
Video-rate Localization in Multiple Maps for Wearable Augmented Reality

Robert Castle, Georg Klein, David W Murray

Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK

[bob,gk,dwm]@robots.ox.ac.uk

Abstract

We show how a system for video-rate parallel camera

tracking and 3D map-building can be readily extended to

allow one or more cameras to work in several maps, sepa-

rately or simultaneously. The ability to handle several thou-

sand features per map at video-rate, and for the cameras to

switch automatically between maps, allows spatially local-

ized AR workcells to be constructed and used with very little

intervention from the user of a wearable vision system. The

user can explore an environment in a natural way, acquir-

ing local maps in real-time. When revisiting those areas

the camera will select the correct local map from store and

continue tracking and structural acquisition, while the user

views relevant AR constructs registered to that map.

1. Introduction

Many of the more advanced applications of wearable and

hand-held cameras, particularly those involving augmented

reality (AR), share characteristics with robot visual navi-

gation. Principally, both require the acquisition and main-

tenance of an estimate of the camera’s position and orien-

tation relative to some geometric representation of its sur-

roundings. The map of the surroundings may be pre-built,

perhaps most simply using distinctive artificial fiducials or

landmarks; or it may be a CAD model with complexity

ranging from merely a single object, through the interior

of a building, to a complete streetscape. Hand-crafting of

maps has long been regarded as impracticable, and much

effort in visual structure from motion (SfM) and robot si-

multaneous localization and mapping (SLAM) over the last

few decades has been dedicated to acquiring structural mod-

els and maps automatically. While SfM has been rooted in

the off-line optimal reconstructions of both minimalist and

dense structure (e.g. [20, 6, 18]), SLAM’s tradition is in re-

cursive recovery of the scene on-line whilst respecting the

correlations amongst and between camera and scene state

entities (e.g. [22, 12, 23]).

There are however important differences between vision

for wearables and for robot navigation, and we highlight

three. The first is that a wearable camera is much more

agile than a robot camera, which will cause image degra-

dation through motion blur. The second is that odometry is

also usually unavailable, and when combined with the first,

it allows less confidence to be placed in priors. However

good the model describing camera motion is, and for hu-

man motion they are usually far from good, it is important

to accept the inevitability of the camera frequently becom-

ing lost. Therefore, robust methods of recovering from such

events must be incorporated into any system.

Rapid relocalization of a lost camera was demonstrated

recently by Williams et al. [24] using a variant of Lepetit

and Fua’s feature description and matching using random-

ized trees [15]. It was demonstrated operating within the

Extended Kalman Filter (EKF) monoSLAM algorithm of

Davison et al. [3, 4], a method which has already proved a

useful vehicle for AR using wearable vision [16, 2].

However, despite the added ability to relocalize, our ex-

perience is that the wearer or holder of the camera always

feels constrained to move cautiously rather than naturally,

a result of the EKF having to get every match correct at

each frame, despite the shortcomings of the motion model.

Furthermore, mitigating the loss of certainty in the motion

model makes it all the more important to process everything

at frame-rate. This shows up the EKF’s relatively high com-

putational cost per update, and unfavourable computational

complexity which is quadratic in the number of features in

the map. We find a usable maximum for 30 Hz operation

is in the order of one hundred points, which means even

the local environment around the user is sparsely populated

with features.

In this paper we build on the work of Klein and Murray

who demonstrated that by separating the task of maintain-

ing the camera track at frame-rate from the less urgent task

of optimally updating the 3D structure from measurements

made in keyframes only, SfM methods could provide a vi-

able alternative to conventional SLAM [9]. It was found

that the method allowed for greater freedom of movement

for the handler of such a camera and, perhaps more impor-

tantly, 30 Hz operation was maintained with several thou-

sand point features (e.g. Figure 1). Here we show empir-

(a) (b) (c)
Figure 1. A desk-top scene (a), and a comparison of the 3D maps obtained after 20 seconds’ acquisition at 30 Hz frame rate using

(b) the parallel tracking and mapping method of [9] and (c) monoSLAM [4]. The far greater feature density in (b) is evident.

ically that such maps are sufficiently spatially sized, and

sufficiently detailed, to represent the local visual environ-

ment around a wearable camera, and that they contain suffi-

cient redundancy to cope with a degree of change over time.

