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Abstract. A high-speed and hardware-only algorithm using a center of mass method has been proposed for single-
detector fluorescence lifetime sensing applications. This algorithm is now implemented on a field programmable
gate array to provide fast lifetime estimates from a 32 × 32 low dark count 0.13 μm complementary metal-
oxide-semiconductor single-photon avalanche diode (SPAD) plus time-to-digital converter array. A simple look-up
table is included to enhance the lifetime resolvability range and photon economics, making it comparable to
the commonly used least-square method and maximum-likelihood estimation based software. To demonstrate
its performance, a widefield microscope was adapted to accommodate the SPAD array and image different test
samples. Fluorescence lifetime imaging microscopy on fluorescent beads in Rhodamine 6G at a frame rate of 50
fps is also shown. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3625288]
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1 Introduction

A single-photon avalanche diode (SPAD), when biased at above

its breakdown voltage, can be triggered by a photon that results in

a self-sustaining avalanche multiplication process.1 Its gain is so

large that its output current can be easily converted into a digital

signal without using complex front-end amplifiers deteriorat-

ing the signal-to-noise (SNR) ratio.2 With such single-photon

sensitivity, SPADs are suitable for photon-starved applications

such as single molecule detection.3, 4 Thanks to the progress

of semiconductor technology, SPAD arrays have been fabri-

cated in a low-cost complementary metal-oxide-semiconductor

(CMOS) process for three dimensional ranging and fluorescence

lifetime sensing applications.5–8 The doubt about higher dark

count caused by exacerbated tunneling effect on an advanced

CMOS process has been dispelled by the latest developments in

deep sub-micron SPAD structures.9–12 A dark count rate (DCR)

of 25 Hz has been successfully reported in standard 0.13 μm

CMOS process,10 and low dark-count prototypes moving to

90 nm CMOS process node to miniaturize the pixel size or

to enhance the quantum efficiency in the near-infrared spec-

tral range have also been recently published.11, 12 Much larger
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SPAD arrays can be expected to facilitate fluorescence lifetime

imaging microscopy (FLIM) applications.

Packing SPADs in arrays provides more flexibility as SPADs

can work independently or in a group in combination with a

multi-beam confocal imaging microscope.13 The SPAD array

can provide a platform for both wide-field and confocal scanning

microscopy.

In the past, fluorescence lifetime imaging with high spatial

resolution has been achieved by applying confocal scanning mi-

croscopes. The fluorescence histogram was recorded by a high-

resolution time-to-digital converter (TDC) in a time-correlated

single-photon counting (TCSPC) module. The data was stored

in memory and then post-processed using maximum-likelihood-

estimation (MLE) or least-square method (LSM)-based curve-

fitting software pixel-by-pixel to generate a lifetime image. Al-

though the MLE (or LSM) has merits of wide resolvability range

and high photon efficiency, and usually hundreds of photons are

enough to reach an acceptable accuracy,14, 15 the data acquisi-

tion is still slow (measurement time = Nx × Ny/fp, where fp is

the scanning frequency and Nx × Ny is the dimension of the

array) and limits the systems to imaging only stationary objects.

In many biological applications, real-time FLIM imaging for

monitoring cell dynamics in low light level is desirable.
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Fig. 1 (a) Top view, (b) bottom view of imager assembly with a 32×32 CMOS SPAD + TDC chip and an Opal Kelly board containing a Xilinx
Spartan-III FPGA, and (c) 32×16 SPAD + TDC array and FPGA implementation of CMM.

There are real-time time-domain and frequency-domain

FLIM systems available for wide-field applications. The

time-domain FLIM systems usually employ time-gated

detection.16 Gated intensified charge-coupled device (CCD)

