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Abstract— The scope of this paper is the estimation of
subjective video quality for low-resolution video sequences
as they are typical for mobile video streaming. Although the
video quality experienced by users depends on spatial (edges,
colors, ...) and more considerably on temporal (movement
speed, direction, ...) features of the video sequence, most of
the well-known methods are based on spatial features. This
paper presents a new reference-free approach for quality
estimation based on motion characteristics.
The character of motion is determined by the amount and
direction of the motion between two scene changes. In this
paper, two methods are presented. The first method, presents
the design of a quality metric based on content adaptive
parameters, allowing for content dependent video quality
estimation. The second method estimates video quality in
two steps. Firstly, the content classification with character
sensitive parameters is carried out. Finally, based on the
content class, frame rate and bitrate, the video quality is
estimated.
The performance of the proposed methods is evaluated and
compared to the ANSI T1.801.03 metric. The results show
that the motion-based approach provides powerful means
of estimating the video quality experienced by users for low
resolution video streaming services.

Index Terms— video quality, video streaming, perceived
quality metric, MOS, QoS.

I. I NTRODUCTION

For the provisioning of video streaming services it is
essential to provide a required level of customer satis-
faction, given by the perceived video stream quality. It is
therefore important to choose the compression parameters
as well as the network settings so that they maximize the
end-user quality. Due to video compression improvement
of the newest video coding standard H.264/AVC, video
streaming for low bit and frame rates is allowed while
preserving its perceptual quality. This is especially suit-
able for video applications in 3G wireless networks.
Mobile video streaming is characterized by low reso-
lutions, and low bitrates. The commonly used reso-
lutions are Quarter Common Intermediate Format
(QCIF,176x144 pixels) for cell phones,Common Inter-
mediate Format(CIF, 352x288 pixels) andStandard In-
terchange Format(SIF or QVGA, 320x240 pixels) for
data-cards and palmtops (PDA). The mandatory codec for
UMTS (Universal Mobile Telecommunications System)
streaming applications is H.263 but the 3GPP release 6 [1]
already supports a baseline profile of the new H.264/AVC
codec [2]. The appropriate encoder settings for UMTS

streaming services differ for various streaming content
and streaming application settings (resolution, frame and
bit rate) as is demonstrated in [3], [4], [5], [6].
In the last years, several objective metrics for perceptual
video quality estimation were proposed. The proposed
metrics can be subdivided into two main groups: human
vision model based video metrics [7], [8], [9], [10]
and metrics based only on objective video parame-
ters [11], [12], [13], [14]. The complexity of these
methods is quite high and they are mostly based on
spatial features, although temporal features better reflect
perceptual quality especially for low-rate videos. Most of
these metrics were designed for broadband broadcasting
video services and do not consider mobile video stream-
ing scenarios.
The goal of our research is to estimate the video quality
of mobile video streaming at the user-level (perceptual
quality of service) for any possible codec settings in 3G
network and for any content type. We are looking at
measures that do not need the original (non-compressed)
sequence for the estimation of quality, because this re-
duces the complexity and at the same time broadens the
possibilities of the quality prediction deployment. Hence,
we are looking for an objective measure of video quality
simple enough to be calculated in real-time at the receiver
side. We present new reference-free approaches for qual-
ity estimation based on motion characteristics. The first
approach introduces a quality metric based on content
adaptive parameters, allowing for content dependent video
quality estimation. The second approach estimates video
quality in two steps. Firstly, the content classification
with character sensitive parameters is carried out. Finally,
based on the content class, frame rate and bitrate, the
video quality is estimated. Moreover, in this paper we
provide a complex comparison of our recent models for
video quality estimation [15], [16].
The paper is organized as follows: In Section 2 and 3
we describe a mobile video streaming scenario and a
test setup for video quality evaluation, respectively. In
Section 4 the process of motion feature extraction is
explained. The results are presented and their performance
evaluated and further processed in Section 5, where the
focus is given on the video quality estimation. Section 6
contains conclusions and provides an outlook on future
work.
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II. M OBILE VIDEO STREAMING SCENARIO

