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Figure 1: Nearest Neighbour (NN) video clip retrieval on UCF101. Each row contains four video clips, a query clip and the top three retrievals using clip

embeddings. To get the embedding, each video is passed to a 3D-ResNet18, average pooled to a single vector, and cosine similarity is used for retrieval. (a)

Embeddings obtained by Dense Predictive Coding (DPC); (b) Embeddings obtained by using the inflated ImageNet pretrained weights. The DPC captures

the semantics of the human action, rather than the scene appearance or layout as captured by the ImageNet trained embeddings. In the DPC retrievals the

actual appearances of frames can vary dramatically, e.g. in the change in camera viewpoint for the climbing case.

Abstract
The objective of this paper is self-supervised learning of

spatio-temporal embeddings from video, suitable for human

action recognition.

We make three contributions: First, we introduce

the Dense Predictive Coding (DPC) framework for self-

supervised representation learning on videos. This learns

a dense encoding of spatio-temporal blocks by recurrently

predicting future representations; Second, we propose a

curriculum training scheme to predict further into the fu-

ture with progressively less temporal context. This en-

courages the model to only encode slowly varying spatial-

temporal signals, therefore leading to semantic represen-

tations; Third, we evaluate the approach by first train-

ing the DPC model on the Kinetics-400 dataset with self-

supervised learning, and then finetuning the representa-

tion on a downstream task, i.e. action recognition. With

single stream (RGB only), DPC pretrained representa-

tions achieve state-of-the-art self-supervised performance

on both UCF101 (75.7% top1 acc) and HMDB51 (35.7%

top1 acc), outperforming all previous learning methods by

a significant margin, and approaching the performance of

a baseline pre-trained on ImageNet. The code is available

at https://github.com/TengdaHan/DPC.

1. Introduction

Videos are very appealing as a data source for self-

supervision: there is almost an infinite supply available

(from Youtube etc.); image level proxy losses can be used

at the frame level; and, there are plenty of additional proxy

losses that can be employed from the temporal information.

One of the most natural, and consequently one of the first

video proxy losses, is to predict future frames in the videos

based on frames in the past. This has ample scope for ex-

ploration by varying the extent of the past knowledge (the

temporal aggregation window used for the prediction) and

also the temporal distance into the future for the predicted

frames. However, future frame prediction does have a se-

rious disadvantage – that the future is not deterministic –

so methods may have to consider multiple hypotheses with



multiple instance losses, or other distributions and losses

over their predictions.

Previous approaches to future frame prediction in

video [22, 23, 35, 40, 41] can roughly be divided into

two types: those that predict a reconstruction of the actual

frames [22, 23, 35, 41]; and those that only predict the la-

tent representation (the embedding) of the frames [40]. If

our goal in self-supervision is only to learn a semantic rep-

resentation that allows generalization for downstream dis-

criminative tasks, e.g. action recognition in video, then it

may not be necessary to waste model capacity on resolving

the stochasticity of frame appearance in detail, e.g. appear-

ance changes due to shadows, illumination changes, camera

motion, etc. Approaches that only predict the frame em-

bedding, such as Vondrick et al. [40], avoid this potentially

unnecessary task of detailed reconstruction, and use a mix-

ture model to resolve the uncertainty in future prediction.

Although not applied to videos (but rather to speech sig-

nals and images), the Contrastive Predictive Coding (CPC)

model of Oord et al. [39] also learns embeddings, in their

case by using a multi-way classification over temporal au-

dio frames (or image patches), rather than the regression

loss of [40].

In this paper we propose a new idea for learning spatio-

temporal video embeddings, that we term “Dense Predic-

tive Coding” (DPC). The model is trained to predict a

slowly varying semantic representation based on the re-

cent past [46]. It is inspired by the CPC [39] frame-

work, and more generally by previous research on learn-

ing word embeddings [24, 25, 27] and noise contrastive

estimation [8]. DPC differs from [39, 40] in several key

aspects: first, the multi-way classification is over future

spatio-temporal blocks, rather than over global frame em-

beddings, hence the ‘dense’ in the naming; second, the

DPC model enforces a recurrent temporal prediction for

the spatio-temporal blocks (as used in N-gram prediction),

whereas [39] has independent predictions for future frames;

and third, a curriculum learning strategy is introduced that

not only presents progressively more challenging training

samples, but also prevents the model from using shortcuts

such as optical flow.