cameras with a tunable delay from the excitation pulse and a

given gate width are typically used to construct the fluores-

cence decay. Usually, a series of intensity images at different

delays are acquired to generate a lifetime image, and attempts to

solve double-exponential decays with multiple gates have also

been reported.17 For wide-field frequency domain FLIMs, they

are typically implemented using optical image intensifiers.18, 19

Directly modulating the gain of a CCD camera has also been

implemented.20 Most of the systems mentioned above are CCD-

based with multiple-channel plate intensifiers and usually re-

quire high voltage supplies (tens to hundreds of volts) or cooling

systems. The quantum efficiency, DCR, physical size, spectral

detection range, and required driving voltage for the latest re-

ported SPADs, on the other hand, have been greatly improved

during the past two years6–12 This enables rapid advances in the

development of high-speed FLIM cameras. With such SPAD-

based systems we aim to provide: 1. fast lifetime previews,

2. intensity/lifetime imaging, 3. raw arrival time for detailed

analysis, 4. a platform for both wide-field and confocal scanning

microscopy, 5. compact, low voltage, and low cost solutions,

and 6. flexibility to configure the cameras for other applications,

such as fluorescence correlation spectroscopy (FCS) or Förster

resonance energy transfer.

We have proposed a high-speed digital FLIM algorithm for

a lifetime sensing system based on the center of mass method

(CMM), and demonstrated its feasibility on real data collected

by a single 0.35 μm CMOS SPAD and a single photon multi-

plier tube system.14 It was proven to be suitable for sensing and

confocal scanning applications. To apply the CMM for imaging

applications, we need to collect arrival time information of every

detected photon event for each pixel. This can be achieved by in-

tegrating TDCs in-pixel. Richardson et al. reported a low power

10-bit TDC array (with fast and slow TDC test sub-arrays)21

with integrated low dark count SPADs (Ref. 10) to create a sin-

gle chip TCSPC sensor in a 0.13 μm standard CMOS imaging

process. The chip operates at a frame rate of 1 MHz and contains

global calibration circuitry to maintain uniformity, and a time

resolution of 54 ps has been achieved. The quantum efficiency

of the SPAD is 28% at a wavelength of 500 nm with 80% of the

pixels below a DCR of 50 Hz at room temperature. The imager

can operate in a time-correlated mode for lifetime imaging or in

a time-uncorrelated mode for intensity imaging. It can also be

configured for confocal scanning and FCS applications13 such

that multiple SPAD pixels can be grouped together and greatly

improve the photon collecting speed. The in-pixel TDCs can

generate raw arrival time data, which can be sent to a PC and

post-processed by curve fitting software. To increase the imag-

ing speed, the raw arrival time data can be processed by on-

field programmable gate array (FPGA) CMM processors. With

CMM, video-rate FLIM imaging for biological applications can

be achieved. Figures 1(a)–1(c) show the imager assembly in-

cluding a 32×32 SPAD plus TDC chip and an Opal Kelly board

containing a Xilinx Spartan-III FPGA,22 on which the CMM is

implemented.

The full range of TDCs should be able to accommodate com-

monly used samples with fluorescence lifetime, ranging from

sub-nanosecond to tens of nanoseconds. Applying previously

proposed CMM (Ref. 14) on a 10-bit TDC array with 54 or

78 ps resolution (TDC full range = 55 or 80 ns) will limit the

lifetime resolvability range to less than 8 or 11 ns (τ < T/7).

To alleviate this problem, we can either apply TDCs with tun-

able resolution or simply employ a look-up table on-FPGA or

with software without adding extra cost. The motivation of our

paper is to develop low-cost hardware algorithms that can not

only generate fast previews of the lifetime data but also re-

move I/O bottlenecks by compressing the raw timing data. For
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simplicity and for a low cost solution, we assume the fluo-

rescence emission is a single-exponential decay. The single-

exponential decay model, however, is still useful to contrast

different types of fluorophores. For diagnostic applications, ob-

taining lifetime contrast is probably more important than calcu-

lating the absolute values of lifetimes.16 End-users can use the

proposed algorithms to generate high-speed wide-field previews

of lifetime data and switch to record raw data in wide-field or

confocal scanning systems to produce high-resolution imaging

on the area-of-interest. High-speed preview images are partic-

ularly useful for recording flow or protein-protein dynamics in

live cells with minimum hardware/software resources.

In this paper, we first introduce a simple lifetime correction

method that can be either implemented on firmware or soft-

ware to enhance the lifetime resolvability range of the proposed

CMM algorithm. The error equations for the corrected CMM

algorithm will be given in Sec. 2. The correction allows the ap-

plication of a higher laser repetition rate and therefore decreases

the acquisition time. The FPGA implementation for the pro-

posed algorithm on a low noise 32×32 0.13 μm CMOS SPAD

plus TDC array will be introduced in Sec. 2. Image analysis of

the SPAD array and video-rate FLIM will be presented in Sec. 3.

