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Abstract. Registering image data to Structure from Motion (SfM)
point clouds is widely used to find precise camera location and orien-
tation with respect to a world model. In case of videos one constraint
has previously been unexploited: temporal smoothness. Without tem-
poral smoothness the magnitude of the pose error in each frame of a
video will often dominate the magnitude of frame-to-frame pose change.
This hinders application of methods requiring stable poses estimates (e.g.
tracking, augmented reality). We incorporate temporal constraints into
the image-based registration setting and solve the problem by pose reg-
ularization with model fitting and smoothing methods. This leads to
accurate, gap-free and smooth poses for all frames. We evaluate differ-
ent methods on challenging synthetic and real street-view SfM data for
varying scenarios of motion speed, outlier contamination, pose estima-
tion failures and 2D-3D correspondence noise. For all test cases a 2 to
60-fold reduction in root mean squared (RMS) positional error is ob-
served, depending on pose estimation difficulty. For varying scenarios,
different methods perform best. We give guidance which methods should
be preferred depending on circumstances and requirements.

1 Introduction

Due to recent advances in 3D range imaging highly accurate and large 3D mod-
els for real-world environments can easily be obtained [1,20,38] and are already
available for many city areas. Given structural information about the world,
many new opportunities for computer vision (CV) applications in scene under-
standing arise. Videos are a rich source for capturing and analyzing social activi-
ties, human/vehicular traffic and events. This allows for CV applications such as
multi-view object tracking, vehicle and pedestrian trajectory analysis, video cut-
ting, multi-video event and scene summarization. Registration of video data to
a 3D world model using visual information is an essential requirement for many
of these applications. They benefit from accuracy and robustness of pose estima-
tions (6-DoF, position and orientation) for one or several videos at all frames,
rather than live performance and efficiency. As processing for these higher level
CV applications happens mostly offline (or in batches) global reasoning is suf-
ficient and preferable over live or incremental pose tracking. Localization using
visual information only has the advantage that only visual sensors are required
and will work even in GPS-denied environments.
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Fig. 1. Left & Top right: frame-wise registered hand-held video with 300 frames, The
camera’s path (red) is noisy due to PnP estimation errors: The average frame-to-frame
position difference is 57cm while the ground truth camera moves with approximately
5cm/frame. Bottom right: refined camera path (with Kernel Regression).

The standard approach of image-based registration to SfM models
([34,35,16,26,25]) involves the following steps for each image/video frame: com-
puting 2D image features, matching them to features associated with 3D points,
finding the pose using a standard perspective-n-point (PnP) algorithm in a
RANSAC loop with 2D-3D correspondences. Direct application of this technique
to video data results in very noisy pose estimates, as illustrated in Fig. 1 (left &
top right). The path of the camera is drawn in red and exhibits strong positional
noise: the average positional difference between poses of successive frames is one
order of magnitude larger than the ground truth motion. The true motion is
completely dominated by uncorrelated positional errors. Using frame-wise PnP
estimates we also have to deal with estimation failures (i.e. gaps) and pose out-
liers in addition to noisy poses. This is unsatisfactory since many tasks, such as
multi-view tracking or augmented reality, require accurate, gap-free and smooth
poses as input. This is why we explore several regression methods to exploit
temporal smoothness for refining PnP camera poses, which were independently
estimated for every video frame. Our aim is to bridge the gap between unre-
liable, noisy, incomplete, frame-wise pose estimates in SfM models to accurate
and smooth pose trajectories to be used for higher-level CV applications.

Our main contribution is the reduction of pose errors for all frames of a video,
for which approximate and possibly incomplete frame-wise estimated poses are
available. In order to achieve this, we adapt several model fitting techniques
(Splines Smoothing, Kernel Regression, Non-Linear Least-Squares optimization)
to the problem. We propose a new pose parametrization to be able to use spline
and kernel smoothing methods for camera poses. In Non-Linear Least-Squares
optimization we introduce a novel bending energy minimization extension for
camera pose smoothing. We discuss several combinations of the three meth-
ods. All methods are evaluated on real and synthetic data for various difficult
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scenarios. We give guidance on which method works best under which circum-
stances. Until now, no such comprehensive description and evaluation for global
pose trajectory refinement exists. We are the first to contribute a carefully de-
signed benchmark on synthetic and real data for this.

Paper Overview: Sec. 2, lists related work. The video pose registration
methods (Spline Smoothing, SP, Kernel Regression KR, non-lin. least-squares
optimization LS) and variants are proposed in Sec. 3, and evaluated in Sec. 4.
Sec. 5 concludes the paper.