Our mobile video streaming scenario is specified by
the environment of usage, streamed content, and the
screen size of the mobile terminal. Therefore, the mobile
scenario is strictly different in comparison with classical
TV broadcasting services or broadband IP-TV services.
Furthermore, most of the mobile content is on demand.
The mostly provided mobile streaming contents are news,
soccer, cartoons, panorama for weather forecast, traffic
news and music (see Figures 2, 3, 4, 5).
Our extensive survey shows systematic differences be-
tween MOS (Mean Opinion Score) results obtained by
testing on UMTS terminals and PC screens [4]. According
to these experiences, we perform our tests on UMTS mo-
bile terminals. Due to this experience we did not follow
ITU - T Recommendation [17] and in order to emulate
real conditions of the UMTS service, all the sequences
were displayed on a PDA VPA IV UMTS/WLAN (see
Figure 1). The viewing distance from the phone is not
fixed, but selected by the test person. We have noticed
that the users are comfortable to take the UMTS terminal
at a distance of 20-30 cm. The test was carried out in our
video quality laboratory. Our video quality test design
follows these experiences in order to better reflect real
world scenarios.

Figure 1. Test equipment: VPA IV UMTS/WLAN

For mobile video streaming we define the five most
frequent contents with different impact on the user per-
ception:

Figure 2. Snapshot of typical content class 1 (news)

1) Content class (CC1 = news):The first content
class includes sequences with a small moving region of
interest (face) on a static background. The movement in
the region of interests (ROI) is mainly determined by
eyes, mouth and face movements. The ROI covers up to
approximately 15% of the screen surface.

Figure 3. Snapshot of typical content class 2 (soccer)

2) Content class (CC2 = soccer):This content class
contains wide angle camera sequences with uniform
camera movement (panning). The camera is tracking
a small rapid moving objects (ball, players) on the
uniformly colored (typically green) background.

Figure 4. Snapshot of typical content class 3 (cartoon)

3) Content class (CC3 = cartoon):In this content
class object motion is dominant, the background is
usually static. The global motion is almost not present
due to its artificial origin of the movies (no camera). The
movement object has no natural character.

Figure 5. Snapshot of typical content class 4 (panorama)

4) Content class (CC4 = panorama):Global motion
sequences taken with a wide angle panning camera. The
camera movement is uniform and in a single direction.

5) Content class (CC5 = rest):The content class
contains a lot of global and local motion or fast scene
changes. Scenes shorter than three seconds are also as-
sociated to this content class. The content class covers
scenes which do not fit any of the previous four classes.
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III. T EST METHODOLOGY FOR VIDEO QUALITY

EVALUATION

For the tests all sequences were encoded with the
H.264/AVC baseline profile 1b. For subjective quality
testing we used frame and bit rate combinations shown
in Table III. In total there were 39 combinations.

TABLE I.
TESTED COMBINATIONS OF FRAME RATES(FR) AND BIT RATES(BR)

FR [fps]/BR [kbit/s] 24 50 56
5 CC1, CC3, CC4 CC5 CC1, CC2, CC3, CC4

7.5 CC1, CC3, CC4 CC1, CC2, CC3, CC4
10 CC1, CC3 CC1, CC2, CC3, CC4
15 CC1 CC1, CC2

FR [fps]/BR [kbit/s] 60 70 80 105
5 CC1

7.5 CC5 CC5 CC1, CC2, CC5
10 CC5 CC5 CC1, CC2, CC5
15 CC5 CC1, CC2, CC5

To obtain MOS values, we worked with 36 test persons
for two different sets of test sequences. The first set was
used for metric design and the second for evaluation of the
metric performance. The training set test was carried out
with 26 test persons and the evaluation test set was carried
out with 10 test persons. The training and evaluation tests
were collected from different sets of the five video classes.
The chosen group of test persons ranged different ages
(between 20 and 30), gender, education and experience
with image processing.
The test method was Absolute Category Rating (ACR)
as it better imitates the real world streaming scenario.
Thus, the subjects did not have the original sequence as
a reference, resulting in a higher variance. The sequences
were presented in arbitrary order and the test environment
followed ITU recommendation [17]. People evaluated the
video quality after each sequence using a five grade MOS
scale (1-bad, 5-excellent) in a prepared form.

A. Subjective quality test results

The obtained MOS data was scanned for unreliable and
inconsistent results. Votes from one viewer to a certain
sequence that differ two or more MOS grades from the
first to the second run were considered unreliable and
therefore rejected. In total, 12.3% of the results were
rejected. This correction had negligible effect on the test
global mean score. The 95% confidence intervals [17]
were as well computed, assuming the votes follow a
normal distribution. The MOS values obtained for all the
test configurations ranged from 1.6 to 4.4. The distribution
of the 95% confidence intervals for the MOS, can be used
as a quality indicator of the collected data. The average
size of the 95% confidence intervals is 0.27 on the 1-
5 MOS scale. This indicates a good agreement between
observers.