They allow the user to walk freely around an environment,

acquiring local maps in real-time, and later, when revisiting

those areas, to match to the local map in store and continue

structural acquisition, while viewing relevant AR constructs

registered to the map.

This paper points out too that decoupling tracking from

mapping makes it quite straightforward to add further inde-

pendent cameras which may add to a map.

From a broader contextual view, the results argue for the

utility of separate local structural maps for wearable vision;

a utility which originates in a third principal distinction be-

tween wearable and robot vision. It is that the human is

considerably more intelligent than a robot camera platform,

and can be relied upon to provide the spatial and naviga-

tional links between individual local maps at A and B, navi-

gating between with minimal information and avoiding ob-

stacles with a deftness that robots still cannot. Also, for a

wearer, the areas of interest are at A and B, not on the route

in between. Our concerns differ here from the approach in

robotic SLAM of submapping (used as a method of tam-

ing complexity, e.g. [13, 7, 14]), in that we are not con-

cerned with the detailed geometrical relationship between

submaps (indeed, if at all in some applications). The very

recent work of [11] has some similar aims to ours, though

the approaches differ in detail.

Section 2 reviews the tracking and mapping algorithm

which our work is based upon. Sections 3 and 4 explain the

modifications required to allow multiple tracking cameras

to work with multiple maps, and how we use them in prac-

tical applications. Section 5 describes the implementation

of the system on a wearable vision platform built to support

this work. Section 6 provides an experimental evaluation of

the method. As these experiments are carried out on-line the

accompanying video submission is an important adjunct to

the section, and Section 7 lists our conclusions and provides

more general discussion.

2. Tracking and mapping

We outline the tracking and mapping method of [9] be-

fore describing how it is used with multiple cameras and

how maps can be matched and re-opened. The method is

designed for scenes that are predominantly rigid and that

can be effectively summarized using the order of 103 vi-

sual corner features. Thus office-sized rather than city-sized

scenes are handled, a size which is highly compatible with

many AR applications related to the workplace. The mo-

tivation for separating tracking from mapping comes from

the observation that visual SLAM methods, both EKF- and

FastSLAM-based, spend too great a time per frame refer-

encing the 3D map and its covariance. The root of their

difficulties is that they under exploit the epipolar geometry

which allows camera motion to be found, without address-

ing the structure explicitly.

2.1. Tracking

Suppose that a 3D map has already been initialized.

Tracking proceeds at each frame by first subsampling the

new grey-level image into a four-level pyramid spanning

three octaves, and computing corner features at each scale

using the FAST-10 detector [21]. A prior pose for the cam-

era is obtained using a model that assumes constant or de-

caying velocity in the presence or absence of measurements,

respectively. Around 50 map points (which are stored with

an appearance model from the keyframe in which they are

first observed) are projected in the image at the coarsest

scale, and those that are matched to the current image fea-

ture list are used to update the camera pose using robust

minimization. Further iterations are made, pulling in more

points as the scale moves from coarse to fine. Details of the

matching and minimization objective function are in [9].

The fraction of features successfully matched is moni-

tored as a measure of tracking quality. Two thresholds are

chosen. If the fraction falls below the higher, tracking con-

tinues as above, but the frames involved are prevented from

becoming keyframes for the mapping process described be-

low, as the image quality is probably poor. The fractions

falling below the lower threshold indicates that tracking has

failed terminally, and a method of relocalization is used to

recover. The recovery method is also used in further con-

texts in the present work, and is discussed in Section 3.