2 Material and Methods

2.1 Fluorescence Lifetime Imaging Microscopy
Algorithm Using Center-of-Mass Method

For a fluorescence histogram with a single-exponential decay f(t)

= Aexp( − t/τ ) in a measurement window 0 ≤ t ≤ T recorded

by the in-pixel 10-bit TDC,21 its center of mass (CM) is approx-

imated to the lifetime τ

CM =
∫ T

0
t f (t)dt

∫ T

0
f (t)dt

= τ −
T e−T/τ

1 − e−T/τ

∼= τCMM =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

M−1
∑

j=0

j N j

Nc

+
1

2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

h, (1)

where the TDC quantizes the measurement window into M time

bins with the bin width of h. Nj is the number of recorded counts

in the jth time bin (j = 0, 1, . . . , M–1), and Nc is the total

signal count within the measurement window. The accuracy and

precision equations for CMM are given in Ref. 14, and rewritten

as

�τC M M

τ
=

h

τ
G(x) − 1, (2)

στC M M

τ
=

h

τ
√

Nc

√
P(x)

(1 − x)(1 − x M )
, (3)

G(x) =
1 + x

2(1 − x)
−

Mx M

1 − x M
, (4)

P(x) = x − M2x M + (2M2 − 2)x M+1 − M2x M+2 + x2M+1,

(5)

where x = exp(–h/τ ). Equation (1) can be easily implemented

with a simple adder that can greatly reduce the readout band-

width. The inverse precision and accuracy curves (easily trans-

ferred to dB) for the CMM and the 2-gate rapid lifetime deter-

mination (RLD) method23–26 for a measurement window of Mh

= 2wg = 1024h (wg being the RLD gate width) and Nc = 217 are

already shown in Ref. 14. From Eq. (1), the lifetime resolvability

range of CMM for an error less than 0.5% is from Mh/τ = 7.5 to

230, whereas that of RLD is from Mh/τ = 2.7 to 7.7. Although

the photon count required to reach the same accuracy is less

than for CMM, it can be argued that using RLD can employ a

higher laser repetition rate to achieve a faster acquisition speed.

On the other hand, when the raw decay data is also required for

detailed confocal scanning analysis using commercial iterative-

based LSM software, it is desirable that a measurement window

of 2 to 4τ is employed, which is clearly not favorable for CMM.

A simple measure is needed to solve this problem.

2.2 Enhancing Resolvability Range of Center of
Mass Method

The calculated lifetime τCMM only approximates to the ex-

act one τ as a measurement window T > 7τ . For T < 7τ ,

Eq. (1) becomes a biased estimator, and it quickly converges

to a less uncertain but wrong estimation smaller than the actual

lifetime. To enhance the lifetime resolvability range, Eq. (1)

needs to be re-examined. When T < 7τ is employed, the term

Texp(–T/τ )/[1 – exp(–T/τ )] in Eq. (1) cannot be neglected, and

Eq. (1) is rewritten as

τCMM

T
=

τ

T
−

e−T/τ

1 − e−T/τ
. (6)

There is no closed form solution for Eq. (6), but it can be solved

using the recursive approximation method as follows:

τi+1

T
=

τCMM

T
+

e−T/τi

1 − e−T/τi
, (7)

where i = 0, 1, 2, . . ., τ 0 = τCMM, and the process stops when an

accuracy criteria is met |τ i + 1 –τ i| < ε. The root-finding process

in Eq. (7), however, slowly converges as τCMM/T approaches 0.5.

To increase the imaging speed, the recursive approximation re-

sults can be pre-stored in a look-up table (LUT) in software or in

a vector using Matlab to directly map τCMM to τ . The resolution

of the LUT can be further enhanced by introducing interpolation

techniques. From Eqs. (1), (2), and (4), the accuracy for the new

corrected lifetime becomes

�τC M M,Corr

τ
=

h

τ
G(x) − 1 +

T e−T/τ

τ (1 − e−T/τ )