2 Related Work

Landmark recognition, localization of images are active fields of research:
An image is to be positioned with respect to reference images with known
localization (e.g. GPS) [40,17], at city scale, with efficient feature representa-
tion [36,21], using databases of building facades [32], and even larger world-wide
approximate localization [14]. Other methods rely on localization by recognition
of landmarks, e.g. [4]. These methods do not rely on 3D structure, but on lo-
calized reference images and 2D features. Generally, most of these techniques
employ image retrieval techniques and 2D similarity measures based on feature
matching. In contrast to this [11] relies on 3D features to recognize places.

Image-based registration to 3D SfM models is concerned with complete (6-
DoF) pose estimation. Poses are computed with 2D-3D correspondences based
on feature matching [37]. Poses retrieved in this way are more accurate and
dependency on visually similar reference images is reduced. Scaling these tech-
niques is difficult, due to the large amounts of features in the matching step.
Perspective-n-Point (PnP) algorithms find the pose given a set of 2D-3D corre-
spondences [43,42,23,24]. [25] improves the feature matching step by RANSAC
co-occurrence-based sampling. Focus has been put on efficient feature storage
and matching [5], with vocabulary trees [16], prioritized matching [26], efficient
correspondence search [35,34], match pre-filtering using image retrieval [7], and
discriminative visual element mining in challenging scenarios, such as registering
paintings [3]. [12,9] address the problem of finding the (6-DoF) pose of observed
objects. [31] estimates the pose using lines instead of point features.

Localization of image sequences and videos has received attention as
well. [10] registers video frames by employing fundamental matrix constraints
between a video frame and the two closest GPS-annotated reference images.
GPS coordinates are extracted for all frames by Spline Smoothing. Similarly,
[39] retrieves geolocalized images and uses Bayesian tracking for refinement.
[18] coarsely localizes image sequences with large time-gaps, such as series of
photographs of entire tourist trips on a world-wide grid. Visual odometry in
car-mounted cameras is used for localization in a known road network [6]. [2]
optimizes poses when no model but frame-to-frame pose changes and measure-
ment uncertainties are available from essential matrices or inertial sensors.

Video registration to 3D SfM models received less attention than image-
based registration. However, it is an integral part of SLAM [8,19,30,29]. There,
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the focus lies on jointly tracking features, and improving their and the camera’s
localization. In contrast to this the scene structure is predetermined in our task.
We do not have a prior on the camera’s location. Additionally, the reconstructed
environments in SLAM are usually small controlled indoor environments. Imag-
ing conditions for SfM and localization are the same in SLAM, which is generally
not the case when a query video has to be registered to separately reconstructed
3D models. [37] localizes video sequences by matching and tracking SIFT fea-
tures. Similarly, [27] estimates poses by matching and tracking DAISY features.
Registration to high-quality CAD models has been worked on as well: ego-motion
is tracked in [22] by edge matching in omnidirectional videos, in [15] by feature
tracking and coarse-to-fine refinement of edge alignment. [16] finds poses for ev-
ery frame of videos separately, simplifying the matching by computing virtual
views. [41,33] rely on computing SfM from a query video first, and retrieve poses
by alignment of the world model and the SfM model from the query video.

SLAM and feature-tracking based techniques work for small datasets or when
features can be matched reliably. If matching is difficult (larger city scenes,
strongly varying imaging conditions), tracking features will easily result in prop-
agation of matching errors. Techniques that reconstruct the sequence first and
match later suffer from typical SfM problems: model deformation and fragmen-
tation, matching problems and the need for manual subsequent alignment with
a world model. Because of these principled problems we want to match as many
frames as possible directly to the world model and rely on global pose refinement.

3 Registration of Videos to SfM Models

Frame-wise registered videos can exhibit strong noise in individual poses, estima-
tion gaps and pose outliers as illustrated in Fig. 1. Noise, outliers and estimation
gaps can be dealt with when incorporating temporal smoothness. On approxi-
mately and incompletely registered poses for each frame, described in Sec. 3.1,
we build the refinement methods proposed in Sec. 3.2, 3.3, and 3.4. The goal is
to improve every frame’s pose estimate while being robust towards outliers. We
chose Spline Smoothing as a well-known representatives of regularization and
basis expansion techniques, Kernel Regression as a representative for probabilis-
tic kernel methods and Non-Linear Least-Squares optimization as representative
for direct optimization of re-projection errors as also used in bundle adjustment.

