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Figure 1: The proposed metric predicts the perceived quality of natural as well as rendered video sequences with respect to a reference, even
if the input videos have different dynamic ranges. Our work enables new applications including objective evaluation of video tone mapping

and HDR compression.

Abstract

Numerous current Computer Graphics methods produce video se-
quences as their outcome. The merit of these methods is often
judged by assessing the quality of a set of results through lengthy
user studies. We present a full-reference video quality metric'
geared specifically towards the requirements of Computer Graphics
applications as a faster computational alternative to subjective eval-
uation. Our metric can compare a video pair with arbitrary dynamic
ranges, and comprises a human visual system model for a wide
range of luminance levels, that predicts distortion visibility through
models of luminance adaptation, spatiotemporal contrast sensitivity
and visual masking. We present applications of the proposed metric
to quality prediction of HDR video compression and temporal tone
mapping, comparison of different rendering approaches and qual-
ities, and assessing the impact of variable frame rate to perceived
quality.

CR Categories: 1.3.0 [Computer Graphics]: General; 1.3.3
[Picture/Image Generation]: Display Algorithms—Viewing Algo-
rithms

Keywords: video quality metrics, high dynamic range video, hu-
man visual perception, temporal artifacts, subjective video quality
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1 Introduction

The contributions of newly proposed Computer Graphics tech-
niques are usually demonstrated through images, and more often
through videos, in which the merit of the technique is apparent.
The performance of, for example a new rendering method, can be
assessed by comparing sequences rendered on one hand using the
proposed method, and on the other hand a more precise, but slower
reference method. The point of this comparison could be to show
that the proposed method produces results comparable to the ref-
erence method, but much more efficiently. A similar evaluation
process is also common in other subfields such as High Dynamic
Range (HDR) Imaging. Evaluation of tone mapping operators, as
well as compression methods for HDR video both involve a com-
parison of, respectively the tone mapped and compressed video,
with the HDR reference sequence. In fact, assessment of the fidelity
of a video sequence to a reference is a task common to numerous
Computer Graphics techniques.

Formal subjective methods of video quality evaluation such
as [ITU-T 1999], where a Mean Opinion Score is computed by ob-
taining responses from multiple test subjects are often too laborious
to be used on large sets of data. For the same reason the use of such
methods in a feedback loop during development is not feasible; in
fact most authors perform subjective evaluation only after the devel-
opment of their algorithm is completed. Video Quality Metrics pro-
vide an objective means of comparing video sequences much faster
than subjective methods by trading off accuracy of the prediction
due to simplified modeling of visual perception. Simple metrics
like PSNR, that rely solely on image pixel statistics fail to predict
significant human visual system (HVS) properties like visual mask-
ing and contrast sensitivity. More sophisticated metrics [Winkler
2005; Seshadrinathan and Bovik 2010] on the other hand are not
designed for HDR content. In the light of the recent trends towards
HDR Imaging, the absence of HDR capable HVS models severely
limits the use of these metrics in Computer Graphics context. Re-
cently however, several image quality assessment metrics have been
proposed, either designed specifically for HDR images [Mantiuk
et al. 2005], or that can compare image pairs with arbitrary dy-
namic range [Aydin et al. 2008]. However, simply using image
quality metrics to evaluate each frame of a video sequence fails
to reflect the temporal aspects of Human Visual System’s (HVS)



mechanisms, typically resulting in underestimating the visibility of
temporal artifacts such as flickering (Sections 4, 5).

A video quality metric specifically designed for Computer Graph-
ics applications by addressing the aforementioned issues, could be
used as a practical diagnostic tool and a quick alternative to sub-
jective evaluation. We propose a dynamic range independent video
quality metric that can compare a video pair of arbitrarily different
dynamic ranges. The metric comprises a temporal HVS model, that
accounts for major effects like luminance adaptation, contrast sen-
sitivity dependency to both spatial and temporal frequencies, and
similarly visual masking computed in spatiotemporal visual chan-
nels (Section 3). Due to the absence of a visual attention model,
the metric predictions are conservative in the sense that they cor-
respond to the perception of an observer who scrutinizes the en-
tire video sequence. The results in Section 4 show that our metric
predicts distortion visibility more accurately than previous video
quality metrics and state-of-the-art image quality assessment meth-
ods applied to each video frame separately. The predictions of the
proposed metric are also validated through a subjective study (Sec-
tion 5). We show that our metric enables new applications of evalu-
ating HDR video tone mapping and compression methods. We also
demonstrate the comparison of videos rendered with different meth-
ods and quality settings, and assessment of the impact of dropped
frames to perceived quality (Section 6).

2 Background

In this section we summarize previous work on objective video
quality assessment and the use of video quality measures in Com-
puter Graphics applications, and give some background on the tem-
poral HVS mechanisms related to our metric.

2.1 Video Quality Assessment

Video quality assessment metrics often draw ideas from the more
developed image quality assessment field. It has been quickly ob-
served that simple statistics like signal-to-noise ratio are not neces-
sarily correlated with human vision, which motivated HVS-based
image quality metrics. Commonly used image quality metrics fo-
cus on near-threshold detection [Daly 1993], supra-threshold dis-
crimination [Lubin 1995], or functional differences [Ferwerda and
Pellacini 2003]. The proposed video quality metric makes use of
a near-threshold human visual system model to comply with the
needs of computer graphics applications.