=
h

τ
G(x) − 1+

h

τ

Me−Mh/τ

1 − e−Mh/τ
=

h

τ

1 + x

2(1 − x)
−1,

(8)

where x = exp(–h/τ ) and only the quantization error introduced

by the TDCs remains. With Eq. (7), it can be shown that the life-

time resolvability is greatly improved. Differentiating Eq. (6),

the corresponding precision can be easily obtained by

στC M M,Corr

τ
=

στC M M

τ

(

dτC M M

dτ

)

=
h

τ
√

Nc

√
P(x)(1 − x M )

(1−x)
[

(1−x M )2− M2h2

τ 2 x M
]
. (9)
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Fig. 2 (a) Inverse precision and accuracy curves for the corrected
CMM, MLE, and 2-gate RLD with Nc = 217 (Measurement window:
Mh = 2wg) and (b) the ratio of the standard variation obtained by the
corrected CMM to that obtained by the MLE for different values of M.

For MLE,15 the precision is

στM L E

τ
=

τ

h
√

Nc

(1 − x)(1 − x M )
√

P(x)
. (10)

Figure 2(a) shows the inverse accuracy and precision curves

of Eqs. (8), (9), and (10) for M = 128, 256, 512, 1024, and Nc

= 217. The precision curves for the corrected CMM and MLE are

almost the same in 1 < T/τ < 100. Compared with uncorrected

CMM in Ref. 14, the accuracy of the corrected CMM is greatly

improved, and its precision performance is comparable to and

better than RLD in 1 < T/τ < 4 and T/τ > 4, respectively. The

precision curves of the corrected CMM are in good agreement

with MLE ones for different values of M. Smaller Ms only result

in higher quantization errors. Figure 2(b) shows the ratio of the

precision obtained by Eq. (9) to that obtained by Eq. (10) for

different values of M, and it shows that Eq. (9) is equivalent to

Eq. (10) in the lifetime range of interest 1 < T/τ < 100. For

M = 100, the ratio deviates from 1.0 as the estimator contains

a significant bias for T/τ > 40. It is not sensible to operate

CMM beyond this range, since system nonidealities such as

the full width at half maximum (FWHM) of the instrument

response function (IRF) should be considered and the system is

not designed for detecting a fluorescence lifetime much larger

than 100 ns.

Fig. 3 On-FPGA CMM implementation for a column (1×16) of
SPADs.

2.3 On-FPGA Implementation of Center of Mass
Method for Low Dark Count Single-photon
Avalanche Diode Arrays

We rewrite Eq. (1) as

τC M M

h
=

Nc
∑

i=1

D̄i

Nc

+
1

2
, (11)

where D̄i is the 10-bit TDC output of the ith captured photon.

The lifetime can be updated when the counter storing Nc reaches

a value of

Nc = 2L , L is an integer, (12)

or when the frame counter reaches a certain number set by

a user-defined value. The FPGA shown in Fig. 1(b) takes

2×32 parallel signals from two 32×16 SPAD arrays (with

fast and slow TDC test sub-arrays). Figure 1(c) shows half the

SPAD array (32×16) connected to on-FPGA CMM processing.

Figure 3 shows the CMM implementation for one column of

SPADs (1×16) on the Spartan-III FPGA. The rationale of im-

plementing CMM on-FPGA is to evaluate the possibility of

implementing CMM on-chip. On-chip CMM can act as a data

compressor allowing a high resolution SPAD imager to operate

at a higher frame rate (instead of 1 MHz in Ref. 21) without chal-

lenging the readout bandwidth of output pads. The prototype is

aimed to provide both real-time FLIM and raw arrival time data
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for scientific research. Unlike the one used in Ref. 14 for single-

detector sensing systems, the new FPGA processor contains a

4-bit row address signal synchronized to the row number of

each half of the SPAD array. The row address signal first points

to the on-FPGA memory RAM16×1S (Ref. 22) (width = 10

+ L) where a previous sum is stored. The detected TDC value

for the corresponding pixel is passed to the 10-bit comparator

for comparison with the user-defined parameters, FIRST and

LAST, which define the measurement window. If the TDC value

is within the window, the content is loaded and summed with the

new TDC data, and a new summing result from the adder output

will then update the content in the memory. The camera contains

a memory controller for recording the raw data, which can pro-

vide information such as, locations of high-DCR pixels (DCR

> 500 Hz, denoted as noisy pixels hereafter for they exhibit

higher dark count noise), IRFs of pixels, and TDC uniformity,

etc. When the condition in Eq. (12) is met or a certain frame

number is reached, the lifetime is updated. The corrected life-

time can be obtained by

τ = �

(τC M M

T

)