2.2. Mapping

The mapping process runs separately from the tracking

and uses measurements from keyframes, here defined as

frames for which the camera pose is quite distinct from ex-

isting keyframes.

To initialize a map at the outset, a camera viewpoint is

selected by the user and its image and feature list becomes

the first keyframe. The camera is then moved1 to a new po-

sition, with sufficient care to allow features to be tracked

using the image alone. This image is captured as the second

keyframe, and Faugeras and Lustman’s method [5] is used

to compute the new camera pose and to triangulate scene

points. Often in our work those initial 3D features will lie

on a desk-top or ground plane and, as a convenience, a dom-

inant plane is found in the structure, and the map reoriented

so that this defines the scene’s Z = 0 surface. It is stressed

that the plane plays no special rôle in the structure from mo-

tion calculations.

As the camera is moved further, additional images and

2D feature lists are designated as keyframes whenever (i)

tracking is deemed good, (ii) the camera has translated by

a minimum distance from any previous keyframe, and (iii)

around 20 frames have passed since the previous keyframe.

This last condition restricts the volume of processing.

Recall that the tracking process will already have de-

tected corner features in the image pyramid and will have

matched a subset of them to the projections of existing

3D map points. To add new points to the map, features

are sought in the image which are unmatched, particu-

larly salient, and which are distant in the image from any

matched feature. To initialize the points in the map, a search

is made in the spatially closest keyframe for image matches,

and their 3D positions triangulated (the relative pose be-

tween the keyframes is known from the tracking process).

At this point, the putative 3D positions {pi}, i = 1 . . .M
of all map points and all keyframe camera poses except

the first {µj}, j = 2 . . . N are optimized in a bundle ad-

justment, using Levenberg-Marquardt (as described in Ap-

pendix 6.6 of [8]) to minimize a robust cost C(·) based on

image errors e

{p̂}, {µ̂} = arg min{p},{µ}

∑ ∑
C(|eji|/σji, σT) .

1The motion must of course include translation, which is assumed to

be some 100 mm in order to set a reasonable scale on the map.

Because this is a batch process and the data retained

throughout, it is open to the map builder to delay perform-

ing the complete adjustment until time and processor load-

ing permits. The load is monitored, and if keyframes are

being added frequently, local bundle adjustments on a lim-

ited number of keyframes are performed. In recent work

on visual odometry [17, 19], using temporally local bundle

adjustments (a sliding window) has been found to be re-

markably accurate even without a global adjustment. Here

the locale is spatial, which will be partially correlated with

time, but will include old keyframes if the camera revisits a

location after a period of neglect. Here then, the “mortar”

between the geometrical elements never “sets hard” as it

does in the case of visual odometry. Details of the method,

and an informative system diagram, are in [9].

Figure 1 contrasts the density of points in typical maps of

the same scene obtained after the same time by frame-rate

implementations of the tracking and mapping method used

here and monoSLAM [4]. The increase in feature density,

sometimes of two orders of magnitude, is apparent. Note

too the dominant plane: this derives here from the desk-top,

but the graphical representation extends without limit.

3. Incorporating multiple trackers and maps

Given sufficient processing hardware, it would be routine

to replicate tracking and mapping processes so that multi-

ple cameras build multiple maps in a one-to-one fashion.

Much more interesting is that, because the tracking process

(image capture, feature detection, and camera pose estima-

tion) is largely independent of the map making process, it

proves remarkably straightforward to allow multiple cam-

eras to add information into a single map.

The question of when to insert keyframes is made par-

ticularly easy because the determination is made by spa-

tial separation of poses, not temporal separation. Multiple

trackers can offer frames to a single map making process,

but it is the map maker that decides which to accept. Any

additional (calibrated) views can be utilized at will, and

multiple trackers can work on a map simultaneously or at

different times. The only requirement is that subsequent

trackers must register their camera poses to the map’s es-

tablished coordinate system. This registration is exactly that

required to relocalize a lost camera during the normal run of

single camera tracking, and indeed exactly that required to

relocalize a camera in a map after a period of neglect. We

describe the relocalizer below, but an important point here

is that the registration is made using appearance not struc-

ture so that a camera can be localized without first building

its own map.

