized distribution

in Sect. 2. The architecture consists of two parts. The first

part models the temporal dimension of the data and consists

of Resolution Preserving CNN Encoders whose outputs are

given to a Convolutional LSTM. The second part models

the spatial and color dimensions of the video and consists

of PixelCNN architectures (van den Oord et al., 2016b;c)

that are conditioned on the outputs of the CNN Encoders.

3.1. Resolution Preserving CNN Encoders

Given a set of video frames F0, ..., FT , the VPN first en-

codes each of the first T frames F0, ..., FT−1 with a CNN

Encoder. These frames form the histories that condition the

generated frames. Each of the CNN Encoders is composed

of k (k = 8 in the experiments) residual blocks (Sect. 4)

and the spatial resolution of the input frames is preserved

throughout the layers in all the blocks. Preserving the res-

olution is crucial as it allows the model to condition each

pixel that needs to be generated without loss of representa-

tional capacity. The outputs of the T CNN Encoders, which

are computed in parallel during training, are given as input

to a Convolutional LSTM, which also preserves the resolu-

tion. This part of the VPN computes the temporal depen-

dencies of the video tensor and is represented in Fig. 1 by

the shaded blocks.

Video Pixel Networks

Model Test

(Shi et al., 2015) 367.2
(Srivastava et al., 2015a) 341.2
(Brabandere et al., 2016) 285.2
(Cricri et al., 2016) 187.7
(Patraucean et al., 2015) 179.8
Baseline model 110.1
VPN 87.6

Lower Bound 86.3

Table 1. Cross-entropy results in nats/frame on the Moving

MNIST dataset.

3.2. PixelCNN Decoders

The second part of the VPN architecture computes depen-

dencies along the space and color dimensions. The T out-

puts of the first part of the architecture provide represen-

tations for the contexts that condition the generation of a

portion of the T + 1 frames F0, ..., FT ; if one generates all

the T + 1 frames, then the first frame F0 receives no con-

text representation. These context representations are used

to condition decoder neural networks that are PixelCNNs.

PixelCNNs are composed of l resolution preserving resid-

ual blocks (l = 12 in the experiments), each in turn formed

of masked convolutional layers. Since we treat the pixel

values as discrete random variables, the final layer of the

PixelCNN decoders is a softmax layer over 256 intensity

values for each color channel in each pixel.

Figure 1 depicts the two parts of the architecture of the

VPN. The decoder that generates pixel x of frame Ft sees

the context representation for all the frames up to Ft−1

coming from the preceding CNN encoders. The decoder

also sees the pixel values above and left of the pixel x in

the current frame Ft that is itself given as input to the de-

coder.

3.3. Architecture of Baseline Model

We implement the baseline model by using the same CNN

encoders to build the context representations. In contrast

with PixelCNNs, the decoders in the baseline model are

CNNs that do not use masking on the weights; the frame

to be predicted thus cannot be given as input. As shown in

Fig. 1, the resulting neural network captures the temporal

dependencies, but ignores spatial and color channel depen-

dencies within the generated frames. Just like for VPNs,

we make the neural architecture of the baseline model res-

olution preserving in all the layers.

4. Network Building Blocks

In this section we describe two basic operations that are

used as the building blocks of the VPN. The first is the Mul-

Model Test

VPN (RMB, No Dilation) 89.2
VPN (Relu, No Dilation) 89.1
VPN (Relu, Dilation) 87.7
VPN (RMB, Dilation) 87.6

Lower Bound 86.3

Table 2. Cross-entropy results in nats/frame on the Moving

MNIST dataset.

tiplicative Unit (MU, Sect. 4.1) that contains multiplicative

interactions inspired by LSTM (Hochreiter & Schmidhu-

ber, 1997) gates. The second building block is the Residual

Multiplicative Block (RMB, Sect. 4.2) that is composed of

multiple layers of MUs.