· T = �

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1

M

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Nc
∑

i=1

D̄i

Nc

+
1

2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎦

· Mh,

(13)

where �(*) is the LUT that maps a normalized τCMM to a nor-

malized τ (see Fig. 3). The parameter M = FIRST – LAST +
1, and it is straightforward for the software to calculate τ by

Eq. (13) with the already known M and h. The memory required

to store the photon count Nc for each pixel works similarly

but with a size of 16L-bits. The total memory size for a col-

umn of SPADs (1×16) is (160 + 32L)-bits. Therefore, for a

whole array of SPADs (32×32), the memory usage is 2×32

× (160 + 32L) = (10 + 20L) k-bits. From Fig. 2(b) and

Eqs. (9) and (10), we have established an algorithm virtually

equivalent to MLE in the lifetime range of interest with the ad-

vantage that CMM has a much simpler 1-D LUT only depending

on T/τ rather than both M and T/τ [Ref. 15, Eq. (4)]. When the

camera is used for T > 7τ , Eq. (13) can be bypassed.

3 Experimental Results

3.1 Corrected CMM Fluorescence Lifetime Imaging
Analysis on DNA Microarrays

To evaluate the suitability of CMM for fluorescence lifetime

imaging applications in realistic experimental conditions we first

present post-processed (software-based) CMM of TCSPC data

collected from DNA microarrays.27 DNA microarrays consist-

ing of 16 spots where incubated with (a) hepatitis C virus (HCV)

probe, (b) human cytomegalovirus (HCMV) probe, and (c) a 1:1

molar ratio of these two probes. The arrays were hybridized with

a 10-nM solution of fluorescently labeled complementary tar-

gets with a distinctly different excited state lifetime: HCV targets

were labeled with Alexa Fluor 430 and HCMV with quantum

dot (Qdot525) with lifetimes of approximately 4.2 and 22 ns,28

respectively. The labeled microspot arrays were imaged using

total internal reflection fluorescence (TIRF) illumination and

TCSPC histograms were recorded using 32×16 SPAD + TDC

array with 55 ns range. Details of the experimental procedures

are given elsewhere.27

Figure 4(a) shows a fluorescence histogram collected by a

pixel, a tail-fitted decay using the proposed CMM, and the resid-

ual plot for the Qdot525 labeled HCMV probes. Figure 4(b)

shows the estimated lifetime and precision curves versus the

measurement window (M = 200 to 800; 0.5 < T/τ < 2) for

different algorithms. The uncorrected CMM, Eq. (1), suffers a

significant bias even with the maximum measurement window

the TDC can provide. For M = 200, the uncorrected CMM

obtains a lifetime of 5 ns, which is far from the reality! The

results obtained by the corrected CMM, Eqs. (7) or (13) con-

verge to those obtained by the MLE as M increases and are

slightly better than those by RLD, which is in good agree-

ment with Fig. 2(a). The corrected CMM can extend the re-

solvability range down to Mh = 0.5τ , but the measurement

window is usually chosen as Mh = 2 to 5τ for better preci-

sion. Figure 4(c) shows the photon count (intensity) and life-

time images for the 10 nM Qdot525 labeled microspots using M

= 500.

The analysis can be repeated for Alexa labeled HCV mi-

crospots. Figure 5(a) shows a fluorescence histogram collected

by a pixel, a tail-fitted decay using the proposed CMM, and

the residual plot. Figure 5(b) shows the estimated lifetime and

precision versus the measurement window (M = 100 to 800; 1

< T/τ < 10) for different algorithms. As the signal levels are

lower, the background plays a more significant role and con-

tributes to the loss of precision for a larger M. There exists a

trade-off between samples with different lifetimes. Nevertheless,

the algorithm provides reliable lifetime estimates when simulta-

neously imaging differently labeled spots as shown in Fig. 6(a)

using M = 500. The lifetime map and the corresponding lifetime

histogram shown in Fig. 6(b) are in good agreement with the

results reported in Ref. 27, Fig. 3(d). Note that for the two mixed

(both labels present) spots the delay is clearly multi-exponential.