3.1 Image-Based Registration

A SfM model is represented by 3D points and associated SIFT [28] feature
descriptors from the views in which the 3D points were observed. We match
a new query image by extracting SIFT features, matching them to all fea-
tures associated with the 3D points, and thereby retrieve a putative set of 2D
to 3D correspondences. For known internal parameters many recent pose esti-
mation algorithms (EPnP[23], ASPnP[43], OPnP[42], RPnP[24]) can be used
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directly in a RANSAC-loop to retrieve (6-DoF) camera position and orienta-
tion [34,35,16,26,25]. In the remainder of the paper we assume given internal
camera parameters (focal length, projection center, no radial distortion).

3.2 Spline Smoothing

In Spline Smoothing (SP) piece-wise polynomial functions f(xi) are fitted to N
sites xi with observations yi by minimizing the residual sum of squares (RSS):

RSS(f, λ) = λ

N∑

i=1

wi (yi − f(xi))
2 + (1− λ)

∫
(f ′′(x))2dx . (1)

The camera pose estimate at time xi is denoted with yi (observed), and f(xi)
(smoothed). The N data sites correspond to the number of video frames. A
camera pose is represented as a position t and rotation matrix R. We parametrize
the pose as a 9-dimensional vector y = [tT rT1 rT2 ] with unit vectors r1 and r2
as viewing direction and up-vector of the camera. The RSS is regularized by f ’s
second derivative, i.e. to minimizing the bending energy. The data fidelity term
is weighted by wi, the inlier count after RANSAC, down-weighting poses with
few 2D-3D correspondences. The regularization parameter λ ∈ [0, 1] is found via
leave-one-out cross-validation.

We propose a variant of a smoothing spline including the camera parameters’
covariance Σ and the Mahalanobis distance in the data fidelity term (SP+C).
Deviation from estimated poses are penalized stronger in the data fidelity term
if the cameras’ pose estimates are with low variance:

RSS(f, λ) = λ

N∑

i=1

wi (yi−f(xi))
T Σ−1 (yi−f(xi)) +(1−λ)

∫
(f ′′(x))2dx . (2)

The solution for both spline variants is a weighted linear combination of the
observations. The chosen pose parametrization is an approximation to rigid Eu-
clidean motion which is part of the Special Euclidean Lie Group SE(3). Some
constraints on orientation cannot be enforced by the spline formulation: orthog-
onality (r1 · r2 = 0) and unit norm (‖r1‖ = ‖r2‖ = 1). However, if the change
in R is small, we can assume ‖r1‖ ≈ 1 ≈ ‖r2‖ and r1 · r2 ≈ 0. This allows
using this under-constrained approximation in smoothing. We can enforce con-
straints afterwards: For each f(xi) we re-normalize r1, r2 to unit norm and
recover R′ = [r3 r1 r2]

T with r3 = r1 × r2. To get a valid rotation matrix
we enforce orthogonality by singular value decomposition [U, S, V ] = svd(R′)
and set R′ = U · V T . This approximation is valid as long as the between-frame
change in R is slow. See experiments in Sec. 4.1, 4.4 for an analysis of the limits
of this parametrization. As alternative parametrization, we experimented with
quaternions and an angle-axis representation, with less stable results.

3.3 Kernel Regression

A smoothing spline works well in cases of outlier-free data, perturbed by Gaus-
sian noise. However, even after RANSAC a few pose outliers can remain. In order
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to avoid a hard inlier-outlier decision for poses, we can still use a RANSAC-
inspired pose estimation approach. But instead of keeping only the best result
(i.e. sample with highest inlier count) we keep the M best pose samples. This
leads to M pose estimates for all N frames. Using the best RANSAC samples
requires randomly distributed outliers. If outliers are systematic,M random sam-
ples have to be used to avoid biased estimates. A Nadaraya-Watson model, or
Kernel Regression (KR), can represent poses over N data sites probabilistically:

p(y, x) =
1

W

N∑

i=1

M∑

j=1

wi,j k(x− xi,j , y − yi,j) (3)

where k is the density function, wi,j sample inlier count, W =
∑N

i=1

∑M
j=1 wi,j .

The pose sample j at time xi is denoted yi,j,. We use a Gaussian kernel

k(x, y) =
1√
2π

exp

(
−1

2

(
x2

hx
+

y2

hy

))
(4)

with bandwidths hy in parametric space for the camera pose and hx in time. Both
parameters are found in leave-one-out cross-validation. The regression function
f(xi) corresponds to conditional averages of target yi conditioned on time xi:

f(xi) = E(y|xi) =

∫
y p(y, xi)dy . (5)

This representation allows for a non-parametric probabilistic interpretation of
the camera’s pose at all times. Outliers can be filtered out effectively. However, it
depends on integration over all kernel functions, which can be time consuming.