The focus of the early work on video metrics has been extending
image quality assessment metrics with temporal models of visual
perception, resulting from the fact that frame-by-frame application
of image quality metrics is not sufficient. Van den Branden Lam-
brecht’s Moving Picture Quality Metric (MPQM) [1996] utilizes
a spatial decomposition in frequency domain using a filter bank
of oriented Gabor filters, each with one octave bandwidth. Addi-
tionally two temporal channels, one low-pass (sustained) and an-
other band-pass (transient) are computed to model visual masking.
The output of their metric is a numerical quality index between
1 — 5, similar to the Mean Opinion Score obtained through sub-
jective studies. In a more efficient version of MPQM, the Gabor
filter bank is replaced by the Steerable Pyramid [Lindh and van den
Branden Lambrecht 1996]. In later work targeted specifically to
assess the quality of MPEG-2 compressed videos [van den Bran-
den Lambrecht et al. 1999], they address the space-time nonsepa-
rability of contrast sensitivity through the use of a spatiotemporal
model. Another metric based on Steerable Pyramid decomposition
aimed towards low bit-rate videos with severe artifacts is proposed
by Masry and Hemani [2004], where they use finite impulse re-
sponse filters for temporal decomposition.

Similarly, Watson et al. [2001] published an efficient Digital Video
Quality metric (DVQ) based on the Discrete Cosine Transform. The
DVQ models early HVS processing including temporal filtering and
simple dynamics of light adaptation and contrast masking. Later
they propose a relatively simple Standard Spatial Observer (SSO)
based method [Watson and Malo 2002], which, on the Video Qual-
ity Experts Group data set, is shown to make as accurate predic-
tions as more complex metrics. Winkler [1999; 2005] proposed a
perceptual distortion metric (PDM) where he introduced a custom
multiscale isotropic local contrast measure, that is later normalized
by a contrast gain function that accounts for spatiotemporal contrast
sensitivity and visual masking.

Seshadrinathan and Bovik [2007] proposed an extension to the
Complex Wavelet Structural Similarity Index (CW-SSIM [Wang
and Simoncelli 2005; Sampat et al. 2009]) for images to account for
motion in video sequences. The technique (called V-SSIM) incor-
porates motion modeling using optical flow and relies on a decom-
position through 3D Gabor filter banks in frequency domain. V-
SSIM is therefore able to account for motion artifacts due to quan-
tization of motion vectors and motion compensation mismatches.
Recently, the authors published the MOVIE index in a follow-up
work [Seshadrinathan and Bovik 2010], which outputs two sep-
arate video quality streams for every 16" frame of the assessed
video: spatial (closely related to the structure term of SSIM) and
temporal (assessment of the motion quality based on optical flow
fields). In Section 4 we compare our work with the MOVIE in-
dex and Winkler’s PDM, along with a frame-by-frame evaluation
by image quality metrics HDRVDP [Mantiuk et al. 2005] and the
dynamic range independent metric [Aydin et al. 2008] (henceforth
referred as DRIVDP).

2.2 Applications in Computer Graphics

The image quality evaluation with the use of HVS models has been
an important topic in realistic image synthesis, particularly for static
images [Rushmeier et al. 1995; Bolin and Meyer 1998]. More re-
cently spatiotemporal models of visual perception have been con-
sidered for reducing the rendering time of animation sequences
by exploiting limitations of the HVS. Myszkowski et al. [2000]
proposed the use of an Animation Quality Metric (AQM), which
utilizes image flow between a pair of subsequent frames to de-
rive the retinal velocity, which is an input parameter for the spa-
tiovelocity contrast sensitivity function (SVCSF) [Daly 1998]. Yee
et al. [2001] further extended this work by using a computa-
tional model of visual attention to predict which image regions
are more likely to be consciously attended by the observer, result-
ing in even more precise retinal velocity estimation. Both those
techniques lack explicit processing of intensities between subse-
quent images, which makes detection of temporal artifacts such
as flickering impossible. Such temporal information has been im-
plicitly accumulated by averaging photon density across frame se-
quences and then applying the AQM metric to the resulting anima-
tion frames [Myszkowski et al. 2001]. However, in this case only
temporal noise due to the photon density can be estimated, while
other temporal artifacts such as flickering of improperly sampled
textures or edge aliasing cannot be detected.

Schwarz and Stamminger [2009] propose a quality metric, which is
targeted specifically for detection of popping artifacts due to level-
of-detail (LOD) changes between frames. They assume the knowl-
edge of the point in time when the LOD is changed and compare
whether for that frame the differences for current and previous LOD
(the latter image must be specifically re-rendered) are visible taking
into account the SVCSF [Daly 1998]. Since temporal processing
over frames is ignored, the influence of the dynamically changing
scene and camera on the LOD change cannot be modeled prop-
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Figure 2: The computational steps of our metric. Refer to text for details.

erly. Clearly, an explicit 3D space-time contrast sensitivity function
(CSF) processing over a number of subsequent frames is required to
account for all possible temporal artifacts in a general setup, which
is one of the main goals of our work.