As can be seen from Figure 6, subjective video quality
is strongly content dependent, especially for lower BR.

For the ”news” sequence, the highest score is obtained by
the configuration BR@FR=105@7.5 kbps@fps, closely
followed by 105@10 kbps@fps and 56@10 kbps@fps.
Very interesting is the fact that the viewer seems to notice
no difference in quality between the combination 56@10
kbps@fps and 105@10 kbps@fps, which both receive
very positive evaluations. The most dynamic sequence
”soccer” received the best evaluation at 105 kbps. An
increasing frame rate has always a positive effect on
the perceived quality, which is in contrast with other
content types, specially to the ”news” case. In the ”soccer”
sequence viewers prefer smoothness of motion rather than
static quality.
The ”panorama” sequence receives better evaluation on
lower FR. This indicates that the users give priority to
the static quality in this case. In view of the ”cartoon”
results, we can say that a sequence of these characteristics
can be compressed at the very low data rate of 24 kbps,
still obtaining a good perceived quality. At 56 kbps the
static quality of the images is very good and does not
worsen perceptibly with increasing frame rate. Therefore,
at this data rate the quality perception of the viewers
improves with FR and the configuration 56@10 kbps@fps
receives the highest score a 4.4 MOS grade, which is even
the absolute maximum score reached in the survey. The
”video clips” encoded at the highest rate 105 kbps have
very good acceptance, but again we can observe better
evaluation for 10 fps than for 15 fps.

M
O

S

Figure 6. MOS for all the tested sequences (training set)

IV. V IDEO FEATURES EXTRACTION

In this section both our approaches for quality
estimation are described. Both estimation methods
use temporal segmentation before quality estimation.
Furthermore, both methods are based on content/character
sensitive parameters. The main difference between them
is the estimation process alone.
The human visual perception of video content is
determined by the character of the observed sequence. It is
necessary to determine different content characters/classes
or content adaptive parameters because the video content
itself strongly influences the subjective quality. The
character of a sequence can be described by the amount
of the edges (spatial information) in the individual frames
and by the type and direction of movement (temporal
information). The data rate of the video sequence is
shared by the number of frames per second. Higher frame
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rates result in a lower amount of spatial information
in individual frames and possibly in some compression
artifacts.
In the literature the focus is given mainly on the spatial
information [13], [14]. Such approaches come mainly
from the quality estimation of still images [18], [19].
However, especially in small resolutions and after
applying compression, not only the speed of movement
(influencing at most the compression rate) but also the
type of the movement plays an important role in the
user perception. Therefore, in this work we focus on the
motion features of the video sequences that determine
the perceived quality.

A. Scene change detector

Since the sequence can contain different scenes - shots
with different characteristics, we segment each sequence
first by a scene change detection based on a dynamic
threshold [20]. For our purpose the method was adopted
to all content types.
The thresholding function is based on a local sequence
statistical features. The higher accuracy was reached by
introducing 10 forecoming and 10 upcoming frames into
averaging. We calculate a sum of absolute differences [20]
(SAD) between two frames (n andn+1). Moreover, em-
pirical meanmn and standard deviationσn are computed
for a sliding window[n − N,n + N,N = 10]:

mn =
1

2N + 1

n+N∑

n−N

SADn (1)

and

σn =

√√√√ 1

2N

n+N∑

n−N

(SADn − mn)2. (2)

Equations (1) and (2) are used for defining the variable
threshold function:

Tn = a · mn + b · σn. (3)

The constantsa, b were tuned in order to get the best
performance for all content types. The constanta was
set in order to avoid wrong scene change detections like
in case of intense motion scenes; but on the other hand,
the detector can miss some low valued, difficult scene
changes. Theb constant was tuned in order to prevent
from detecting the intense motion as a scene change as
you can see in Figure 7. The scene change detector works
with both precision and recall higher than 97%.

B. Motion vectors

As a first step we partitioned the current video frames
in blocks of pixels, also known as thetarget block. The
relative difference in the locations between the matching
block and the target block is known as themotion vector
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Figure 7. Performance of dynamic threshold function on a sequence
with global rapid movement (car race).