3.4 Non-linear Least-Squares Optimization

SP and KR (Sec. 3.2, 3.3) operate directly on estimated poses, and are therefore
dependent on initial PnP pose quality. We propose a similar objective function
as eq. (1) with data fidelity and smoothing term, but instead of using estimated
poses in the data fidelity term, we can use the 2D-3D correspondences directly
by measuring the 3D point re-projection error. The objective function can be
minimized as a Non-Linear Least-Squares (LS) problem:

RSS(P1, . . . , Pn) =

N∑

i=1

Ji∑

j=1

(zi,j − Pi Zi,j)
2 + λ T TKT (6)

where Pi = C · [Ri , −Ri · ti], with C known camera calibration, Ji the number
of 2D-3D correspondences after RANSAC for pose Pi, and zi,j , Zi,j the known
2D and 3D locations of correspondence j in pose Pi. K is the bending penalty
matrix as in the Reinsch–form for SP[13, p.154]. T = [t1, . . . , tn] is a matrix of
camera locations. PnP poses are only required as initialization, reducing depen-
dency on PnP methods. The additional advantage of this approach is that other
constraints, such as planarity of camera movement (LS+CP), can be integrated:
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RSS(P1, . . . , Pn, CP ) =

N∑

i=1

Ji∑

j=1

(zi,j − Pi Zi,j)
2 + λ T TKT + θ

N∑

i=1

D2(CP, tn)

(7)
where D (3rd term) returns the distance of camera position tn to camera plane
CP . The camera plane is a free variable in the optimization. Because the regu-
larization parameters λ and θ cannot easily be found automatically, we set them
manually to balance the influence of all residuals. Starting the optimization with
PnP poses and associated 2D-3D correspondences, we cannot easily remove the
influence of incorrect 2D-3D correspondences. However, we can use a Cauchy
loss for the re-projection error Δ(x) = log(1 + x) to mitigate the influence from
outlying correspondences. The Ceres-Solver1 is used to minimize eq. (6, 7).

3.5 Combinations and Variants

Besides the discussed methods SP, KR, LS and variants SP+C, LS+CP we in-
clude several combinations in our experiments when suitable. The estimated
poses from PnP algorithms can be further refined by using Non-Linear Least-
Squares optimization of the re-projection error, i.e. eq. (6) without smooth-
ing (λ = 0) (LSWS). Based on LSWS we can again start Spline Smoothing
(LSWS+SP) or Kernel Regression (LSWS+KR). When LS is started from
PnP pose estimates, outliers are corrected due to the smoothing term. This
correction is improved when LS is initialized from Spline Smoothing solutions
(SP+LS), and may also be combined with the assumption of planarity of cam-
era movement (SP+LS+CP). For some frames no pose estimates exist. This
is due to RANSAC failures because of too many outliers or noisy correspon-
dences. Gaps in PnP pose estimates can also be deliberate: Feature matching
and RANSAC pose estimation is the main bottleneck for large SfM scenes. It
may be necessary to consider only every nth camera pose and interpolate in
between. Such gaps can be closed after pose refinement by using standard cubic
interpolating splines with knots given by the output of our proposed methods.

4 Experiments

In three experiments we evaluate the performance of the proposed methods and
variants, while assuming that unreliable PnP poses from an arbitrary source are
available as input. We evaluate with exemplary state-of-the-art PnP methods as
mentioned in Sec. 3.1. The first experiment (Sec. 4.1) on synthetic data shows
the stability of the smoothing methods with respect to different degrees of pose
changes, 2D observation noise, number of 2D-3D correspondences and outlier
contamination. The second experiment (Sec 4.2,4.3) shows the performance of
the methods on real SfM data of city environments. In the first two experiments

1 http://code.google.com/p/ceres-solver/

http://code.google.com/p/ceres-solver/
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we ignore any occurring gap in the PnP pose estimates. In the third experi-
ment (Sec. 4.4) we compare the methods when interpolating over gaps following
the smoothing. We focus on the positional (root mean squared, RMS) error to
ground truth camera locations. The reasons are 1) space constraints, 2) the cam-
era position is more sensitive to typical problems in feature-based pose estimation
(noisy/incorrect 2D-3D correspondences) than orientation and 3) position and
orientation errors are strongly correlated. See supplementary material for full re-
sults. We consider frame-wise PnP pose estimates, computed with ASPnP [43],
as baseline. We chose ASPnP as best performing PnP method (See table 3 in
Sec. 4.2). Results for further refined poses (LSWS) without smoothing, and sim-
ple Kalman Filtering (KF) are also included. The experimental setup remains
the same in all experiments: regularization parameters for SP and KR are auto-
matically determined via cross-validation. Regularization parameters for LS are
set manually and are the same for all experiments: λ = θ = 105. We scale the
3D model to real-world scale. All variants of LS run for 10 iterations. State and
observation covariances for KF are computed in an EM-style algorithm. To limit
memory-complexity in KR, we set M = 20 pose samples per frame.