The contributions of this paper are three-fold: First,

we introduce the Dense Predictive Coding (DPC) frame-

work for self-supervised representation learning on videos;

second, we propose a curriculum training scheme that

forces the model to only encode the slowly varying spatial-

temporal representation, i.e. semantic embedding, and grad-

ually learn to predict further in the future (up to 2 sec-

onds) with progressively less temporal context; third, we

evaluate the approach by first training the DPC model on

the Kinetics-400 [15] dataset using self-supervised learn-

ing, and then fine-tuning on action recognition benchmarks.

We achieve state-of-the-art performance for self-supervised

learning on both UCF101 [33] and HMDB51 [19].

2. Related Work

Self-supervised learning from images. In recent years,

methods for self-supervised learning on images have

achieved an impressive performance in learning high-

level image representations. Inspired by the variants of

Word2vec [2, 24, 25] that rely on predicting words from

their context, Doersch et al. [4] proposed the pretext task of

predicting the relative location of image patches. This work

spawned a line of work in context-based self-supervised vi-

sual representation learning methods, e.g. in [28]. In con-

trast to the context-based idea, another set of pretext tasks

include carefully designed image-level classification, such

as rotation [7] or pseudo-labels from clustering [3]. Another

class of pre-text tasks is for dense predictions, e.g. image

inpainting [31], image colorization [47], and motion seg-

mentation prediction [30]. Other methods instead enforce

structural constraints on the representation space [29].

Self-supervised learning from videos. Other than the pre-

dictive tasks reviewed in the introduction, another class of

proxy tasks is based on temporal sequence ordering of the

frames [6, 26, 45]. [11, 13, 43] use the temporal coherence

as a proxy loss. Other approaches use egomotion [1, 12] to

enforce equivariance in feature space [12]. In contrast, [14]

predicts the transformation applied to a spatio-temporal

block. In [16], the authors propose to use a 3D puzzle as

the proxy loss. Recently [20, 42, 44], leveraged the natural

temporal coherency of color in videos, to train a network

for tracking and correspondence related tasks.

Action recognition with two-stream architectures. Re-

cently, the two-stream architecture [32] has been a founda-

tion for many competitive methods. The authors show that

optical flow is a powerful representation that improves ac-

tion recognition dramatically. Other modalities like audio

signal can also benefits visual representation learning [18].

While in this paper, we deliberately avoid using any in-

formation from optical flow or audio, and aim to probe

the upperbound of self-supervised learning with only RGB

streams. We leave it as a future work to explore how much

boost optical flow branch and audio branch can bring to our

self-supervised learning architecture.

3. Dense Predictive Coding (DPC)

In this section, we describe the learning framework, de-

tails of the architecture, and the curriculum training that

gradually learns to predict further into the future with pro-

gressively less temporal context.

3.1. Learning Framework

The goal of DPC is to predict a slowly varying semantic

representation based on the recent past, e.g. we construct a
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Figure 2: A diagram of Dense Predictive Coding method. The left part is the pipeline of the DPC, which is explained in Sec. 3.1. The right part (in the

dashed rectangle) is an illustration of the Pred-GT pair construction for contrastive loss, which is explained in Sec. 3.2.

prediction task that observes about 2.5 seconds of the video

and predict the embedding for the future 1.5 seconds, as il-

lustrated in Figure 2. A video clip is partitioned into multi-

ple non-overlapping blocks x1, x2, . . . , xn, with each block

containing an equal number of frames. First, a non-linear

encoder function f(.) maps each input video block xt to its

latent representation zt, then an aggregation function g(.)
temporally aggregates t consecutive latent representations

into a context representation ct:

zt = f(xt) (1)

ct = g(z1, z2, ..., zt) (2)

where xt has dimension R
T×H×W×C , and zt is a feature

map with dimension R
1×H′

×W ′
×D, organized as time ×

height × width × channels. 1.