(MV). If the matching block is found at the same location
as the target block then the difference is zero, and the
motion vector is known aszero MV.
The difference between target and matching block in-
creases (approximately linearly) with the size of the
blocks and smaller blocks better describe the actual
motion in the frame. On the other hand an increase of
the objective accuracy does not always imply a better
performance. We have observed that, if the blocks are
selected too small, the resulting MVs do not reflect
anymore the motion as it is perceived by a viewer. Due
to the unavoidable presence of noise in video sequences,
and the characteristics of the human visual system, it
happens that movement is detected although a human
observer does not see it. Such behavior is not suitable for
our purpose. After several trials with videos of different
character, we found a block size of8 × 8 pixels to be
a good trade-off for QVGA resolution sequences. The
320 × 240 pixels are divided into30 × 40 blocks, which
gives a total number of 1200 MVs per frame.
The second part of the process, and the most time and
resource consuming one, is block matching. Each block
in the current frame is compared to a certain search
region in the past frame in order to find a matching
block. This operation is performed only on the luminance
component of the frame. A matching criterion has to be
used to quantify the similarity between the target block
and the candidate blocks. Because of its simplicity and
good performance, we decided to use the sum of absolute
differences (SAD), computed as the pixel wise sum of
the absolute differences between the two blocks being
compared:

SADn,m =
∑N

i=1

∑M

j=1
|Bn(i, j) − Bm(i, j)| (4)

whereBn andBm are the two blocks of sizeN ×M ,
and i and j denote pixel coordinates. If more than
one SAD minimum is detected, priority is given to the
matching block the position of which is most similar to
that of the target block, or equivalently, to the MV of
smallest size.
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C. Extraction of sequence motion and color parameters

Once we obtained MVs, the information about the
motion (motion features) in the sequence has to be
extracted. The static or dynamic character of a sequence
is one of the main causes for the differences in perceived
quality. We intended to perform a classification not only
in terms of ”static sequences” and ”dynamic sequences”,
but also to investigate this aspect more in depth and
determine typical levels of quantity of movement
for every main content class. The overall amount of
movement, or equivalently, the lack of movement in a
frame, can be easily estimated from the proportion of
blocks with zero vectors, that is, blocks that do not move
from one frame to the other. Therefore, the average
proportion of static blocks in a sequence of frames is
very useful when it comes to distinguishing contents
with typical different ”levels” of overall movement.
The length of the MV indicates how far the block has
moved from one frame to the next, and its angle tells us
in which direction this movement occurred. Therefore,
the mean size of the MVs in a frame or sequence of
frames is an indicator of how fast the overall movement
happens. On the other hand, knowing exactly in which
direction the movement is taking place seems useless
(redundant) for our purpose. Moreover, detecting a main
direction of movement, that corresponds to big proportion
of MVs pointing in the same direction, is a valuable
information. Thus, it can be assumed that the analysis of
the distribution of sizes and angles of the MVs can give
substantial information about the character of the motion
in the sequence. A set of statistical calculations on the
MV was implemented in order to study their level of
significance and find out which features can be used to
identify perceptual content types and the video quality
itself.

D. Sequence motion and color parameters for content
classification

The content classification is based on the following
statistical and resolution independent features of MVs
within one shot (over all the frames of the analyzed
sequence):

• Zero MV ratio Nz:
Percentage of zero MVs in a frame. It is the pro-
portion of the frame that does not change at all
(or changes very slightly) between two consecutive
frames. It usually corresponds to the background
if the camera is static within one shot. This fea-
ture detects the proportion of still region. The high
proportion of the still region refers to very static
sequence with small significant local movement. The
viewer attention is focused mainly on this small
moving region. The low proportion of still region
indicates uniform global movement and/or a lot of
local movement.

• Mean MV size n:
Proportion of mean size of the non-zero MVs within

one frame normalized to the screen width, expressed
in percentage. This parameter determines the amount
of the global motion. This parameter determines in-
tensity of movement within moving region. Low in-
tensity within large moving region indicates that im-
portance of static quality. High intensity within large
moving region indicates rapidly changing scene.

• Horizontalness of movementh:
We define horizontalness as the percentage of MVs
pointing in horizontal direction. Horizontal MVs are
from intervals〈−10; 10〉 or 〈170; 190〉 degrees.

• Uniformity of movement d:
Percentage of MVs pointing in the dominant di-
rection (the most frequent direction of MVs) in
the frame. For this purpose, the granularity of the
direction is 10 degrees.