4.1. Multiplicative Units

A multiplicative unit (Fig. 3) is constructed by incorporat-

ing LSTM-like gates into a convolutional layer. Given an

input h of size N×N×c, where c corresponds to the num-

ber of channels, we first pass it through four convolutional

layers to create an update u and three gates g1−3. The in-

put, update, and gates are then combined in the following

manner:

g1 = σ(W1 ∗ h)

g2 = σ(W2 ∗ h)

g3 = σ(W3 ∗ h) (3)

u = tanh(W4 ∗ h)

MU(h;W) = g1 ⊙ tanh(g2 ⊙ h+ g3 ⊙ u)

where σ is the sigmoid non-linearity and ⊙ is component-

wise multiplication. Biases are omitted for clarity. In our

experiments the convolutional weights W1−4 use a kernel

of size 3×3. Unlike LSTM networks, there is no distinction

between memory and hidden states. Also, unlike Highway

networks (Srivastava et al., 2015b) and Grid LSTM (Kalch-

brenner et al., 2016), there is no setting of the gates such

that MU(h;W) simply returns the input h; the input is al-

ways processed with a non-linearity.

4.2. Residual Multiplicative Blocks

To allow for easy gradient propagation through many lay-

ers of the network, we stack two MU layers in a residual

multiplicative block (Fig. 2) where the input has a residual

(additive skip) connection to the output (He et al., 2016).

For computational efficiency, the number of channels is

halved in MU layers inside the block. Namely, given an

input layer h of size N ×N × 2c with 2c channels, we first

apply a 1×1 convolutional layer that reduces the number of

Video Pixel Networks

channels to c; no activation function is used for this layer,

and it is followed by two successive MU layers each with

a convolutional kernel of size 3 × 3. We then project the

feature map back to 2c channels using another 1 × 1 con-

volutional layer. Finally, the input h is added to the overall

output forming a residual connection. Such a layer struc-

ture is similar to the bottleneck residual unit of (He et al.,

2016). Formally, the Residual Multiplicative Block (RMB)

is computed as follows:

h1 = W1 ∗ h

h2 = MU(h1;W2)

h3 = MU(h2;W3) (4)

h4 = W4 ∗ h3

RMB(h;W) = h+ h4

We also experimented with a standard residual block of (He

et al., 2016) which uses ReLU non-linearities – see Sect. 5

and 6 for details.

4.3. Dilated Convolutions

Having a large receptive field helps the model to capture the

motion of larger objects. One way to increase the recep-

tive field without much effect on the computational com-

plexity is to use dilated convolutions (Chen et al., 2014;

Yu & Koltun, 2015), which make the receptive field grow

exponentially, as opposed to linearly, in the number of lay-

ers. In the variant of VPN that uses dilation, the dilation

rates are the same within each RMB, but they double from

one RMB to the next up to a chosen maximum size, and

then repeat (van den Oord et al., 2016a). In particular, in

the CNN encoders we use two repetitions of the dilation

scheme [1, 2, 4, 8], for a total of 8 RMBs. We do not use

dilation in the decoders.

5. Moving MNIST

The Moving MNIST dataset consists of sequences of 20

frames of size 64 × 64, depicting two potentially over-

lapping MNIST digits moving with constant velocity and

bouncing off walls. Training sequences are generated on-

the-fly using digits from the MNIST training set without a

limit on the number of generated training sequences (our

models observe 19.2M training sequences before conver-

gence). The test set is fixed and consists of 10000 se-

quences that contain digits from the MNIST test set. 10

of the 20 frames are used as context and the remaining 10

frames are generated.

In order to make our results comparable, for this dataset

only we use the same sigmoid cross-entropy loss as used in

Model Valid. Test Seen Test Novel

Baseline model 2.06 2.08 2.07
VPN (Relu, Dilation) 0.73 0.72 0.75
VPN (Relu, No Dilation) 0.72 0.73 0.75
VPN (RMB, Dilation) 0.63 0.65 0.64
VPN (RMB, No Dilation) 0.62 0.64 0.64

Table 3. Negative log-likelihood in nats/dimension on the Robotic

Pushing dataset.

prior work (Srivastava et al., 2015a). The loss is defined as:

H(z, y) = −
∑

i

zi log yi + (1− zi) log(1− yi) (5)

where zi are the grayscale targets in the Moving MNIST

frames that are interpreted as probabilities and yi are the

predictions. The lower bound on H(z, y) may be non-zero.

In fact, if we let zi = yi, for the 10 frames that are pre-

dicted in each sequence of the Moving MNIST test data,

H(z, y) = 86.3 nats/frame.