�������� ��������Map Map Map

Map Maker

Figure 2. System configuration: two cameras feeding a map

maker, which is used to build an array of maps.

3.1. Relocalization

A highly important component is the relocalizer, which

becomes the key to automatically switching between maps.

Thus answering not only “where is the camera in this

map?”, but also “in which map is the camera?”. The original

system [9] used the relocalizer developed earlier in the lab-

oratory by Williams et al. [24]. This relocalizer was based

on randomized ferns [15], and used them to describe the

appearance of points in a monoSLAM map. This method,

while fast and effective, is very memory intensive at about

1.3 MB per map point. While this is tolerable for a map with

a couple of hundred features, it cannot be contemplated for

several maps each holding several thousand features. How-

ever, unlike monoSLAM, in the tracking and mapping ap-

proach we have the benefit of keyframes. Klein and Murray

[10] recently replaced the randomized fern based relocal-

izer with a fuzzy image one. This relocalizer exploits the

relatively dense distribution of keyframes. Descriptors are

made for each keyframe and, once relocalization has be-

gun, also for the incoming camera images. The descriptors

are created by subsampling the image eight-fold (in prac-

tice 640×480 ⇒ 80×60), then applying a Gaussian blur

with σ = 5. The keyframe descriptors are then compared

to the current camera image descriptor to find the closest

match, using zero mean sum of square differences:

D =
∑

((Iki − µk) − (Ici − µc))
2 ,

where Ik and Ic are the intensity values of the ith pixel

for the keyframe and camera image descriptors respectively,

and µ is the mean intensity value of each descriptor. Each

calculation takes 0.016 ms on average. The keyframe that

has the least difference with the camera image is accepted

as a match, and the camera position is set to that of the

keyframe. The rotation of the camera is estimated using

a direct second order minimization [1] of the descriptors to

minimize the sum of squared differences. Tracking is then

resumed, and the system tries to track from that position.

If the match is correct then the system continues tracking,

otherwise tracking fails and the relocalizer is invoked again.

3.2. Map switching

Tracking is usually lost because the camera’s viewing di-

rection has changed suddenly. In a multiple map system it

is uncertain whether the camera remains looking at an area

belonging to the same map, or at one of another map, or in-

deed at an unmapped area. In the single map system, when

a correlation score that was above a threshold was found,

tracking was restarted from that putative pose and the struc-

ture and motion from the subsequent few images used to

verify or reject the hypothesis. Rejection would lead to an-

other search, but experimentation showed that the rejected

fraction was low. With multiple maps (particularly those

from similar scenes, as shown in the experiments) and no

prior knowledge whether this is an intra- or inter-map fail-

ure, this approach can result in repeated failed attempts to

restart in the wrong map. An expedient (though expensive)

solution is to cross-correlate with all keyframes from all

maps, before choosing that with the best score. This cost

grows linearly with the map size.

An exception to this relocalization strategy is made when

two or more trackers are working in the same map, as in our

wearable system (see Section 5) where the user has a cam-

era on the hand-held display, and a second active camera

mounted on their shoulder. The lost tracker checks whether

the other tracker (or trackers) is lost. If not, it attempts to

recover on the current map. However, if all trackers are lost

the complete search is performed. The first tracker to re-

cover causes the others to abandon their complete searches

in favour of attempting to recover on the recovered tracker’s

map.

4. Using multiple maps in practice

The configuration of the system is sketched in Figure 2.