In order to increase the accuracy of the content classifier,
color features were considered. Color histograms provide
additional information about the spatial sequence char-
acter because in different types of contents, the density
and magnitude of colors differ as well. Soccer sequences
for example contain a lot of varying green colors while
cartoon sequences exhibit discrete saturated colors. This
characteristic has important consequences to the compres-
sion and transmission artifacts. Therefore, we also use the
following parameter:

• Greennessg :
We define greenness as percentage of green pixels
in a frame. For this purpose the RGB color space
was down sampled to two bits per color component
resulting in 64 colors. Five colors out of the 64 colors
cover all variations of the green color.

E. Hypothesis testing and content classification

The content classification is based on the above defined
parameters. Due to extensive set of objective parameters,
the a statistical method was used for data analysis and
content classification. This excludes content classifying
based on threshold which is a limited and not accurate
method for evaluating larger data sets.
We use a statistical method based on hypotheses testing.
Each of the described content classes is determined by
unique statistical features of motion and color parameters
(see Figure 8). Due to their unique statistical features
of well defined content classes it is not necessary to
perform M-ary hypothesis testing and it is sufficient to
formulate a null hypothesis (H0) for each content class
based on these statistical features separately. The obtained
empirical cumulative distribution functions (ECDF) from
the typical set of sequences for each content class show
substantial mutual differences (see Figure 8). From the
next investigation it results that it is very difficult to deter-
mine single parametric distribution model representation
from obtained model ECDF. For this purpose we were
looking for hypotheses testing methods which allow for
defining non-parametric, distribution free H0 hypotheses.
For our hypothesis evaluation a method is needed capable
of working with empirical (sample) distributions. For
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this purpose the most suitable is the non-parametric and
distribution free Kolmogorov-Smirnov (KS) test [21]. The
KS test is used to determine whether two underlying
probability distributions differ, or whether an underlying
probability distribution differs from a hypothesized distri-
bution, in either case based on finite samples. The two-
sample KS test is one of the most useful and general
non-parametric methods for comparing two samples, as it
is sensitive to differences in both location and shape of
the empirical cumulative distribution functions of the two
samples.
From the typical set of sequences for each content class
the ECDFs are obtained. The model ECDFs were derived
from a set of 142 typical sequences. Each content class
is described with five model ECDFs (zero MV ratio,
mean MV size, uniformity of movement, horizontalness
of movement, greenness), which correspond to their H0
hypothesis, respectively. Furthermore, it is necessary to
find the maximal deviation (Dcc max) within one content
class for all parameters (for each model ECDF). If the
Fn(x) is the model ECDF andF (x) is the ECDF of
the investigated sequence.Dn; is the maximal difference
betweenFn(x) andF (x):

Dn = maxx ‖Fn(x) − F (x)‖ . (5)

The content class estimation is based on a binary hypoth-
esis test within the first four content classes. With the KS
test the ECDFs of the investigated sequence and all model
ECDFs of the first four content classes are compared. The
KS test compares five ECDF (of defined MV or color
parameters) of defined content classes specified by the H0
hypothesis with all five ECDFs of the investigated content.
If the Dn obtained for the tested CC, is smaller than
Dcc maxfor each parameter, then the sequence matches
this CC.
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Figure 8. Model ECDF of zero MV ratio and uniformity of movement

If the ECDFs of the investigated sequence have not a
fit with any of the first four content classes, the content
classifier decides for the remaining content class number
five. The classifier estimates the content at transmitter side
from the original sequence.
The performance of the content classifier was evaluated
with two parameters.False detectionreflects the ratio
of improper detection of a content class, in the case

when investigated sequences belong to anyother con-
tent class.Good match reflects the ratio of successful
classification of investigated sequences, when investigated
sequences belong to any of the first four classes. Note, in
our sequences we had almost only cuts and no gradual
changes. The scene change detector was sensitive on
gradual shot boundaries (dissolve, fades or wipes). To
evaluate the performance of the content classifier we
used 786 sequences, 98% were classified correctly. The
achieved precision of the content classifier is shown in
Table II, what is a satisfying result for further quality
estimation.