4.1 Synthetic Video Sequence

The synthetic data consists of a camera (focal length 1000 px, 1280x720 resolu-
tion), viewing a simple 3D structure (2 walls at a 135 angle) with 800 3D-points
at a distance of 10 meters. We create sequences of 300 frames by rotating the cam-
era around the visible structure (Fig. 2, top left). For every frame we randomly
sample 25 2D-3D correspondences and compute the pose. In different sequences
with increasing speed of rotation (degrees/frame) we test the effect on smoothing
and stability of the pose parametrization. All experiments are repeated 25 times
and results averaged. Fig. 2 shows the positional error of our proposed methods
against the ASPnP baseline. Increasing speed of rotation around the structure,
shown in Fig. 2 (a), enlarges pose differences between successive frames. This
shows how each method is affected by increasing pose differences and the sensi-
tivity of the pose parametrization for SP and KR, outlined in Sec. 3.2. In Fig. 2
(b) we examine the performance if the number of 2D-3D correspondences before
computing the PnP pose in each frame is decreased, (c) Gaussian noise is added
to the 2D feature locations, and (d) the percentage of (uniformly distributed)
pose outliers is increased. These plots show the reliability of each method with
respect to typical challenges in feature-based pose estimates. We observe:

• KR and SP perform well for slow pose changes. The under-constrained pose
parametrization leads to a rising performance loss for fast pose changes.

• LSWS and LS are unreliable (out of scope in plots) due to strong 2D, 3D
noise, leading to local optima in optimization. SP+C is unreliable as well.

• The overall best performing and stable method is LS optimization initialized
with the result of Spline Smoothing (SP+LS): The local optima problem of LS
and LSWS are avoided by initializing the poses near the real optima. SP+LS
is hardly affected by low feature count, noise, outliers and fast pose changes.
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Fig. 2. Refinement results for synthetic video. Top Left: Synthetic sequence (300
frames) of camera (red) rotating around structure (green). Refinement result for (a)
varying speed of movement around the structure (degrees/frame), (b) number of 2D-
3D correspondences, (c) 2D Gaussian noise, (d) contamination with PnP pose outliers.
The legend of (a) also applies to (b,c,d). In (a) LS,LSWS,SP+C,KF are partly out of
scope.

Fig. 3. Left: Rigid camera setup for street-view image capture. Blue camera: used in
SfM, red: used only for evaluation. Right: Exemplary SfM Model from 300 frames. Path
of van and mounted cameras in scene every 40 frames.

4.2 Street-View Video Sequence – Dataset and PnP Baseline

Since no public dataset for video registration is available we created our own:
Street-view image data was captured with 8 cameras, rigidly mounted onto a
van, in 1628x1236 resolution, at 10 fps for 30 seconds. The visible street scene
was reconstructed with (on average) 400K 3D points. Additionally to the 8
cameras used for SfM, 2 or 4 additional cameras were mounted on the van
for evaluation. SfM reconstruction with a rigid multi-camera installation on a
moving van returns poses for all cameras and the van at all times. Using known
rigid camera setup and van pose, precise pose ground truth can be inferred for
the additional cameras as well. The rigid camera configuration and an example
SfM Model can be seen in Fig. 3. Data was gathered in 4 locations, one of which is
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Table 1. Time for parameter
estimation via Cross Validation
(SP, SP+C, KR), Expectation
Maximization (KF), and solution
(sec). Parameters in LS are set
manually.

KF SP SP+C KR LS

P.Estim. < 1 7 81 637 NaN
Solution < 1 < 1 2 164 52

Table 2. PnP failure rates (percent of all
frames). A: pose estim. failure, no pose re-
turned, B: failure to find good pose (pos.err
< 1m), C: pose estim. failure when at least
one other method found a good pose, D:
failure to find good pose when all other
methods returned good poses.

OPnP ASPnP EPnP RPnP

A 0.17 0.03 0.64 2.19
B 13.46 11.82 11.85 14.98
C 0 0 0.14 0.69
D 1.27 0.30 0.69 2.82

displayed in Fig. 3, resulting in 12 videos with each 300 frames. Typical problems
for feature matching in this case are over/underexposure of the images, uneven
distribution of feature locations, motion blur, lack of sufficient view overlap
(the SfM cameras are looking down, the additional cameras are looking up).
The additional cameras are (independently) registered to the SfM Model in our
evaluation. PnP poses are obtained from OPnP, ASPnP, EPnP, RPnP. Table 2
compares (A) all methods in terms of percentages of failed pose estimates, (B)
failure to find good (pos. err < 1m) poses, (C) failed pose estimates when at
least one other method found a good pose, and (D) failure to find a good pose
when all other methods found one. ASPnP offers the overall best performance.