5.1. Implementation Details

The VPNs with and without dilation, as well as the baseline

model, have 8 RMBs in the encoders and 12 RMBs in the

decoders; for the network variants that use ReLUs we dou-

ble the number of residual blocks to 16 and 24, respectively,

in order to equate the size of the receptive fields in the two

model variants. The number of channels in the blocks is

c = 128 while the convolutional LSTM has 256 channels.

The topmost layer before the output has 768 channels. We

train the models for 300000 steps with 20-frame sequences

predicting the last 10 frames of each sequence. Each step

corresponds to a batch of 64 sequences. We use RMSProp

for the optimization with an initial learning rate of 3 · 10−4

and multiply the learning rate by 0.3 when learning flat-

lines.

5.2. Results

Table 1 reports the results of various recent video mod-

els on the Moving MNIST test set. Our baseline model

achieves 110.1 nats/frame, which is significantly better

than the previous state of the art (Patraucean et al., 2015).

We attribute these gains to architectural features and, in

particular, to the resolution preserving aspect of the net-

work. Further, the VPN achieves 87.6 nats/frame, which

approaches the lower bound of 86.3 nats/frame.

Table 2 reports results of architectural variants of the VPNs.

The model with dilated convolutions improves over its non-

dilated counterpart as it can more easily act on the relatively

large digits moving in the 64 × 64 frames. In the case of

Moving MNIST, MUs do not yield a significant improve-

ment in performance over just using ReLUs, possibly due

Video Pixel Networks

to the relatively low complexity of the task. A sizeable im-

provement is obtained from MUs on the Robotic Pushing

dataset (Tab. 3).

A qualitative evaluation of video continuations produced

by the models matches the quantitative results. Figure 4

shows random continuations produced by the VPN and the

baseline model on the Moving MNIST test set. The frames

generated by the VPN are consistently sharp even when

they deviate from the ground truth. By contrast, the contin-

uations produced by the baseline model get progressively

more blurred with time – as the uncertainty of the model

grows with the number of generated frames, the lack of

inter-frame spatial dependencies leads the model to take the

expectation over possible trajectories.

6. Robotic Pushing

The Robotic Pushing dataset consists of sequences of 20

frames of size 64× 64 that represent camera recordings of

a robotic arm pushing objects in a basket. The data consists

of a training set of 50000 sequences, a validation set, and

two test sets of 1500 sequences each, one involving a sub-

set of the objects seen during training and the other one in-

volving novel objects not seen during training. Each frame

in the video sequence is paired with the state of the robot

at that frame and with the desired action to reach the next

frame. The transitions are non-deterministic as the robotic

arm may not reach the desired state in a frame due to occlu-

sion by the objects encountered on its trajectory. 2 frames,

2 states and 2 actions are used as context; the desired 18

actions in the future are also given. The 18 frames in the

future are then generated conditioned on the 18 actions as

well as on the 2 steps of context.

6.1. Implementation Details

For this dataset, both the VPN and the baseline model use

the softmax cross-entropy loss, as defined in Sect. 2. As for

Moving MNIST, the models have 8 RMBs in the encoders

and 12 RMBs in the decoders; the ReLU variants have 16

residual blocks in the encoders and 24 in the decoders. The

number of channels in the RMBs is c = 128, the convo-

lutional LSTM has 256 channels and the topmost layer be-

fore the output has 1536 channels. We use RMSProp with

an initial learning rate of 10−4. We train for 275000 steps

with a batch size of 64 sequences per step. Each training

sequence is obtained by selecting a random subsequence

of 12 frames together with the corresponding states and

actions. We use the first 2 frames in the subsequence as

context and predict the other 10 frames. States and actions

come as vectors of 5 real values. For the 2 context frames,

we condition each layer in the encoders and the decoders

with the respective state and action vectors; the condition-

ing is performed by the result of a 1×1 convolution applied

Figure 4. Randomly sampled continuations of videos from the

Moving MNIST test set. For each set of three rows, the first

10 frames in the middle row are the given context frames. The

next three rows of 10 frames each are as follows: frames gener-

ated from the baseline model (top row), frames generated from

the VPN (middle row) and ground truth frames (bottom row).

to the action and state vectors that are broadcast to all of

the 64 × 64 positions. For the other 10 frames, we condi-

tion the encoders and decoders with the action vectors only.