CMM returns an estimate of the average lifetime, losing infor-

mation about the decay dynamics but providing enough con-

trast to clearly distinguish the three types of microspots. From

Eq. (1), for a double-exponential decay f(t) = A1exp( − t/τ 1)

+ A2exp( − t/τ 2), the calculated lifetime using the uncorrected

CMM is

τCMM

∼=
∫ T

0
t f (t)dt

∫ T

0
f (t)dt

=
A1τ

2
1 e−t/τ1

(

− t
τ1

− 1
)
∣

∣

∣

T

0
+ A2τ

2
2 e−t/τ2

(

− t
τ2

− 1
)
∣

∣

∣

T

0

−A1τ1e−t/τ1 |T
0 −A2τ2e−t/τ2 |T

0

.

=
A1τ

2
1 − A1τ

2
1 e−T/τ1

(

T
τ1

+1
)

+ A2τ
2
2 − A2τ

2
2 e−T/τ2

(

T
τ2

+1
)

A1τ1 − A1τ1e−T/τ1 + A2τ2 − A2τ2e−T/τ2
,

(14)

and the proposed system will provide a calculated lifetime τ

= �(τCMM/T) · T from Eq. (13). For A1:A2 = 1:1, 1:2, 1:3, 2:1,

3:1 with the measurement window above, the lifetimes are 14.0,

17.1, 18.5, 11.3, and 9.8 ns, respectively.
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Fig. 4 (a) Fluorescence histogram and residual curves obtained by the
proposed CMM, (b) lifetime and precision curves for different algo-
rithms, and (c) intensity and lifetime images of quantum-dot labeled
DNA microarray using M = 500.

Fig. 5 (a) Fluorescence histogram and residual curves for Alexa ob-
tained by the proposed CMM, (b) lifetime and precision curves for
different algorithms, and (c) intensity and lifetime images of Alexa la-
beled DNA microarray with M = 500.
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Fig. 6 (a) Intensity and lifetime images of Qdot525 labeled, Alexa
labeled, and 1:1 molar ratio of Qdot525/Alexa labeled DNA microarray
and (b) lifetime histogram.

3.2 Fluorescence Lifetime Estimation Based on Low
Number of Photon Events

3.2.1 Fluorescence lifetime imaging on Rhodamine B

To achieve high-speed FLIM imaging, it is desirable to study the

error performance when using a low number of photon events.

For experimental demonstration of the CMM hardware lifetime

calculation algorithm, a standard fluorescence lifetime wide-

field imaging system was set up on a Nikon TE2000U inverted

microscope. The excitation source was a PicoQuant pulsed diode

laser with a wavelength of 470 nm coupled through the epi-

fluorescence port of the microscope using a Nikon B-2A filter

cube. The laser pulse rate is 20 MHz and the maximum power

reaching the back focal plane of the objective is about 90 μW.

The sample was imaged onto the 32×32 SPAD camera directly

attached to one of the camera ports using a 20× objective (Nikon

Plan Apo, 20×, NA 0.45). The TDC resolution is set to be 78 ps

with the on-chip phase-locked loop enabled.21 The IRF was

measured by replacing the sample with a mirror and removing

the emission filter so that the excitation light was found to have

a FWHM of 0.6 ns.

First, a uniform sample of an aqueous solution of Rhodamine

B was imaged, which makes it possible to assess the influence of

inter-pixel variations. Each pixel has its own physically distinct

SPAD and TDC leading to slightly different characteristics for

each pixel. About 13% of the SPADs have a DCR in excess of

500 Hz and the peak position of the IRF has a standard deviation

of about five bins due to variations in the time offset. We used the

raw data stored in the memory to predict the error performance

of the on-FPGA CMM. A measurement window of 100h (M

= 100; Mh/τ ∼ 4.1) was chosen to calculate lifetimes. Two

global window parameters FIRST and LAST ( = FIRST + M

− 1) can be set by users even without knowing the precise peak

position of each IRF. For more accurate imaging, IRFs of all

the pixels can be recorded, and the shift of their peak positions

�FIRST relative to FIRST, can be added to the detected TDC

value for each pixel such that the peaks for all histograms would

align for the best photon efficiency. For fast demonstration, we

only implemented the blue blocks of Fig. 3 on FPGA with a

global FIRST set to all pixels (denoted as the global scheme

hereafter). Figure 7(a) shows lifetime images obtained by the

corrected CMM, for an average Nc = 335, 677, 1376, and 2774,

respectively, with FIRST set for each pixel to the peak of its own

histogram (denoted as the local scheme hereafter), but without

the noisy pixels [∼13% of pixels with DCR > 500 Hz (Ref. 21)]