Because strong pose outliers are still present for all PnP methods, we proceed
to identify and remove outliers, and provide all refinement results for varying
levels of removal. Ideally, outliers are identified automatically without the help
of ground truth. This can be achieved by using positional differences between
PnP poses of successive frames if outliers are randomly distributed and not
systematic. For evaluation purposes we simplify the task and use the ground
truth error for outlier removal:We define five positional error thresholds: ρ1,...,5 =
{.54, .65, 8.7, 47,∞} representing meters of allowed error in camera position to
ground truth position. They correspond to {80, 85, 90, 95, 100} percent of the
data as inliers. Poses with an error above a chosen threshold are removed from
the PnP baseline and considered as gaps. For ρ5 we do not remove any pose.

In table 3 all PnP methods are listed with RMS positional error to ground
truth in meters (left) and error of viewing direction in degrees (right) for ρ1,...,5.
We note that the positional error increases significantly in all PnP methods once
fewer outliers are removed. The same order of magnitude for positional errors
for image-based registration in typical city scenarios is reported independently
in [34,35,26,15]. Confirming [43], ASPnP offers the best results. EPnP is not as
precise in easy pose estimation scenarios (ρ1,2) but gains if outliers are present
(ρ3,4,5). Note how the orientational and positional errors compare: for pose errors
around 5-6 meters, the error in orientation is still < 2 degrees. Average PnP
runtimes (seconds) are: OPnP 1.31, ASPnP 0.22, EPnP, 0.25, RPnP: 0.13.
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Table 3. PnP pose estimation errors. Left 4 col.: positional RMS error in meters, Right
4 col.: viewing direction errors in degrees (ignoring roll). Rows: Estimation error for
outlier varying outlier threshold ρ. Thresholds are chosen such that {80, 85, 90, 95, 100}
percent of the data are inliers. See also table 4 (left) for median positional PnP errors.

OPnP-t ASPnP-t EPnP-t RPnP-t OPnP-R ASPnP-R EPnP-R RPnP-R

ρ = ρ1 0.44 0.14 0.16 0.25 0.29 0.27 0.28 0.3
ρ = ρ2 0.44 0.15 0.67 1.69 0.29 0.27 0.38 0.44
ρ = ρ3 6.58 4.76 2.97 3.48 2.61 1.97 1.72 1.85
ρ = ρ4 12.23 10.49 8.26 9.26 6.62 5.06 5.59 5.09
ρ = ρ5 26.09 23.77 17.96 27.48 10.49 8.85 8.44 9.42

OPnP-t ASPnP-t EPnP-t RPnP-t

ρ = ρ1 0.381 (K) 0.065 (J) 0.066 (J) 0.133 (J)
ρ = ρ2 0.375 (K) 0.064 (I) 0.290 (E) 0.576 (I)
ρ = ρ3 1.042 (L) 0.599 (J) 1.300 (L) 0.809 (J)
ρ = ρ4 1.479 (J) 1.697 (L) 2.281 (L) 1.531 (L)
ρ = ρ5 2.609 (J) 2.684 (L) 2.812 (J) 2.267 (J)
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Fig. 4. Best refinement result (RMS position error) for all PnP methods. The letter
(same as in table 5) indicates the method that gave best results. The graph (right)
corresponds to the table (left) and plots best refinements for each PnP method over ρ.

In the remainder of the experiments ASPnP will be used as the preferred
PnP baseline. We will report the results of all refinement methods based on
ASPnP poses (Table 5). Additionally, we will provide the results of only the best
refinement method based on all PnP baselines (Table 4 (right) & Fig. 4).

4.3 Street-View Video Sequence – Video Registration

We adopt the following shorthand notation. A: PnP baseline error, B: LSWS,
C: KF, D: SP, E: SP+C, F: LSWS+SP, G: KR, H: LSWS+KR, I: LS, J:
LS+CP, K: SP+LS, L: SP+LS+CP. Fig. 4 lists the best performing refinement
method over all PnP methods with absolute positional RMS error. In table 5 the
relative scores for all refinement methods in relation to the ASPnP baseline RMS
positional error (Col. A) are listed (Col. B:L). Table 4 shows the best refinement
results using median errors (right), and median PnP baseline error (left), to
illustrate the performance when disregarding outliers. Table 1 lists runtimes for
parameter estimation and solutions for the proposed methods. Comparing the
best smoothing results for all PnP methods (Table 4 & Fig. 4) we observe:

• Refinement after ASPnP offers significantly better results with few outliers
(ρ1,2,3) than other PnP methods: the best method reduces the error of the
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Table 4. Median PnP baseline positional error (left) and best median refinement
error (right). This table shows the gain in positional accuracy from PnP baseline to
best performing refinement method with respect to the median ground truth positional
error. The letter (same as in table 5) indicates the used method.