2.3 Temporal Aspects of Human Visual System

Temporal Visual Channels

A significant area of interest of vision research is the Lateral Genic-
ulate Nucleus (LGN), which is a portion of the brain inside the tha-
lamus. It is estimated that 90% of monkey retinal ganglion cells
send their axons to LGN layers, thus LGN is known as the primary
processing center of visual information. In general, retinal ganglion
cells can be divided into midget (smaller, majority of ganglion cells,
sensitive to detail) and parasol (larger, faster output signals, sensi-
tive to movement, only ~10%) cells. LGN, in turn contains par-
vocellular (small cell bodies) and magnocellular (1arge cell bodies)
layers. The axons of midget retinal ganglion cells terminate in the
parvocellular layers, while the parasol cells terminate in magnocel-
lular layers [Wandell 1995, p.124]. This structure suggests the exis-
tence of separate parvocellular and magnocellular visual streams.

Experiments have shown that the destruction of the cells in the par-
vocellular layers of a monkey’s LGN resulted in deteriorated per-
formance for a variety of tasks such as pattern detection and color
discrimination. Destroying the cells in the magnocellular layers,
however, did not affect the performance in the same tasks, but it was
observed that the animal became less sensitive to rapidly flickering
targets [Wandell 1995, p.126]. This leads to the conclusion that
the magnocellular pathway is specialized to process high tempo-
ral frequency information [Watson 1986]. Meanwhile, some work
has been done to find models that fit psychophysical measurements
of the temporal sensitivity of human subjects. While models with
many narrow band mechanisms, as well as three channels have been
proposed in the past, it is now believed that there is just one low-
pass, and one band-pass mechanism [Winkler 2005]. This theory
is consistent with the biological structure of the LGN, moreover
Friedericksen and Hess [1998] obtained a very good fit to large
psychophysical data using only a transient and a sustatined mech-
anism.

Practical Implications

Although the parvo— and magnocellular pathways carry different
types of information to the brain, the receptive fields of neurons
in the parvocellular pathway are not space-time separable [Wan-
dell 1995, p.143]. No clear anatomical separation between spatial
and temporal frequencies supports the psychophysical finding that
the contrast sensitivity is not separable along time and spatial di-
mensions. That leads to the space-time nonseparability of the
Contrast Sensitivity Function. Thus, spatial CSFs measured for
static stimuli cannot be extended linearly to account for the effect
of temporal frequency to sensitivity. Another direct consequence

of separate pathways for high and low temporal frequency contrast
is the spatiotemporal locality of inter-channel visual masking.
This suggests the use of 3D filter banks that span both spatial and
temporal dimensions. Faithful modeling of temporal aspects of the
HVS is vital in Computer Graphics applications, where flickering
is an important source of visual artifacts. In Section 3 we describe
how the proposed metric addresses these issues.

3 Video Quality Assessment

The recent proliferation of High Dynamic Range Imaging dictates
that the HVS model employed in a video quality metric for Com-
puter Graphics applications should be designed for all visible lumi-
nance levels. This requirement limits the use of earlier video qual-
ity metrics designed towards detecting compression artifacts in low
dynamic range (LDR) videos. Moreover, applications such as tone
mapping and compression of HDR video sequences require detect-
ing structural distortions where the reference video is HDR and the
test video is LDR. Consequently, in this work we use an HDR capa-
ble model that accounts for both major spatial and temporal aspects
of the visual system, and employ the dynamic range independent
distortion measures contrast loss and amplification introduced in
DRIVDP in addition to simply computing the visible differences
between reference and test videos. The HDR capability is a result
of the light adaptation computation through the JND space transfor-
mation and the 3D contrast sensitivity function, both explained in
more detail later in this section. In Computer Graphics applications
the main concern is often the existence of visible artifacts, rather
than the magnitude of visibility, since methods that produce clearly
visible artifacts are often not useful in practice. Consequently the
HVS model we use trades off supra-threshold precision for accu-
racy near the detection threshold.

The computational steps of our metric are summarized in Figure 2.
The input is a pair of videos V,..y and V;s; with arbitrary dynamic
ranges, both of which should contain calibrated luminance values.
The luma values of LDR videos should be inverse gamma corrected
and converted to display luminance (In all examples we assumed
a display device with the luminance range 0.1 — 100 cd/ m? and
gamma 2.2). The HVS model is then applied separately to both
videos to obtain the normalized multichannel local contrast at each
visual channel, where the first step is to model the nonlinear re-
sponse of the photoreceptors to luminance, namely Light adapta-
tion. In our metric we apply the nonlinearity described in [Mantiuk
et al. 2005], which maps the video luminance to linear Just Notice-
able Differences (JND) values, such that the addition or subtraction
of thze unit value results in a just perceivable change of relative con-
trast”.

2 All externally referred derivations and formulas in the rest of the paper
are recollected in supplementary material for easy reference.



@ (b)

Static CSF Luminance Adaptation Modulation

Sensitivity
Luminance Adaptation
°
5

Modulation
=
g
S

e, ! ! ce
ney,,  oXBoot o Lurina™
Vi, gaptet®
ST

Normalization with CSF at L, = 100 cd/m?

(c) (d)

Normalized Spatio-temporal CSF Normalized 3D Sensitivity at Ly= 3 cd/m?