The maps are considered as a central resource, built by

multiple cameras performing tracking and mapping. Those

“builders” (users who can construct maps) can also use the

maps for AR at the same time, as was the emphasis in the

single tracker and map version in [9]. However we can also

consider a set of users who use the maps solely for tracking

or who have limited capacity to build the maps further.

In practical applications for AR outside the labora-

tory we adopt the following procedure. A builder creates

multiple maps of the environment at predominantly non-

overlapping sites of interest. During this phase, the builder

can explore as freely as necessary to build up a map of

the size and detail required. If maps overlap, no attempt

is made to merge structural information. This causes inde-

terminate behaviour, dependent on how the relocalizer re-

covers. However, with care, overlapping maps can be used

effectively. Examples of both these behaviours are shown

in the experiments.

Once all of the maps have been made, the system can be

1

2

3

CameraMotors Hand−held
Display & Camera

Dual Core Laptop

IMU

Motor Controller

Figure 3. View of the wearable camera system, showing the fol-

lowing elements: (1) Hand-held display with camera mounted

on the rear for AR applications. (2) Active camera capable of

pan, and tilt. (3) Inertial measurement unit (IMU).

given to the users. Access to the maps could be restricted

in several ways. For example, a map might be made “read-

only”, so no new measurements can be added; or the map

might be made writeable within a restricted metric extent,

allowing changes to the map since its creation to be incor-

porated, but stopping the map from growing outside of its

bounds where it could potentially interfere with other maps.

Now, when the user moves away from one map the sys-

tem will become lost and start its relocalization routine.

Once another map is found the system will lock to it. We

thus allow the user to exploit local maps within large envi-

ronments, but leave the user to move between maps.

5. Implementation on a wearable vision system

The system with its multiple map and multiple tracker

extension has been implemented in C++ under Linux us-

ing a dual core 2.20 GHz Intel laptop with 2GB RAM. This

supplies sufficient processing power to run simultaneously

two trackers and one map maker.

The wearable vision system used for this work is shown

in Figure 3. The active camera has servo-driven pan and tilt

rotational axes and is mounted along with an inertial mea-

surement unit (IMU) on a shoulder support. The servo con-

troller, executing with associated control functions on an

Atmel ATMega128 processor, continuously receives angle

data from the IMU, allowing the camera to remain stabilized

and, if desired, to fixate on a point in the world. Control

messages can be sent to the control electronics either from

the user, or from the software, and the camera can enter an

active search pattern when the system becomes lost.

The wearer can input information via a hand-held touch

screen, which allows mouse-like operations, and includes

a virtual on-screen keyboard. The display also has a sec-

ond camera mounted on its rear side, allowing it to act as a

‘magic lens’, i.e. the user can see the augmented reality as-

sociated with a particular map through the display as shown

in Figure 3. The display can also be switched to show the

shoulder camera’s image stream.

6. Experimental evaluation

Three different experiments are presented in the paper:

(1) the “desk” sequence shows the robustness, and some

limitations of the system, and how the multiple mapping

works; (2) the “laboratory” sequence shows how the system

can use overlapping maps, and handle mobile objects; (3)

the “building” sequence shows how the system can be used

to explore large, sprawling environments. The experiments

were performed using two cameras, the hand-held camera

and the shoulder mounted active camera described above.

All the results presented were processed live at 30 Hz and

stored directly to video. The video material accompanying

the paper is an important supplement to aid the reader’s un-

derstanding2.

6.1. Desk sequence

The purpose of this experiment is to demonstrate the

multiple mapping capability of the system, its robustness

to similar maps, and how it compares to the original sin-

gle map system. In this experiment 12 maps were made on

15 desks. Each desk is similar (curved shape, with a com-

puter), but has varying amounts of clutter depending on its

occupant. The user creates the maps and adds some AR to

show to whom the desk belongs, and which research group

they are a member of.