OPnP-t ASPnP-t EPnP-t RPnP-t OPnP-t ASPnP-t EPnP-t RPnP-t

ρ = ρ1 .053 (A) .055 (A) .074 (A) .073 (A) .042 (J) .041 (J) .043 (K) .041 (F)
ρ = ρ2 .053 (A) .055 (A) .075 (A) .074 (A) .042 (K) .042 (K) .043 (L) .042 (I)
ρ = ρ3 .056 (A) .057 (A) .079 (A) .079 (A) .044 (K) .043 (K) .044 (K) .043 (J)
ρ = ρ4 .060 (A) .062 (A) .086 (A) .084 (A) .046 (K) .045 (K) .047 (J) .046 (J)
ρ = ρ5 .066 (A) .067 (A) .092 (A) .091 (A) .053 (J) .050 (J) .048 (L) .049 (J)

Table 5. Refinement results. Top 5 rows: positional RMS error (meters). Bottom 5
rows: orientation error (degrees). Col A: Baseline PnP error, Col B-L: avg. of relative
improvement over baseline PnP pose error in all videos. Notation: A: PnP error, B:
LSWS, C: KF, D: SP, E: SP+C, F: LSWS+SP, G: KR, H: LSWS+KR, I: LS, J:
LS+CP, K: SP+LS, L: SP+LS+CP

A B C D E F G H I J K L

ρ = ρ1 0.14 1.30 0.90 1.19 1.01 1.56 0.51 0.52 2.18 2.26 2.16 2.22
ρ = ρ2 0.15 1.24 0.96 1.19 1.01 1.53 0.46 0.44 2.23 2.26 2.19 2.24
ρ = ρ3 4.76 1.03 1.15 1.82 1 1.91 1.23 1.27 20.21 23.56 19.34 21.92
ρ = ρ4 10.49 1 1.11 2.23 1.24 2.20 2.01 2.03 18.40 21.99 19.65 20.76
ρ = ρ5 23.77 1 1.23 3.51 1.60 3.56 5.50 5.62 59.68 58.36 37.03 38.85

ρ = ρ1 0.27 1.10 0.94 1.10 1.01 1.20 0.79 0.80 1.34 1.35 1.34 1.35
ρ = ρ2 0.27 1.08 1.02 1.10 1.01 1.18 0.72 0.73 1.34 1.33 1.35 1.33
ρ = ρ3 1.97 1.04 0.99 1.36 1 1.39 1.06 1.13 1.18 1.18 1.43 1.42
ρ = ρ4 5.06 1.02 0.98 1.65 0.97 1.70 1.31 1.30 1.04 1.06 1.29 1.29
ρ = ρ5 8.85 1.01 0.97 2.54 0.95 2.58 1.76 1.76 0.99 1 1.45 1.44

worst method by 83 percent. For (ρ4,5) PnP dependency decreases: best
method reduces the error of the worst method by only 19 percent.

• In general, least-squares techniques, LS (I), LS+CP (J), SP+LS (K),
SP+LS+CP (L) offer the best performance for all outlier levels.

• For ρ4,5 the introduction of the camera plane assumption and the initialization
using splines SP+LS (K), SP+LS+CP (L) offer a small gain.

• For median errors (table 4) variants of LS (I,J,K,L) also perform best. CP in-
clusion gives no improvement. The results do not depend on the PnP method.

Comparing relative method accuracy for ASPnP as baseline (table 5) we observe:

• SP (D) is increasingly helpful with growing outlier contamination (ρ3,4,5).
Similar to results on synthetic data, SP+C (E) does not help much.

• In general, all LS variants (I,J,K,L) offer significantly better results than any
other method. In contrast to our experiments on synthetic data, for real data
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LSWS (B) and, as a consequence LS (I) / LS+CP (J) have similar scores in po-
sitional accuracy to SP+LS (K) / SP+LS+CP (L). Initialization using splines
slightly improves orientation estimation. Inclusion of a CP in the optimization
marginally improves the result, but leads to a slower convergence.

• KF (C) and KR (G,H) help primarily in case of many outliers (ρ4,5), LSWS (B)
helps for (ρ1,2,3). Initializing SP (D) or KR (G) with LSWS (B) in LSWS+SP
(F), LSWS+KR (H) leads to a marginal improvement.

As in our experiment on synthetic data, variants of LS perform best on real
data as well. The influence of initial PnP poses is weak if few outliers are present.