2 “\\
“‘\,‘ Bz llllllh

33
“o

k 8 H" SSSE

o 55555 ”’”””.\:‘ SRS N\

S
n‘\‘

Figure 3: Computation of the CSF3P . The static CSF* (p,

Lo) (a) is divided to CSF* (p, L

o = 100cd/m?) to obtain scaling coefficients

(b) that account for luminance adaptation in CSF3P . The specific adaptation level is chosen to reflect the conditions where the spatiotem-
poral CSFT was measured (c). The scaling coefficients are computed for the current Lq (3 cd/ m? in this case), and multiplied with the
normalized CSF™ to obtain the CSF3P that accounts for spatial and temporal frequencies, as well luminance adaptation (d).

Contrast sensitivity is a function of spatial frequency p and tempo-
ral frequency w of a contrast patch, as well as the current adaptation
luminance of the observer L,. The spatiotemporal C'SF7 plotted
in Figure 3c shows the human contrast sensitivity for variations of
p and w at a fixed adaptatlon luminance. At a retinal veloc1ty v
of 0.15 deg/sec, the CSFT is close to the static CSF* [Daly
1993] (Figure 3a) at the same adaptation level (the relation be-
tween spatio-temporal frequency and retinal velocity is w = vp
assuming the retina is stable). This particular retinal velocity cor-
responds to the lower limit of natural drift movements of the eye
which are present even if the eye is intentionally fixating in a sin-
gle position [Daly 1998]. In the absence of eye tracking data we
assume that the observer’s gaze is fixed, but also the drift move-
ment is present. Accordingly, a minimum retinal velocity is set as
follows:

CSF"(p,w) = CSF” (p, maz(v,0.15) - p). (1)
In addition to the drift movement, one could consider integrating
a visual attention model-based smooth pursuit eye motion (SPEM)
estimate [Yee et al. 2001] (which may not always be precise), or
actual eye tracking data to our metric, at the cost of introducing
user input and thus loosing objectivity of the approach.

On the other hand, the shape of the CSF depends strongly on adap-
tation luminance especially for scotopic and mesopic vision, and
remains approximately constant over 1000 cd/m?. Consequently,
using a spatiotemporal CSF at a fixed adaptation luminance results
in erroneous predictions of sensitivity at the lower luminance lev-
els that can be encoded in HDR images. Thus, we derive a “3D”
CSF (Figure 3d) by first computing a Luminance Modulation Fac-
tor (Figure 3b) as the ratio of C'SF™ at the observer’s current adap-
tation luminance (L) with the C'SF Sat L, = 100 cd / m?, which
is the adaptation level at which the C'SF” is calibrated to the spa-
tiotemporal sensitivity of the HVS. This factor is then multiplied
with the normalized spatiotemporal CSF (nC'SFT), and finally the
resulting C'SE3P accounts for p, w and Ly:

CSF%(p,La)

F3D L o Py Ha )
CSEpyws La) = GoFs ), 100)

nCSF” (p,w). ()

Ideally the C'SEF3” should be derived from psychophysical mea-
surements in all three dimensions, since current findings suggest
that the actual contrast sensitivity of the HVS is linearly separa-
ble in neither of its dimensions. In the absence of such measure-
ments, we found that estimating luminance adaptation using a scal-

ing factor is better than the alternatives that involve an approxi-
mation by linear separation of spatial and temporal frequencies (as
discussed earlier in Section 2.3). The effect of luminance adap-
tation to spatiotemporal contrast sensitivity can approximately be
modeled by a multiplier (Figure 3b) except for very low temporal
frequencies [Wandell 1995, p.233].

The perceptually scaled luminance contrast is then decomposed
into visual channels, each sensitive to different temporal and spatial
frequencies and orientations. For this purpose we extend the Cor-
tex Transform [Watson 1987] that comprises 6 spatial frequency
channels each further divided into 6 orientations (except the base
band), by adding a sustained (low temporal frequency) and a tran-
sient (high temporal frequency) channel in the temporal dimension
(total 62 channels). The time (¢ given in seconds) dependent im-
pulse responses of the sustained and transient channels, plotted in
Figure 4-left, are given as Equation 3 and its second derivative, re-
spectively [Winkler 2005]:

In(t/0.160)

fl)y=e" 03 . 3)

The corresponding frequency domain filters are computed by ap-
plying the Fourier transform to both impulse responses and are
shown in Figure 4-right.
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Figure 4: Impulse (left) and frequency (right) responses of the tran-
sient (red) and sustained (blue) temporal channels. The frequency
responses comprise the extended 3D Cortex Transform’s channels
in temporal dimension.

Combining all models discussed so far, the computation of visual
channels from the calibrated input video V' is performed as follows:

cktm -1 {Vcsf cortex™" x temporalm} and

Vesy = F{jnd(V)} CSF*P,

where the 3D Cortex Filter for channel C*""™ is computed from the
corresponding 2D cortex filter cortex™! at spatial frequency level



k and orientation [, and the sustained and transient channel filters
temporal™. The function jnd denotes the light adaptation non-
linearity, and .% is the Fourier Transform. The threshold elevation
due to visual masking is computed using the following nonlinear-
ity [Daly 1993]:

1
klm kolm slope 414
TPt ™ = |1+ (0.0153 (392.498|CE™| )

where C’S&l’m indicates the channel with phase uncertainty and the
slope is linearly interpolated between 0.7 — 1 for visual channels
from low to high spatial frequencies.
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Figure 5: Practical illustration of achieving phase uncertainty in
2D. The Hilbert transform should be applied in multiple orienta-
tions to obtain a phase independent signal.