We discard the state vectors for the predicted frames during

training and do not use them at generation. For generation

we unroll the models for the entire sequence of 20 frames

and generate 18 frames.

6.2. Results

Table 3 reports the results of the baseline model and vari-

ants of the VPN on the Robotic Pushing validation and test

sets. The best variant of the VPN has a > 65% reduction

in negative log-likelihood over the baseline model. This

highlights the importance of space and color dependencies

in non-deterministic environments. The results on the val-

idation and test datasets with seen objects and on the test

dataset with novel objects are similar. This shows that the

models have learned to generalize well not just to new ac-

Video Pixel Networks

tion sequences, but also to new objects. Furthermore, we

see that using multiplicative interactions in the VPN gives

a significant improvement over using ReLUs.

Figures 5–9 visualize the samples generated by our mod-

els.1 Figure 5 contains random samples of the VPN on

the validation set with seen objects (together with the cor-

responding ground truth). The model is able to distinguish

between the robotic arm and the background, correctly han-

dling occlusions and only pushing the objects when they

come in contact with the robotic arm. The VPN generates

the arm when it enters into the frame from one of the sides.

The position of the arm in the samples is close to that in the

ground truth, suggesting the VPN has learned to follow the

actions. The generated videos remain detailed throughout

the 18 frames and few artifacts are present. The samples

remain good showing the ability of the VPN to generalize

to new sequences of actions. Figure 6 evaluates an addi-

tional level of generalization, by showing samples from the

test set with novel objects not seen during training. The

VPN seems to identify the novel objects correctly and gen-

erates plausible movements for them. The samples do not

appear visibly worse than in the datasets with seen objects.

Figure 7 demonstrates the probabilistic nature of the VPN,

by showing multiple different video continuations that start

from the same context frames and are conditioned on the

same sequence of 18 future actions. The continuations are

plausible and varied, further suggesting the VPN’s ability

to generalize. Figure 8 shows samples from the baseline

model. In contrast with the VPN samples, we see a form

of high frequency noise appearing in the non-deterministic

movements of the robotic arm. This can be attributed to

the lack of space and color dependencies, as discussed in

Sec. 2.2. Figure 9 shows a comparison of continuations of

the baseline model and the VPN from the same context se-

quence. Besides artifacts, the baseline model also seems

less responsive to the actions.

7. Conclusion

We have introduced the Video Pixel Network, a deep gen-

erative model of video data that models the factorization

of the joint likelihood of video. We have shown that, de-

spite its lack of specific motion priors or surrogate losses,

the VPN approaches the lower bound on the loss on the

Moving MNIST benchmark that corresponds to a large im-

provement over the previous state of the art. On the Robotic

Pushing dataset, the VPN achieves significantly better like-

lihoods than the baseline model that lacks the fourfold

dependency structure. The fourfold dependency structure

provides a robust and generic method for generating videos

without systematic artifacts.

1Supplementary materials attached to the paper submission in-
clude animated GIFs for the videos.

Figure 5. Randomly sampled continuations of videos from the

Robotic Pushing validation set (with seen objects). Each set of

four rows corresponds to a sample of 2 given context frames and

18 generated frames. In each set of four rows, rows 1 and 3 are

samples from the VPN. Rows 2 and 4 are the actual continuation

in the data.

Video Pixel Networks

Figure 6. Randomly sampled continuations of videos from the

Robotic Pushing test set with novel objects not seen during train-

ing. Each set of four rows is as in Fig. 5.

Figure 7. Three different samples from the VPN starting from the

same 2 context frames on the Robotic Pushing validation set. For

each set of four rows, top three rows are generated samples, the

bottom row is the actual continuation in the data.

Figure 8. Randomly sampled continuations from the baseline

model on the Robotic Pushing validation set (with seen objects).

Each set of four rows is as in Fig. 5.

Figure 9. Comparison of continuations given the same 2 context

frames from the Robotic Pushing validation set for the baseline

model (rows 1 and 2, and 6 and 7), for the VPN (rows 3 and 4,

and 8 and 9) and for the actual continuation in the data (rows 5

and 10).