removed. The pattern of noisy pixels can be easily spotted, and

it can be located during the characterization of the imager. It is

desirable to exclude these noisy pixels to solely reveal the error

performance of the algorithms. We applied simple median filter-

ing only on the noisy pixels, and the lifetime images are shown

as Fig. 7(b). Figure 7(c) shows lifetime images for an average Nc

= 281, 562, 1123, and 2244, respectively, using the global

scheme, which will be similar to the images generated from

the on-FPGA CMM. Figure 7(d) shows lifetime versus Nc scat-

tergrams with the noisy pixels excluded. From Eq. (9), the pre-

cision for the corrected CMM is about 3log2(Nc) – 1.5 (dB) at

Mh/τ ∼ 4.1 [F ≡
√

Nc · στ/τ = 1.2 (Ref. 29)]. Figures 7(e)

and 7(f) show the precision curves versus Nc with the local

and global schemes, respectively. The measurement window for

RLD was chosen at its optimum condition for a fair comparison.

The global scheme contributes to 1 to 2 dB of loss in precision

and a bias of 0.03 ns due to some pixels having their peaks away

from FIRST, but we can expect the loss will be smaller for re-

solving samples with larger lifetimes. The error performance of

the corrected CMM is similar to that of MLE. With the global

scheme, the proposed CMM can extract lifetimes with an SNR

of 22 dB with only 281 counts (F ∼ 1.3). The ideal curve is

based on the MLE,15 but without considering nonidealities of

the system, such as jitter, uniformity, etc. The deviation from

the ideal curve (note the F value is not 1.0, since we use a mea-

surement window of 4.1τ where the optimum F = 1.2) comes

from nonidealities such as jitter of the IRF, nonuniformity of the

TDC resolution, and background, etc. Nevertheless, it provides

reliable lifetime estimates and is enough for high-speed FLIM.
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Fig. 7 (a) and (b) Lifetime images for different Nc with local FIRST scheme without and with noisy pixels filtered respectively, (c) lifetime images for
different Nc with a global FIRST, (d) lifetime versus photon count scattergrams with noisy pixels excluded, precision plots with (e) the local scheme
and (f) a global FIRST.
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Fig. 8 (a) Lifetime images of fluorescent beads in Rhodamine 6G for different average photon counts, (b) lifetime versus photon count scattergrams
with a global FIRST, (c) precision curves for Rhodamine 6G, and (d) precision curves for the bead in the measurement window (M = 250).
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Fig. 9 (a) (Video 1) Fluorescence lifetime movie of fluorescent beads (τ = 5 ns) in Rhodamine 6G (τ = 3.8 ns), (b) 72nd to 76th frames of lifetime
images and their corresponding lifetime histograms, respectively, and (c) and (d) estimated lifetimes of the pixels O (14, 12) and P (6, 16) versus the
frame number, respectively. (Video 1, Quicktime, 5.7 MB) [URL: http://dx.doi.org/10.1117/1.3625288.1]
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3.2.2 Fluorescence lifetime imaging on fluorescent
beads in Rhodamine 6G

In order to study the error performance of the proposed on-

FPGA CMM, we prepared a simple sample showing two distinct

but similar lifetimes by suspending yellow-green fluorescent

polystyrene beads of 15 μm diameter (Invitrogen, FluoSpheres,

F8844) in an aqueous solution of Rhodamine 6G. The fluores-

cent solution was prepared very concentrated (1 mM) in order

to achieve signal levels comparable to the bright beads.