The dependency of the visual channels to signal phase contradicts
with the observation that the phase sensitivity of the HVS is very
limited. Phase uncertainty, while often not explicitly mentioned, is
a crucial component of many quality assessment metrics. If one
uses a decomposition consisting of spatially even filters, the fil-
ter responses would contain zero crossings at step edge locations.
This contradicts with human perception which exhibits a strong re-
sponse to step edges. Analogously, in the temporal dimension sud-
den changes in pixel intensity are perceived strongly. The effect
of phase uncertainty on complex stimuli is often a reduced amount
of detected distortions, due to the increased visual masking in step
edge locations. A common way of removing phase dependency of
a 1D signal is to use a quadrature pair of filters where one filter is
obtained by shifting the other’s phase by 90 degrees. Although the
phase shift can be computed in 1D by means of Hilbert transform,
the extension of the Hilbert transform to higher dimensions is not
trivial (Figure 5). Our implementation of phase uncertainty is an
extension of the quadrature cortex filters [Lukin 2009] to the tem-
poral domain. The spatial phase-shift is computed using an oriented
2D Hilbert Transform:

b2 (pas py) = i sgn(p pa + q py), )

where ¢ is the imaginary unit, and the line given by the equation
D pz + q py = 0 specifies the “direction” of the transform. Pa-
rameters p and q are selected such that the direction of the Hilbert
Transform coincides with the spatial orientation of the cortex chan-
nel. In the temporal dimension the phase shift can be achieved using
a 1D Hilbert Transform:

h (w) =i sgn(w). 6)

The quadrature responses of spatiotemporal visual channels are
then computed as follows:

HS|T{Ck,l,m} :y—l{hSVT y{ck,l,m}}. (7)

The phase independent channel C’&l’m used in the threshold eleva-
tion formula is computed by summing up the original signal with
all phase shifted responses in spatial and temporal dimensions as
illustrated in Figure 6.

Spatio-temporal
Channel C

Spatial phase shift

Resulting
phase-independent
channel

Figure 6: 3D phase uncertainty on a frequency plate image modu-
lated in temporal domain using a sinusoid function. The spatiotem-
poral channel C obtained by 3D Cortex Transform is used to com-
pute H9{C}, H'{C} and H" {H®{C}}, the phase shifted re-
sponse in spatial, temporal and both dimensions, respectively. The
combination of all four responses yields a spatiotemporaly phase
independent response constant along the entire sequence.

The detection probability of the normalized contrast response C' at
each visual channel is computed using the following psychometric
function, separately for the reference and test images:

P(C) =1—exp(—|C]%). (8)

The psychometric function relates the normalized contrast to de-
tection probability. Using this function, we compute the detection
probabilities of the following three types of distortions:

klm Ck’l’m Ck l,m
e Visible Difference | Px'"" = P(——gl— — —Sei )

e Contrast Loss (Pi’l’m = P(Cfe’lf’m)(l - P(Cf;tl’m))

e Contrast Amplification
(PEim = PCE™ O - PCEE™)

The visible differences between video sequences convey more in-
formation than the other two types of distortions, but especially if
the input video pair has different dynamic ranges, the probability
map is quickly saturated by the contrast difference that is not neces-
sarily perceived as a distortion. In this case contrast loss and ampli-
fication are useful which predict the probability of a detail visible in
the reference becoming invisible in the test video, and vice versa.



While additionally contrast reversal proposed in DRIVDP can be
easily computed within this framework, we found that this type of
distortion did not convey further information in the examples we
considered, and thus excluded from the metric output. Detection
probabilities of each type of distortions are then combined using a
standard probability summation function:

PA|\|/:1*ﬁﬁH(

k=11l=1m=1

S

-ENL) o

The resulting three distortion maps P are visualized separately us-
ing an in-context distortion map approach where detection proba-
bilities are shown in color over a low contrast grayscale version of
the test video. We also found that an overall summary of the distor-
tion information conveyed through a 3D visualization is useful in
certain applications (Section 6.4).
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Figure 7: Predicted visible differences between selected stimuli
from the Modelfest data set and the background luminance, where
the stimuli is scaled at 4, ;, 1,2 and 4 times the threshold contrast
(The same color coding is used throughout the paper for visualizing

distortion detection probabilities, unless noted otherwise).

In this section we compare the predictions of our metric with the
outcomes of the recent video quality metrics PDM [Winkler 2005]
and the MOVIE index [Seshadrinathan and Bovik 2010]. Although
not intended for videos, we also considered two recent HDR ca-
pable image quality metrics HDRVDP [Mantiuk et al. 2005] and
DRIVDP [Aydin et al. 2008], with which we evaluated each video
frame separately. To ensure that our metric is calibrated to psy-
chophysically measured detection thresholds, we computed the vis-
ible differences of the Modelfest data set at five different contrast
levels with the background luminance. The video for a stimulus
is generated by repeating it in all frames. As expected, the major-
ity of the stimuli produced no response below the threshold, and
a response with increasing magnitude for near— and above thresh-
old. Figure 7 shows the outcome for selected stimuli relevant to
our applications: a low and a high frequency noise, and a com-
plex image. The worst results were obtained for “GaborPatch9”
and “Gaussian26” for which our metric was too insensitive’.