Video Pixel Networks

References

Brabandere, Bert De, Jia, Xu, Tuytelaars, Tinne, and

Gool, Luc Van. Dynamic filter networks. CoRR,

abs/1605.09673, 2016.

Chen, Liang-Chieh, Papandreou, George, Kokkinos, Ia-

sonas, Murphy, Kevin, and Yuille, Alan L. Semantic im-

age segmentation with deep convolutional nets and fully

connected crfs. CoRR, abs/1412.7062, 2014.

Cricri, Francesco, Ni, Xingyang, Honkala, Mikko, Aksu,

Emre, and Gabbouj, Moncef. Video ladder networks.

CoRR, abs/1612.01756, 2016. URL http://arxiv.

org/abs/1612.01756.

Finn, Chelsea, Goodfellow, Ian J., and Levine, Sergey.

Unsupervised learning for physical interaction through

video prediction. CoRR, abs/1605.07157, 2016.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,

Jian. Identity mappings in deep residual networks.

CoRR, abs/1603.05027, 2016.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-

term memory. Neural computation, 1997.

Kalchbrenner, Nal and Blunsom, Phil. Recurrent contin-

uous translation models. In EMNLP, pp. 1700–1709,

2013.

Kalchbrenner, Nal, Danihelka, Ivo, and Graves, Alex. Grid

long short-term memory. International Conference on

Learning Representations, 2016.

Mathieu, Michaël, Couprie, Camille, and LeCun, Yann.

Deep multi-scale video prediction beyond mean square

error. CoRR, abs/1511.05440, 2015.

Oh, Junhyuk, Guo, Xiaoxiao, Lee, Honglak, Lewis,

Richard L., and Singh, Satinder P. Action-conditional

video prediction using deep networks in atari games. In

NIPS, pp. 2863–2871, 2015.

Patraucean, Viorica, Handa, Ankur, and Cipolla, Roberto.

Spatio-temporal video autoencoder with differentiable

memory. CoRR, abs/1511.06309, 2015.

Ranzato, Marc’Aurelio, Szlam, Arthur, Bruna, Joan, Math-

ieu, Michaël, Collobert, Ronan, and Chopra, Sumit.

Video (language) modeling: a baseline for generative

models of natural videos. CoRR, abs/1412.6604, 2014.

Shi, Xingjian, Chen, Zhourong, Wang, Hao, Yeung, Dit-

Yan, Wong, Wai-Kin, and Woo, Wang-chun. Convolu-

tional LSTM network: A machine learning approach for

precipitation nowcasting. In NIPS, pp. 802–810, 2015.

Srivastava, Nitish, Mansimov, Elman, and Salakhutdinov,

Ruslan. Unsupervised learning of video representations

using lstms. In ICML, volume 37, pp. 843–852, 2015a.

Srivastava, Rupesh Kumar, Greff, Klaus, and Schmidhu-

ber, Jürgen. Highway networks. CoRR, abs/1505.00387,

2015b.

van den Oord, Aaron, Dieleman, Sander, Zen, Heiga, Si-

monyan, Karen, Vinyals, Oriol, Graves, Alex, Kalch-

brenner, Nal, Senior, Andrew, and Kavukcuoglu, Ko-

ray. Wavenet: A generative model for raw audio. CoRR,

abs/1609.03499, 2016a.

van den Oord, Aäron, Kalchbrenner, Nal, and

Kavukcuoglu, Koray. Pixel recurrent neural networks.

In ICML, volume 48, pp. 1747–1756, 2016b.

van den Oord, Aäron, Kalchbrenner, Nal, Vinyals, Oriol,

Espeholt, Lasse, Graves, Alex, and Kavukcuoglu, Koray.

Conditional image generation with pixelcnn decoders. In

NIPS, 2016c.

Vondrick, Carl, Pirsiavash, Hamed, and Torralba, Anto-

nio. Generating videos with scene dynamics. CoRR,

abs/1609.02612, 2016.

Yu, Fisher and Koltun, Vladlen. Multi-scale context aggre-

gation by dilated convolutions. CoRR, abs/1511.07122,

2015.

http://arxiv.org/abs/1612.01756
http://arxiv.org/abs/1612.01756