TABLE II.
THE EVALUATION RESULTS OF CONTENT CLASSIFIER

Content class False detection [%] Good match [%]
1 0 97
2 0 100
3 5.6 92
4 0 100

F. Sequence motion parameters for direct video quality
estimation

For content classification we analyzed objective video
parameters within one sequence (between two cuts). The
difference is that for quality estimation we used data
averaged over sequence and for content classification we
process all sequence data to ECDF over all frames.
We focus on MV features, which make possible to detect
rapid local movements or character of global movement.
We investigated the following statistical MV features with
and without still region:

• mean size of all MV
• standard deviation of MV sizes
• histograms of MV directions
• variance of MV directions
• proportion of horizontal movement
• proportion of dominant MV direction

In total 12 MV features, bit rate (BR) and frame rate (FR)
were calculated. Furthermore, it was necessary to inves-
tigate the influence of these parameters on the content.
For this purpose, we used a well known multivariate
statistical method, the Principal Component Analysis
(PCA) [22]. The PCA was carried out to verify further
applicability of these characteristics for metric design.In
our case the first two components proved to be sufficient
for an adequate modeling of the variance of the data. The
PCA results (see Figure 9) show influence of the chosen
parameters (with the highest impact) on our data set for
all content classes.
The following MV features and BR represent the motion
characteristics:

• Zero MV ratio within one shot Z:
Z equals the zero MV ratioNz averaged over one
shot .

• Mean MV size within one shot V:
V equals the mean MV size averaged over one shot.
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• Ratio of MV deviation within one shot S:
Proportion of standard MV deviation to mean MV
size within one shot, expressed in percentage. High
deviation indicates a lot of local movement and low
deviation indicates global movement.

• Uniformity of movement U:
This feature expresses proportion of MVs pointing in
the dominant direction (the most frequent direction
of MVs) within one shot. For this purpose, the reso-
lution of the direction is10o. This feature expresses
the proportion of uniform and local movement within
one sequence.

• Average BR:
Refers to pure video payload. The BR is calculated
as an average over the whole stream. BR reflects
the compression the compression gain in spatial
and temporal domain. Moreover, the encoder per-
formance is dependent on the motion characteristics.
The BR reduction causes a loss of the spatial and
temporal information, usually annoying for viewers.
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Figure 9. Visualization of PCA results for all content classes.

The perceptual quality reduction in spatial and temporal
domain is very sensitive to the chosen motion features.
This makes motion features very suitable for reference
free quality estimation because higher compression does
not necessarily reduce the subjective video quality (e. g.
in static sequences).
The ANSI metric [11] consists of a linear combination
of seven objective parameters based on spatial, temporal
and chrominance properties of video streams. The biggest
weight refers to spatial and chrominace component pa-
rameters. Furthermore, these parameters reflect both the
video coding and network impairments. The ANSI de-
fined ”absolute temporal information feature” refers to the
absolute amount of motion in a sequence but not to the
character of motion as it is only based on the absolute
differences of two consecutive frames.

V. V IDEO QUALITY ESTIMATION

We propose two methods for video quality estimation.
The first is based on a set of reference free parameters.
The subjective video quality is estimated with five ob-
jective parameters. Additional investigated objective pa-
rameters do not improve the estimation performance. On
the other hand, reducing of objective parameters decreases

TABLE III.
COEFFICIENTS OF DIRECT MOTION METRIC

Coeff. Value
a 4.631

b 8.966 × 10
−3

c 8.900 × 10
−3

d −5.914 × 10
−2

e 0.783

f −0.455

g −5.272 × 10
−2

h 8.441 × 10
−3

TABLE IV.
COEFFICIENTS OF CONTENT BASED METRIC FOR ALL CONTENT

CLASSES(CC)

Coeff. CC 1 CC 2 CC 3 CC 4 CC 5
A 4.0317 1.3033 4.3118 1.8094 1.0292

B 0 0.0157 0 0.0337 0.0290

C −44.9873 0 −31.7755 0 0

D 0 0.0828 0.0604 0.0044 0

E −0.5752 0 0 0 −1.6115

significantly the estimation accuracy. The proposed model
reflects direct relation of objective parameters to MOS.
Furthermore, the mix-term show mutual dependence of
the movement intensity and its character (global or local
movement). Finally, we propose one universal metric (6)
for all contents based on the defined motion parameters
Z, S, V, U and BR:

M̂OSMV = a + b · BR + c · Z + d · Se+
+f · V2 + g · ln(U) + h · S · V.