The intuition behind the predictive task is that if one can

infer future semantics from ct, then the context representa-

tion ct and the latent representations z1, z2, ..., zt must have

encoded strong semantics of the input video clip. Thus, we

introduce a predictive function φ(.) to predict the future. In

detail, φ(.) takes the context representation as the input and

predicts the future clip representation:

ẑt+1 = φ(ct) = φ
(

g(z1, z2, . . . , zt)
)

(3)

ẑt+2 = φ(ct+1) = φ
(

g(z1, z2, . . . , zt, ẑt+1)
)

(4)

where ct denotes the context representation from time step

1 to t, and ẑt+1 denotes the predicted latent representation

of the time step t+1. In the spirit of Seq2seq [36], represen-

tations are predicted in a sequential manner. We predict q

steps in the future, at each time step t, the model consumes

the previously generated embedding (ẑt−1) as input when

generating the next (ẑt), further enforcing the prediction to

1In our initial experiments, xt ∈ R
5×128×128×3, zt ∈ R

1×4×4×256

be conditioned on all previous observations and predictions,

and therefore encourages an N-gram like video representa-

tion.

3.2. Contrastive Loss

Noise Contrastive Estimation (NCE) [8] constructs a bi-

nary classification task: a classifier is fed with real samples

and noise samples, and the objective is to distinguish them.

A variant of NCE [27, 39] classifies one real sample among

many noise samples. Similar to [27, 39], we use a loss based

on NCE for the predictive task. NCE over feature embed-

dings encourages the predicted representation ẑ to be close

to the ground truth representation z, but not so strictly that

it has to resolve the low-level stochasticity.

In the forward pass, the ground truth representation z

and the predicted representation ẑ are computed. The rep-

resentation for the i-th time step is denoted as zi and ẑi,

which have the same dimensions. Note that, instead of

pooling into a feature vector, both zi and ẑi are kept as

feature maps (zi, ẑi ∈ R
H′

×W ′
×D), which maintains the

spatial layout representation. We denote the feature vector

in each spatial location of the feature map as zi,k ∈ R
D and

ẑi,k ∈ R
D where i denotes the temporal index and k is the

spatial index k ∈ {(1, 1), (1, 2), . . . , (H,W )}. The similar-

ity of the predicted and ground-truth pair (Pred-GT pair) is

computed by the dot product ẑ⊤i,kzj,m. The objective is to

optimize:

L = −
∑

i,k

[

log
exp(ẑ⊤i,k · zi,k)

∑

j,m exp(ẑ⊤i,k · zj,m)

]

(5)

In essense, this is simply a cross-entropy loss (negative

log-likelihood) that distinguishes the positive Pred-GT pair

out of all other negative pairs. For a predicted feature vec-

tor ẑi,k, the only positive pair is (ẑi,k, zi,k), i.e. the pre-

dicted and ground-truth features at the same time step and



same spatial location. All the other pairs (ẑi,k, zj,m) where

(i, k) 6= (j,m), are negative pairs. The loss encourages the

positive pair to have a higher similarity than any negative

pairs. If the network is trained in a mini-batch consisting of

B video clips and each of the B clips is from distinct video,

more negative pairs can be obtained.

To discriminate the different types of negative pairs,

given a Pred-GT pair (ẑi,k, zj,m), we define the terminol-

ogy as follows:

Easy negatives: is the Pred-GT pair that is formed from

two distinct videos. These pairs are naturally easy because

they usually have distinct color distributions and thus pre-

dicted feature and ground-truth feature have low similarity.

Spatial negatives: is the Pred-GT pair that is formed

from the same video but at a different spatial position in

the feature map, i.e. k 6= m, while i, j can be any index.

Temporal negatives (hard negatives): is the Pred-GT

pair that comes from the same video and same spatial posi-

tion, but from different time steps, i.e. k = m, i 6= j. They

are the hardest pair to classify because their score will be

very close to the positive pairs.