The test video for this section is generated using an HDR image, to
which we added spatiotemporal random noise filtered with a Gaus-
sian to roughly mimic the artifacts that appear in rendered videos
in the absence of temporal coherency. The magnitude of the noise

3Refer to supplementary material for responses to all Modelfest stimuli.

Figure 8: Approximate perception of the reference and test scenes

has been modulated with the luminance levels of the relatively dark
image that depicts a sunset. The reference video is generated sim-
ilarly by repeating the same HDR image in all frames. The frames
in Figure 8, tone mapped using Pattanaik’s operator [2000], depict
the approximate appearance of the scene.

Our Metric

Figure 9: Metric comparison for LDR test and reference videos

First, we compare the distortion visibility prediction of our metric
with PDM and MOVIE index on this tone mapped LDR image pair.
Due to the random nature of the distortion, the frames of the dis-
tortion maps in this section are very similar, and thus we arbitrarily
choose a single representative frame*. In this case the outcome of
our metric and the PDM are similar (Figure 9).

Figure 10: MOVIE index for LDR videos. Note the different color
coding

The output of the MOVIE index on the other hand are a series of
spatial and a temporal distortion maps that are computed at every
16" frame. In Figure 10 we show the spatial distortion map at
the 3" scale along with the temporal distortion map. While the
output format of the MOVIE index is not directly comparable with
other metrics discussed in this section, one can see that the spatial
map of structural distortions (Figure 10-left) closely correlates to
the distortions in the video sequence. However, due to the lack of a
mechanism to estimate threshold contrast, distortions are detected
even at the darker bottom half of the video.

Next, we test the metrics on the HDR test and reference videos.
Note that the HDR format is capable of encoding the actual scene
luminance unlike display-referred LDR videos in the previous case.
The MOVIE index is excluded from the remaining comparisons

4 All original video sequences and corresponding distortion maps are pre-
sented in the supplementary video.



Figure 11: Metric comparison for HDR test and reference videos.
The contrast amplification in DRIVDP is color coded with blue.

since its extention to HDR is not trivial. The difference in predic-
tions of our metric and PDM in this case is because the latter does
not model luminance adaptation. Consequently distortion visibil-
ity is underestimated due to artificially high thresholds in this low
luminance scene (Figure 11). The visible difference and contrast
amplification predicted by frame-by-frame evaluation of HDRVDP
and DRIVDP are also noticeably lower than ours due to the ab-
sence of a temporal model that accounts for the higher sensitivity
to flickering distortions compared to static distortions.

Figure 12: Metric comparison for HDR reference and LDR test
videos

An even more striking difference can be observed in the final setup
where the distorted video tone mapped with Pattanaik’s operator is
compared with the reference HDR video (Figure 12). Here, both
PDM and and HDRVDP’s distortion maps are dominated by the
contrast difference due to the different dynamic ranges of the in-
put video pair. This is especially evident in HDRVDP’s prediction
where the spatiotemporal distortion appears to be completely ig-
nored. Moreover, DRIVDP predicts no visible detail amplification
at all, since it does not detect the distortion and is also not affected
by the different dynamic ranges of the input videos. The contrast
amplification predicted by our metric on the other hand correctly
identifies distortions where they are visible, and similar to DRIVDP
also ignores the changes due to dynamic range difference. Note also
that the predictions of our metric in all three scenarios are fairly
consistent.

5 Validation

We performed a subjective study to validate the prediction perfor-
mance of the metric’. The metric’s capability of working on video
pairs with different dynamic ranges, as well as the outcome in the
form of distortion maps containing spatial information, demanded
the creation of a new data set, since current public video quality
databases are limited to LDR videos, and the measured subjective
data is a single number indicating overall quality without any infor-
mation on spatial distribution of visible distortions. To that end, a
test set of 9 reference-test video pairs (1 LDR-LDR, 2 HDR-LDR,
and 6 HDR-HDR) were generated by adding temporally and spa-
tially varying artifacts (such as random noise, compression, tone
mapping and luminance modulation) to 6 different HDR scenes. A
BrightSide DR37-P HDR display was employed to properly dis-
play the scene luminance of both HDR and LDR videos. The par-
ticipants of the study were 16 subjects between ages 23 and 50, all
with near perfect or corrected vision. They were shown all video
pairs side by side on the HDR display, and were asked to mark
the visible differences (detail loss and amplification for HDR-LDR
stimuli) on a 16 x 16 grid displayed over the video using a graphi-
cal user interface (Figure 13).

Figure 13: The graphical user interface displays the test video
(left) side-by-side with the corresponding reference video. The sub-
Jects mark regions where they notice visible differences on a 16 x
16 grid (right). Both video frames are tone mapped, and the distor-
tions in the left frame are exaggarated for illustration purposes.