But, before we demonstrate video-rate FLIM imaging on

fluorescent beads in Rhodamine 6G, it is desirable to study the

error performance of the proposed on-FPGA CMM on a static

sample. By doing so, we can expect what we are going to see

on the video. We choose M = 250 (Mh ∼ 5τ for Rhodamine 6G

and Mh ∼ 4τ for the beads) and a global FIRST for the whole

array. Figure 8(a) shows the lifetime images of a fluorescent

bead in Rhodamine 6G for an average Nc of 430, 862, 1726,

and 3454, respectively. Figure 8(b) shows the scattergram of the

lifetimes versus the photon counts for the RLD (gate width wg

= 2 ∼ 2.5τ ) and corrected CMM. The measurement window for

RLD was chosen at its optimum condition for a fair comparison.

Figures 8(c) and 8(d) show the precision plots for Rhodamine 6G

and beads, respectively. The error performance of the corrected

CMM is similar to that of MLE. The CMM performs better than

RLD for resolving Rhodamine 6G with a margin of 2 dB. The

number of pixels covering the bead is small, and that is why we

have a higher deviation. The lifetimes can be estimated from

the lifetime histograms and they are 3.8 ns for Rhodamine 6G

and 5.0 ns for the bead, both in good agreement with the data

provided by the manufacturers.

3.3 Video-Rate Fluorescence Lifetime Imaging on
Fluorescent Beads in Rhodamine 6G

To demonstrate video-rate performance, the sample stage hold-

ing a sample of fluorescent beads in Rhodamine 6G was trans-

lated, simulating flow of tracer particles in a microfluidic cell

sorter system. From the discussion in Sec. 3.2, we choose M

= 250, a global FIRST for the whole array, and L = 10 (Nc

= 1024).

Figure 9(a) (Video 1) shows the first frame of the lifetime

image and the corresponding lifetime histogram of the video,

240 frames in total. The lifetime images are generated at a frame

speed of 50 fps (lifetimes updated at a rate higher than 100 Hz),

but the video is played at a ×0.6 speed, 30 fps. We applied

median filtering to remove the noisy pixels on FLIM images, and

the noisy pixels were also excluded from the lifetime histogram

solely to reveal the performance of the proposed algorithm.

Figure 9(b) shows the 72nd to 76th frames of lifetime images

and their corresponding lifetime histograms, respectively, as a

new bead goes into the field of view. The size of the bead

is 15 μm. The speed of the translating stage reaches up to

200 μm/s. The 76th frame contains two beads, and the lifetimes

of the Rhodamine 6G and the beads with noisy pixels removed

are 3.8 ns (στ ∼ 0.19 ns) and 5.0 ns (στ ∼ 0.25 ns), respectively.

Their precisions are both around 26 dB close to the estimation

on the precision plots shown in Figs. 8(c) and 8(d). Figures 9(c)

and 9(d) show the estimated lifetimes of the pixels (14, 12)

marked as “O” and (6, 16) marked as “P” versus the frame

number, respectively. During the video recording, the sample

stage was initially static for 15 frames and it started to move.

The top speed can be observed from the 72nd to 76th frames.

After that, it was slowed down and then moved backward from

the 160th frame. Throughout the video, only one bead passed

the pixel (14, 12), whereas two beads passed the pixel (6, 16)

with the first bead marginally passing it once and the second one

passing it forward and backward with different speeds.

4 Conclusion

A newly proposed FPGA algorithm for single-detector fluores-

cence lifetime sensing systems, CMM, has been successfully

improved and employed for high-speed FLIM imaging applica-

tions. It can be viewed as a hardware implementation algorithm

for the commonly used MLE method, as it has very similar per-

formance but only needs a simple 1D LUT rather than a 2D

LUT that depends on both M and h. To demonstrate its perfor-

mance, a wide-field microscope was adapted to accommodate

a 0.13 μm CMOS 32×32 SPAD + TDC array to test differ-

ent fluorescent samples. Video-rate FLIM imaging with a frame

rate over 50 fps can be achieved and has been demonstrated on

fluorescent beads in Rhodamine 6G. The calculated lifetimes

are in good agreement with those obtained by commercially

available software. To enhance the lifetime resolving range, the

previously proposed algorithm has been modified by introduc-

ing a LUT on software and demonstrated on real data. We can

expect our FLIM camera prototype with future improvements

on firmware/software and with the mounted micro-lens array to

improve sensitivity30 to provide new applications for cellular

imaging, such as proteomics, DNA microarray scanning, flow

engineering, protein-DNA interactions,31 and tissue imaging.32
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