The system was able to successfully relocalize onto all

of the mapped desks. Frames 6–8 of Figure 4 show the

relocalization of three of the maps. The system was even

able to relocalize correctly onto two desks (frames 11 and

12) that were sparse in features (frames 9 and 10). When

the user is traversing the areas between maps the system

becomes lost and attempts to relocalize (frame 5). Once

the user arrives at a mapped location the system is able to

recover and tracking resumes.

2Full versions of all the results videos can be found at http:

//www.robots.ox.ac.uk/ActiveVision/Publications/

castle etal iswc2008.

1 2 3 4

5 6 7 8

9 10 11 12

Figure 4. A demonstration both of multiple maps and robustness to self similarity of maps. 12 maps were made of 15 desks, and

each desk was augmented with the user’s name and research group. (1,2) Hand-held camera and active camera view working in the

same map (3) AR added to map, (4) another map created and labelled, (5) attempting relocalization (6–8) successful relocalization

on different maps (9–12) Creation of maps on two sparsely featured desks, and subsequent successful relocalization.

At one point during the labelling (frame 7), the map of

one user’s desk is allowed to grow and cover neighbour-

ing previously mapped desks. This causes the two maps

to become overlapped. Because no geometric links exist

between the maps, the system has no way of handling the

overlap in a defined manner. Instead the system will recover

to the map that provides the best pose from the relocalizer,

and in this case the system only recovers to the latter map,

resulting in the label on the other desk not being seen. This

is a limitation of the system, and can usually be avoided

during the creation of maps, or used purposely as shown in

the next experiment.

Using these multiple maps the system is able to run in

real time, adding further keyframes as required, running the

bundle adjustment, and allowing accurate maps to be pro-

vided to the user. Each map contained between 3 and 37

keyframes and 290 to 1900 map points, resulting in a total

of 177 keyframes and 12327 map points. As a comparison,

the original single camera and single map system [9] was

used to try and create one large map of the same environ-

ment. The system was also able to map the same area, creat-

ing a map containing 163 keyframes and 10144 map points.

However, at this map size the bundle adjustment takes a sig-

nificant about of time, stopping new keyframe insertion, and

hence reducing the freedom to explore. If time is given for

the bundle adjustment to run then exploration can continue

for a while longer, before having to wait again. Also, a

lack of occlusion reasoning in the original system causes

a breakdown of the tracking quality heuristics, effectively

preventing further keyframe insertion. These issues lead to

the system becoming more fragile to use, and the user hav-

ing to retrace their steps when the system becomes lost more

and more frequently, until a suitable relocalization position

is found. The tracker, however, is able to continue running

at frame rate, no matter the map size, as long as the map

can grow in a timely manner. In contrast, using multiple

small maps allows a robust tracking and mapping experi-

ence, without the fragility and the waiting for the bundle

adjustment of the original system.

6.2. Laboratory sequence

The purpose of this experiment was to show how the

careful crafting of overlapping maps can be used to encode

several levels of information into a scene, and provide ro-

bustness to scene change when an object is moved.

Two maps are created: one is a large map of a laboratory,

the other is a small map located on the top of a Segway mo-

bile robot. In Figure 5 frames 1 and 2 show the map of the

laboratory being created and augmented. Frame 3 shows

the robot map with its AR. The smaller robot map is lo-

cated inside the first, larger, laboratory map, and they are

therefore fully overlapping. The system will track the room

map until the user is looking at the robot close-up. At this

point the system is unable to maintain tracking on the room

map and enters relocalization. It relocalizes onto the robot

map, and resumes tracking (frame 6). It remains tracking

1 2 3 4

5 6 7 8

Figure 5. A demonstration of the ability to move between overlapping maps, and relocate maps that have moved. (1,2) Map of room

created, and AR overlay added (3) map on mobile robot created, and labelled (4) robot map tracked over a large scale change (5)

switching back to the room map (6) switching to the robot map (7,8) after robot has moved relocalization is successful on the room

and robot map.

the robot map as the user backs away (frame 4), and only

relocalizes to the room map when tracking is lost (frame 5).