The marked regions for each trial were stored as distortion maps,
which were then averaged over all subjects to find the mean sub-
jective response. Next, the metric prediction for the corresponding
stimulus was computed, averaged over all frames, and downsam-
pled to the same resolution as the mean subjective response. For
each video pair, we computed the 2D correlation between the mean
subjective response and the metric prediction. The correlations var-
ied from 0.733 to 0.883, averaging to 0.809. The high correlation
between the metric predictions and subjective responses over a di-
verse test set including HDR and LDR stimuli with distortions of
various type and magnitude indicate that the proposed metric pro-
vides a reliable estimate of the video quality as a function of spatial
location. For comparison, we also evaluated the test set with PDM,
HDRVDP and DRIVDP (Figure 14). For almost all stimuli our
metric’s predictions were more accurate with respect to the subjec-
tive data, and the average correlations over all stimuli were found
as 0.257 for PDM, 0.528 for HDRVDP, and 0.563 for DRIVDP.

SRefer to the supplementary material for a detailed discussion of the
experiment.
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Figure 14: The comparison of the subjective data averaged over
participants with the predictions of our metric, PDM, HDRVDP
and DRIVDP for stimulus #2 and #4 in our test set (refer to the
supplementary material for the complete set of results).

6 Applications

The proposed method for objective quality assessment of a test
video with respect to a reference without any constraints on the dy-
namic range provides a faster alternative to subjective evaluation of
rendering methods, and also enables a computational comparison
of HDR video compression and tone mapping techniques. We also
show that our metric gives insight on the effect of dropped frames
to overall quality.

6.1 HDR Video Compression

While HDR content is becoming more commonplace, since it offers
higher fidelity compared to traditional media, it does so at the cost
of significantly increased file sizes. This is often not a problem for
images due to cheaply available storage. However, working with
long, high resolution videos quickly becomes prohibitively expen-
sive. Incidentally HDR video compression has become an active
topic of research. Figure 15 shows that our metric can be used to
detect compression artifacts in a video sequence compressed [Man-
tiuk et al. 2004] at various quality settings.

Very High Compression

Figure 15: Visible differences between frames from the HDR video
and the corresponding compressed frames shown in three compres-
sion settings (Low — g=1, Medium — q=5, Very High — q=31). The
banding artifacts become clearly visible under extreme compres-
sion. Near the foliage at the bottom, banding artifacts are present
but not visible due to the low luminance

6.2 Temporal Tone Mapping

HDR display technology is still early in its development, thus it is
often necessary to reduce the dynamic range of the HDR content
such that it can be viewed on current display hardware. While the
goal of tone mapping is considered to be subjective, the fidelity of
the tone mapped video to the reference HDR is often a good indica-
tor of quality. In Figure 16 we show the results from selected frames

of a tone mapped HDR sequence computed with global [Drago
et al. 2003] and gradient based [Fattal et al. 2002] tone mapping
methods.

Fattal Drago

Frames

[ H

Figure 16: Selected frames from the tone mapped HDR sequences
and corresponding contrast amplification and loss maps. Each
frame of the reference HDR video is tone mapped separately. Fat-
tal’s gradient based operator enhances perceived contrast notably,
thus leading to highly detectable contrast amplification but little
contrast loss. Drago’s global operator on the other hand produces
a more “flat” image by amplifying contrast near the dark foliage in
the foreground and clipping brighter details near the horizon line.

Amplification

Loss

Another interesting practical problem involves both temporal tone
mapping and compression. Consider a scenario where visual con-
tent is stored in a centralized media server in compressed HDR for-
mat. One may require to perform on-the-fly tone mapping to reduce
the video’s dynamic range to be suitable for the client machine’s
display device, which may range from an high-end LCD panel to
a limited CRT monitor. An obvious consideration in this case is
to make sure that tone mapping does not amplify previously invis-
ible compression artifacts. In Figure 17 we show such an example
where tone mapping adversely affects perceived quality of the com-
pressed HDR video, which is correctly detected by our metric.

Medium Compression Contrast Amplification Caontrast Loss

paddew suo|

Tone Compressed +
mapped  Tone mapped

paddew auo]
+ passaidwon

Figure 17: Contrast amplification and loss predicted with respect
to the reference HDR sequence for the compressed (at medium
quality) and then tone mapped sequence using Drago’s operator.
Note the slightly increased contrast amplification and loss in the
tone mapped version of the compressed HDR video. As shown in
Figure 15, the artifacts generated in medium compression setting
for this scene are mostly not detectable in the HDR video, but they
become visible due to tone mapping applied later.



6.3 Rendering

Our metric can be used to compare different rendering approaches.
Figure 18 shows the visible differences of a dynamic scene walk-
through rendered with indirect lighting using reflective shadow
maps [Dachsbacher and Stamminger 2005] with 1000 virtual point
light (VPL) sources, with respect to the reference sequence ob-
tained with the same amount of VPLs, however using a recent tech-
nique [Herzog et al. 2010] that utilizes spatio-temporal filtering.
Due to this filtering, there are virtually no visible artifacts in the
reference sequence, while the test technique produces visible flick-
ering during the entire sequence.

Reference
with temporal coherency fitering Test

Visible differences

Figure 18: Visible differences between rendering techniques. Even
though the rendered frames are visually indistinguishable when
viewed side-by-side, the test method produces significantly visible
flickering artifacts, which is not the case for the reference method
with temporal coherency filtering. Our metric also detects the non-
uniform perception of these flickering artifacts, such as the percep-
tion of the artifacts on the ground masked by the moving checker-
board pattern (better visible in the supplementary video).