Overall, we use a similar idea to the Multi-batch train-

ing [37]. If the mini-batch has batch size B, the feature

map has spatial dimension H ′ ×W ′ and the task is to clas-

sify one of q time steps, the number of each classes follows:

Pos : Ntemporal : Nspatial : Neasy

=1 : (q − 1) : (H ′W ′ − 1)q : (B − 1)H ′W ′q

Curriculum learning strategy. A curriculum learning

strategy is designed by progressively increasing the num-

ber of prediction steps of the model (Sec. 4.1.4). For in-

stance, the training process can start by predicting only 2

steps (about 1 second), i.e. only computing ẑt+1 and ẑt+2,

and the Pred-GT pairs are constructed between {zt+1, zt+2}
and {ẑt+1, ẑt+2}. After the network has learnt this simple

task, it can be trained to predict 3 steps (about 1.5 seconds),

e.g. computing ẑt+1, ẑt+2 and ẑt+3 and construct Pred-GT

pairs accordingly. Importantly, curriculum learning intro-

duces more hard negatives throughout the training process,

and forces the model to gradually learn to predict further in

the future with progressively less temporal context. Mean-

while, the model is gradually trained to grasp the uncertain

nature in its prediction.

3.3. Avoiding Shortcuts and Learning Semantics

Empirical experience in self-supervised learning indi-

cates that if the proxy task is well-designed and requires

semantic understanding, a more difficult learning task usu-

ally leads to a better-quality representation [21]. However,

ConvNets are notorious for learning shortcuts for tackling

tasks [4, 28, 45]. In our training, we employ a number of

mechanisms to avoid potential shortcuts, as detailed next.

Disrupting optical flow. A trivial solution of our predic-

tive task is that f(.), g(.) and φ(.) together learn to capture

low-level optical flow information and perform feature ex-

trapolation as the prediction. To force the model to learn

high-level semantics, a critical operation is frame-wise aug-

mentation, i.e. random augmentation for each individual

frame in the video blocks, such as frame-wise color jittering

including random brightness, contrast, saturation, hue and

random greyscale during training. Furthermore, the curricu-

lum of predicting further into the future, i.e. predicting the

semantics for the next a few seconds, also ensures that opti-

cal flow alone will not be able to solve this prediction task.

Temporal receptive field. The temporal receptive field

(RF) of f(.) is limited by cutting the input video clip into

non-overlapping blocks before feeding it into f(.). Thus,

the effective temporal RF of each feature map zi is strictly

restricted to be within each video block. This avoids the net-

work being able to discriminate positive and hard-negative

by recognizing relative temporal position.

Spatial receptive field. Due to the depth of CNN, each

feature vector ẑi,k in the final predicted feature map ẑi has a

large spatial RF that (almost) covers the entire input spatial

dimension. This creates a shortcut to discriminate positive

and spatial negative by using padding patterns. One can

limit the spatial RF by cutting input frames into patches [16,

39]. However this brings some drawbacks: First, the self-

supervised pre-trained network will have limited receptive

field (RF), so the representation may not generalize well for

downstream tasks where a large RF is required. Second,

limiting spatial RF in videos makes the context feature too

weak. The context feature has a spatio-temporal RF that

covers a thin cube in the video flow. Neglecting context is

also not ideal for understanding video semantics and brings

ambiguity to the predictive task. Considering this trade-off,

our method does not restrict the spatial RF.

Batch normalization. Common practice uses Batch Nor-

malization [10] (BN) in deep CNN architecture. The BN

layer may provide shortcuts that the network acknowledges

the statistical distribution of the mini-batch, which bene-

fits the classification. In [39], the authors demonstrate they

were able to train deep ResNet without BN. In our method,

we find the effect of BN shortcut is very limited. The self-

supervised training gives similar accuracy using either BN

or Instance Normalization [38] (IN). For downstream tasks

like classification, a network with BN gives 5%-10% ac-

curacy gain comparing with a network with IN. It is hard

to train a deep CNN without normalization for either self-

supervised training or supervised training. Overall, we use

BN in our encoder function f(.).



3.4. Network Architecture

We choose to use a 3D-ResNet similar to [9] as the en-

coder f(.). Following the convention of [5] there are four

residual blocks in ResNet architecture, namely res2, res3,

res4 and res5, and only expand the convolutional kernels in

res4 and res5 to be 3D ones. For experiment analysis, we

used 3D-ResNet18, denoted as R-18 below.

To train a strong encoder f(.), a weak aggregation func-

tion g(.) is preferable. Specifically, a one-layer Convolu-

tional Gated Recurrent Unit (ConvGRU) with kernel size

(1, 1) is used, which shares the weights amongst all spatial

positions in the feature map. This design allows the aggre-

gation function to propagate features in the temporal axis.