Overlapping maps used in this way allow several levels of

information to be encoded into a scene, with switching ob-

tained by getting close enough to an object, or rapid camera

motion, causing blur, or an object disappearing from view.

The main advantage of having a smaller map on the

robot, as opposed to having one large map containing all

the AR, is that this allows the robot to move to different lo-

cations and still maintain its own AR. In frame 7 the robot

has moved, but the room map is still able to be tracked

as the majority of the scene structure is fixed. When the

user approaches the robot in its new location the relocalizer

switches the system to the robot map (frame 8).

6.3. Building sequence

This final experiment shows how the system can be used

in large sprawling environments, providing AR throughout

a large building. Maps were made around the building on

multiple floors. Figure 6 shows frames from the sequence.

Frames 1–4 and 6 are the five places where maps were

made. Frame 2 shows a map created in a particularly fea-

ture sparse location. Relocalization into 3 of the maps is

shown in frames 5–7. The maps were then reloaded into the

system later in the day and four out of the five maps (frames

8–11) successfully relocalized. The system failed to relo-

calize onto the final map frame 12, which was most likely

due to the large increase in brightness in the scene since the

map was created.

7. Conclusion

In this paper we have shown that the ability to build

multiple small maps around an environment is beneficial to

wearable applications, where the wearer can be trusted to

move around the world freely, and reach their desired des-

tination. The experiments have also shown that the creation

of multiple maps allows the system to scale better than us-

ing a single map, and that the use of multiple maps is benefi-

cial for augmenting individual objects, and large sprawling

environments. The developed system is scalable, and can

grow with the ever increasing performance of computers,

and the increase in the number of processing cores. The

system allows disconnected maps of the world to be made

that can cover a larger total area than a single map could,

while maintaining real-time operation.

Integration of the object recognition work done previ-

ously [2], will allow a richer AR experience around par-

ticular real world objects for the user. It may also allow

semantic links between overlapping maps that contain the

same objects. Another important development of this work

will be to record the spatial location of maps with respect

to other maps, and detect overlaps. This would allow maps

to be joined if desired, and more intelligent searching dur-

ing relocalization by only considering spatially near maps.

The IMU could assist in this by aiding the estimation of the

gross motion of the user. This would help reduce the search

time of the relocalizer to a near constant time, regardless of

the number of maps.

Acknowledgements

This work was supported by UK Engineering and Phys-

ical Science Research Council (grants GR/S97774 and

EP/D037077).

References

[1] S. Benhimane and E. Malis. Homography-based 2D visual tracking

and servoing. Special Joint Issue on Robotics and Vision. Journal of

Robotics Research, 26(7):661–676, July 2007.

[2] R. O. Castle, D. J. Gawley, G. Klein, and D. W. Murray. Video-

rate recognition and localization for wearable cameras. In Proc

1 2 3 4

5 6 7 8

9 10 11 12

Figure 6. A demonstration of exploring a large scale environment containing five maps, with augmented reality overlays over

multiple building floors. (1–4) Creation and labelling of four of the maps (5–7) relocalization onto three of the maps (8–11) successful

relocalization at a later time (12) failure to relocalize.

18th British Machine Vision Conference, Warwick, Sept 11-13, 2007,

pages 1100–1109, 2007.

[3] A. J. Davison. Real-time simultaneous localisation and mapping with

a single camera. In Proc 9th Int Conf on Computer Vision, Nice,

France, Oct 13-16, 2003, pages 1403–1410, 2003.

[4] A. J. Davison, I. D. Reid, N. Molton, and O. Stasse. MonoSLAM:

Real-time single camera SLAM. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 29(6):1052–1067, 2007.

[5] O. Faugeras and F. Lustman. Motion and structure from motion in

a piecewise planar environment. International Journal of Pattern

Recognition and Artificial Intelligence, 2(3):485–508, 1988.