Comparison with registration after reconstruction: An alternative way
of video registration is SfM reconstruction of a query video, and alignment of
the new model to the ground truth. We reconstructed every video with standard
SfM tools. The camera poses were rigidly aligned to the ground truth by mini-
mizing the RMS positional error. The resulting positional error of 9.051 meters
is significantly worse than our best refinement result with an error of 2.267 me-
ters (See fig. 4, ρ5 for no outlier removal). This is mainly due to SfM model
deformation and fragmentation. See supplementary material for more details.

4.4 Gap Interpolation

There are three scenarios where gaps, i.e. missing pose estimates for a consecutive
number of frames, can occur: 1) Failure of the PnP algorithm to converge, 2)
Removal of identified pose outliers, 3) deliberate speed-up by matching every nth
frame to the SfM model. In our third experiment gaps are created deliberately in
the synthetic dataset (Sec. 4.1, fast non-linear camera motion) and street-view
dataset (Sec 4.2, mostly linear, slow camera motion). We keep every nth pose,
leaving the remaining frames as gaps, and refine the camera path. We interpolate
over the gaps with cubic interpolation splines by using the refined poses as knots,

Fig. 5. Positional RMS pose error for refined poses after gap interpolation. Every
nth PnP pose is kept, remaining frames are gaps, poses are smoothed, and result
interpolated with cubic splines. Left: Synthetic dataset, Right: Street-view videos. Note:
due to high, very volatile error LSWS, LS (left) and SP+C (right) were not plotted.
KF and KR (right) exhibit high error and are out of scope.
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and evaluate on all frames including gaps. Fig. 5 shows the positional RMS error
for increasing gap sizes on real (right) and synthetic data (left). We observe:

• KR and KF are rarely helpful: For large gaps KF’s linear dynamics assumption
is violated, conditional averaging in KR is unstable. LS,LSWS,SP+C have the
same problem as in Sec. 4.1.

• SP shows reliable refinement over gaps. The gain over the ASPnP baseline
depends on the degree of non-linearity of camera motion: The camera motion
eliminates any gain after 7,10 (synthetic,real) skipped frames.

• As in our previous experiments, SP+LS offers the overall best performance on
both datasets. The inclusion of a CP as constraint offers an additional boost
in real data. SP+LS (left) and LS+CP (right) lose their gain over the baseline
only after 20 and 30 skipped frames, respectively.

5 Discussion and Conclusion

The three experiments show that in all test cases in synthetic and real data
most proposed methods improve pose accuracy over frame-wise registered poses
by including temporal smoothness. The best achieved improvement ranges from
2 to 60-fold reduction in RMS positional error depending on the outlier contam-
ination and magnitude of pose changes between frames.

Generally, variants of LS provide the best results for positional, but not for ori-
entational accuracy. The positional accuracy can be improved further by adding
additional constraints, such as a planar motion assumption (LS+CP). Robust
initialization (SP+LS) can help with convergence when strong noise in 2D and
3D is present. SP provides the fastest method with good results. Inclusion of
camera parameter covariances (SP+C) did not improve accuracy due to many
spurious feature matches. KR was able to handle outlying poses efficiently, but
conditional averaging decreases accuracy when poses are already good. If speed
is a constraint SP and LS scale linearly and are close to real-time performance.
In case orientation is more important than position and the data is strongly
contaminated with outliers, SP offers the best performance. Even for medium
sized SfM models (∼ 105 3D points) frame-wise feature matching and pose es-
timation is likely to be slower than our proposed pose refinements. This can be
mitigated by matching only every nth frame, smoothing and interpolating. In
case of interpolation, LS performs best, followed by SP. For real SfM data we
note that refinement results strongly depend on the initially used PnP algorithm
in case of few outliers (ρ1) but not so for many outliers (ρ5) : ratio of best to
worst result: 0.17 for ρ1, but 0.81 for ρ5. (See Fig. 4). The resulting refinement
methods are applicable in many domains where video poses are needed: Besides
2D-3D correspondences no further knowledge is required.

The present work opens three main branches of future work. First, from the
large body of works on regularization, basis expansion, and probabilistic kernel
methods, we adapted several techniques (SP, KR) to the problem of video reg-
istration. Different parametrizations and techniques, such as random regression
forests can be examined. Second, combinations of this method with pose estima-
tion through feature tracking [27,37] can be explored. Third, the LS refinement
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can naturally be combined with previous works on video pose estimation where
SLAM is applied to a video first, and matched to a 3D world afterwards [41,33].

Acknowledgments. This work was supported by the European Research Coun-
cil (ERC) under the project VarCity (#273940).
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