(6)

The metric coefficients (see Table III) were obtained
with a regression of the proposed model with our training
set (MOS values averaged over two runs of all 26 subjec-
tive evaluations for particular test sequence). To evaluate
the quality of the fit of our proposed metric, we used a
Pearson (linear) [23] correlation factor.
The second proposal is a content dependent low complex-
ity metric based on two objective parameters (BR and FR)
for each content class (7).

M̂OSCC = f(BR, FR, CC). (7)

We proposed this common model (7) for each content
class, each having a different parameter setA,B,C,D,E.
Therefore, the model has linear and hyperbolic elements
(8) and the coefficients vary substantially for the content
classes. They can even have zero values. On the other
hand, a rather good correlation was achieved with one
offset and two non-zero coefficients (see Table IV).

M̂OSCC = A + B · BR + C

BR + D · FR+ E

FR. (8)

The metric coefficients were obtained by a linear
regression of the proposed model with our training set
(MOS values averaged over two runs of all 26 subjective
evaluations for particular test sequence). The model pre-
diction performance on investigated content classes can
be seen in Table V.
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TABLE V.
CONTENT BASED METRIC PREDICTION PERFORMANCE BY

CORRELATION ON EVALUATION SET

Metric/Content typeCC 1 CC 2 CC 3 CC 4 CC 5
Content based 0.9277 0.9747 0.9902 0.9030 0.9307

Direct motion based0.8468 0.9812 0.9974 0.7140 0.9509

TABLE VI.
METRICS PREDICTION PERFORMANCE BYPEARSON CORRELATION

Metric Pearson corr.
Direct motion based 0.8190

Content based 0.8303
ANSI 0.4173

A. Evaluation

The direct motion based metric [15] is a reference free
estimator as well as the content based metric. However,
the content based metric requires additional information
on the content class [16]. The obtained prediction perfor-
mance on the evaluation set (see Table VI and Figure 10)
shows good agreement between MOS and estimated MOS
results. Moreover, in Table V we can see a comparison of
prediction performance of our models based on CCs. We
can see that the content based metric has a good prediction
performance on all CCs and is particularly better on CCs
one and four (news and panorama). This reflects the
problem of universal video quality estimators (without
content classification) because the subjective perception
of video is content dependent. The weak performance of
the ANSI metric shows that this metric is not suitable for
a mobile streaming scenario.
The usage of the mobile streaming services influence
the subjective evaluation. Therefore, a universal metric
like ANSI is not suitable for the estimation of mobile
video quality. Only for higher MOS values which occur
at high bitrates (≥ 90 kbps) the ANSI metric performs
comparable to our proposed metrics (see Figure 10).
Note that the depicted values (see Figure 10) of our results
appear a bit shifted upwards. This is due to the limited
size of the evaluation set. The size of our training set is
sufficient and our model performance on it appears to be
unbiased.

B. Metric applicability

Our proposals for quality estimation are trade-offs
between applicability, processing demands and prediction
accuracy. The first proposal is more complex but allows
us to divide content classification and quality estimation
(see Figure 11). The suitable solution is to perform the
content class classification at the streaming server and
stream content information with video. Finally, the quality
estimation is performed at user equipment. This allows
us to estimate quality at the receiver with extremely low
complexity. The next approach allows for a full-reference
free estimation at the sender and receiver side. Currently,
this proposal is more suitable for streaming servers due
to limitations in processing power at the user devices.

Figure 11. Content based video quality estimator design

In comparison to the well-known ANSI metric our pro-
posals are less complex and more accurate, although
the ANSI metric was not designed for video streaming
services.

VI. CONCLUSIONS

The scope of this work was to estimate video quality for
the most frequent content types in mobile video streaming
scenarios. First, it was necessary to investigate and define
mobile scenarios and a test methodology in order to
achieve the best emulation of ”the real world scenario”.
Furthermore, we were able to define content adaptive
motion parameters which are based on MV features.
Finally, we propose two reference-free estimation me-
thods. The first method estimates video quality in two
steps — the content class is estimated from the original
video sequence at the sender side, and then the quality
metric is calculated at the receiver with almost zero com-
plexity. The second, direct motion method is suitable for
stand alone estimation at the receiver side. Furthermore,
the direct motion proposal has a slightly worse estimation
performance but allows full reference-free estimation for
all content classes. The performance of both introduced
video quality metrics shows good agreement between
estimated MOS and the evaluation set. Moreover, both
methods outperform the well-known ANSI metric.
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