[6] A. W. Fitzgibbon and A. Zisserman. Automatic camera recovery

for closed or open image sequences. In Proc 5th European Conf on

Computer Vision, Freiburg, volume 1, pages 311–326, 1998.

[7] J. E. Guivant and E. Nebot. Optimization of the simultaneous lo-

calization and map-building algorithm for real-time implementation.

IEEE Transactions on Robotics and Automation, 17(3):242–257,

2001.

[8] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer

Vision. Cambridge University Press, ISBN: 0521540518, second edi-

tion, 2004.

[9] G. Klein and D. W. Murray. Parallel tracking and mapping for small

AR workspaces. In Proc IEEE/ACM 6th Int Symp on Mixed and

Augmented Reality, Nara, Japan, Nov 13-16, 2007.

[10] G. Klein and D. W. Murray. Improving the agility of keyframe-based

SLAM. In Proc 10th European Conf on Computer Vision, Marseille,

France, October 12-18, 2008.

[11] T. Lee and T. Höllerer. Hybrid feature tracking and user interaction

for markerless augmented reality. In Proc 10th Int Conf on Virtual

Reality, Reno, NV, March 8–12, 2008, pages 145–152, 2008.

[12] J. J. Leonard, H. F. Durrant-Whyte, and I. J. Cox. Dynamic map

building for an autonomous mobile robot. International Journal of

Robotics Research, 11(8):286–298, 1992.

[13] J. J. Leonard and H. J. S. Feder. A computationally efficient method

for large-scale concurrent mapping and localization. In Proc 9th Int

Symp on Robotics Research, Utah, October 1999, pages 316–321,

1999.

[14] J. J. Leonard and P. M. Newman. Consistent, convergent and

constant-time SLAM. In Int Joint Conference on Artificial Intelli-

gence, 2003, pages 1143–1150. Morgan Kaufmann, 2003.

[15] V. Lepetit and P. Fua. Keypoint recognition using randomized trees.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

28(9):1465–1479, 2006.

[16] W. W. Mayol, A. J. Davison, B. J. Tordoff, and D. W. Murray. Apply-

ing active vision and SLAM to wearables. In P. Dario and R. Chatilla,

editors, Robotics Research, The Eleventh International Symposium,

Siena 2003, Springer Tracts in Advanced Robotics, volume 15, pages

325–334. Springer, 2005.

[17] E. Mouragnon, F. Dekeyser, P. Sayd, M. Lhuillier, and M. Dhôme.

Real time localization and 3d reconstruction. In Proc 24th IEEE Conf

on Computer Vision and Pattern Recognition, New York NY, 17-22

June, 2006, pages 363–370, 2006.

[18] D. Nistér. Automatic dense reconstruction from uncalibrated video

sequences. PhD thesis, Royal Institute of Technology KTH, Stock-

holm, Sweden, 2001.

[19] D. Nistér, O. Naroditsky, and J. Bergen. Visual odometry for ground

vehicle applications. Journal of Field Robotics, 23(1), 2006.

[20] M. Pollefeys, R. Koch, and L. Van Gool. Self-calibration and met-

ric reconstruction in spite of varying and unknown internal camera

parameters. International Journal of Computer Vision, 32(1):7–25,

1999.

[21] E. Rosten and T. Drummond. Machine learning for high-speed cor-

ner detection. In Proc 9th European Conf on Computer Vision, Graz,

volume 1, pages 430–443, 2006.

[22] R. C. Smith and P. Cheeseman. On the representation and estimation

of spatial uncertainty. International Journal of Robotics Research,

5(4):56–68, 1986.

[23] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT

Press, Cambridge MA, 2005.

[24] B. Williams, G. Klein, and I. D. Reid. Real-time SLAM relocali-

sation. In Proc 11th Int Conf on Computer Vision, Rio de Janeiro,

Brazil, Oct 14-20, 2007.