To complement the previous scene with mostly temporal distor-
tions, we show another example with artifacts of spatiotemporal
nature (Figure 19). Here, the squences are rendered using an
image-space horizon based ambient occlusion technique [Bavoil
et al. 2008] augmented with the screen space directional occlu-
sion (SSDO) [Ritschel et al. 2009] (48 x 32 and 12 x 10 polar
samples on the hemisphere for the reference and test sequences,
respectively) with directional light source sampled from an envi-
ronment map (128 and 96 samples, respectively) and percentage
closer filtering (PCF) shadow maps [Reeves et al. 1987] (64 and
16 samples, respectively). Visible differences are predicted mostly
near the boundaries of the elephant’s shadow.

6.4 Variable Frame Rate

Maintaining a high enough frame rate is desirable in applications
like rendering and video streaming, but at the same time is not al-
ways possible due to hardware or bandwidth limitations. In this
case, the visible differences between the low FPS video and the full
FPS reference is a good measure for the loss in perceived quality
due to low frame rate. Figure 20 shows that our metric can be used
to predict the perceived distortions caused by dropped frames in
a rendered walkthrough scene. The reference sequence was gen-
erated by Coherent Hierarchical Culling technique [Bittner et al.
2004] which never falls below 60 FPS for this scene. On the other
hand, the performance of the traditional view frustum culling drops
below 1 FPS at times. We also show an alternative 3D visualization

Figure 19: Visible differences (bottom row) between the high (top
row) and low quality (middle row) renderings are focused mostly
near shadow boundaries.

of this scene utilizing volume rendering that gives an overview of
the distortion data (Figure 21). Note that the perception of frame
freezes and drops has further aspects (e.g. judder) that are not ac-
counted for by our method.

7 Discussion

The running time of the proposed metric depends highly on the
resolution and length of the input videos, however in its current
state is intended to work offline (~ 5 minutes for 512 x 512 x 64
sequence). In our experience, the main bottleneck in performance is
computing the 3D Fourier Transform of an 64 frames portion of the
video, where that specific number is chosen because the sensitivity
to temporal frequencies higher than 32 cy/sec is significantly low.
This approach also requires that the portions of the video being
processed should be kept in memory.

While our implementation runs in a standard workstation hardware
without problems, another approach that trades off efficiency for
prediction accuracy is to approximate the frequency domain Cortex
Transform with the Steerable Pyramid decomposition performed in
the spatial domain through polynomial approximations of the sec-
ond derivative Gaussian filters [Freeman and Adelson 1991]. The
filters that compute transient and sustained temporal channels can
also be approximated by 9-tap filters corresponding to the impulse
responses given in Figure 4 as described in Winkler’s book [2005].
As a result, the memory requirement can be reduced by a factor
of nearly 7, and the overall computation can be accelerated by ef-
ficiently computing convolution operations in graphics hardware.
The downside is the metric’s reduced prediction performance since
second derivative Gaussian filters are not perceptually justified and
our pilot implementation also indicated difficulties in calibration.

A limitation of our metric is the lack of a mechanism to model vi-
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Figure 20: The effect of dropped frames to perceived quality. One
should note, however, that our method does not compensate for
camera movements and assumes frames are perfectly aligned with
each other.
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Figure 21: An alternative 3D visualization. The left slice shows a
volume rendering of the entire visible differences data. The right
slice shows only the differences with detection probability above
75% where the locations of the missing frames along the time axis
are better visible.

sual attention. In the absence of either a computational model, or
eye tracking data to predict the observer’s gaze direction, our met-
ric’s predictions are conservative in the sense that the possibility of
the observer focusing her attention to some other region than where
the sought artifact appears is not considered. Another limitation
of our metric is the requirement of a reference video for quality
evaluation, which may not be available in some applications. No
reference metrics, however, have limited utility since they are often
geared toward detecting a single type of distortion, and are gener-
ally not as accurate as full reference metrics.

8 Conclusion

We presented a video quality metric specifically designed for Com-
puter Graphics applications. Our method comprises an HVS model
built with spatiotemporal components that are designed for HDR
luminance levels. The capability of comparing video pairs with dif-
ferent dynamic ranges enables applications such as objective eval-
vation of HDR video compression and tone mapping, as well as

comparison of different rendering methods and predicting the ef-
fect of dropped frames to perceived quality.

The validation of video quality metrics is often performed by com-
paring the metric responses to standard image quality databases. In
the absence of such a collection of video pairs and corresponding
spatial distortion maps comprising stimuli with different dynamic
ranges and multitude of artifact types relevant to Computer Graph-
ics, we created a modest data set for validation purposes. A future
direction is to extend our initial effort to a standardized data set.
Another possible extention to our work is the inclusion of color
channels utilizing a color appearance model designed for HDR lu-
minance levels. Temporal inverse tone mapping evaluation is a nat-
ural application area of our metric, but it was not included in this
work since from the metric’s point of view, the difference between
forward and inverse tone mapping is merely swapping reference
(HDR) and test (LDR) videos. Nevertheless, the metric’s detection
performance of application specific banding artifacts deserves fur-
ther investigation.
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