A dropout [34] with p = 0.1 is used when computing hid-

den state in each time step. A shallow two-layer perceptron

is used as the predictive function φ(.).

3.5. Self­Supervised Training

For data pre-processing, we use 30 fps videos with a

uniform temporal downsampling by factor 3, i.e. take one

frame from every 3 frames. These consecutive frames are

grouped into 8 video blocks where each block consists of 5

frames. Frames are sampled in a consecutive way with con-

sistent temporal stride to preserve the temporal regularity,

because random temporal stride introduces uncertainties to

the predictive task especially when the network needs to dis-

tinguish the difference among different time steps. Specif-

ically, each video block spans over 0.5s and the entire 8

segments span over 4s in the raw video. The predictive task

is initially designed to observe the first 5 blocks and predict

the remaining 3 blocks (denoted as ‘5pred3’ afterwards),

which is observing 2.5 seconds to predict the following 1.5

seconds. We also experiment with different predictive con-

figuration like 4pred4 in Sec. 4.1.4.

For data augmentation, we apply random crop, random

horizontal flip, random grey, and color jittering. Note that

the random crop and random horizontal flip are applied

for the entire clip in a consistent way. Random grey and

color jittering are applied in a frame-wise manner to pre-

vent the network from learning low-level flow information

as mentioned above (in Section 3.3), e.g. each video block

may contain both colored and grey-scale image with dif-

ferent contrast. All models are trained end-to-end using

Adam [17] optimizer with an initial learning rate 10−3 and

weight decay 10−5. Learning rate is decayed to 10−4 when

validation loss plateaus. A batchsize of 64 samples per GPU

is used, and our experiments use 4 GPUs.

4. Experiments and Analysis

In the following sections we present controlled experi-

ments, and aim to investigate four aspects: First, an ablation

study on the DPC model to show the function of different

design choices, e.g. sequential prediction, dense prediction.

Second, the benefits of training on a larger, and more di-

verse dataset. Third, the correlation between performance

on self-supervised learning and performance on the down-

stream supervised learning task. Fourth, the variation in the

learnt representations when predicting further into the fu-

ture.

Datasets. The DPC is a general self-supervised learning

framework for any video types, but we focus here on hu-

man action videos e.g. UCF101 [33], HMDB51 [19] and

Kinetics-400 [15] datasets. UCF101 contains 13K videos

spanning over 101 human action classes. HMDB51 con-

tains 7K videos from 51 human action classes. Kinetics-400

(K400) is a big video dataset containing 306K video clips

for 400 human action classes.

Evaluation methodology. The self-supervised model is

trained either on UCF101 or K400. The representation is

evaluated by its performance on a downstream task, i.e.

action classification on UCF101 and HMDB51. For all

the experiments below: we report top1 accuracy for self-

supervised learning in the middle column of all tables; and

report the top1 accuracy for supervised learning for action

classification on UCF101 in the rightmost column. In self-

supervised learning, the top1 accuracy refers to how often

the multi-way classifier picks the right Pred-GT pair, i.e.

this is not related with any action classes. While for super-

vised learning, the top1 accuracy indicates the action clas-

sification accuracy on UCF101. Note, we report the first

training/testing splits of UCF101 and HMDB51 in all the

experiments, apart from the comparison with the state of

the art in Table 4 where we report the average accuracy over

three splits.

Action classifier. During supervised learning, 5 video

blocks are passed as input (the same as for self-supervised

training, i.e. each block is of R5×128×128×3), and encoded

as a sequence of feature maps with the encoding function

f(.) (a 3D-ResNet). As with the self-supervised architec-

ture, the aggregation function g(.) (a ConvGRU) aggre-

gates the feature maps over time and produces a context

feature. The context feature is further passed through a spa-

tial pooling layer followed by a fully-connected layer and

a multi-way softmax for action classification. The classi-

fier is trained using the Adam [17] optimizer with an initial

learning rate 10−3 and weight decay 10−3. Learning rate

is decayed twice to 10−4 and 10−5 Note that the entire net-

work is trained end-to-end. The details of the architecture

are given in the appendix of the arXiv version.

During inference, video clips from the validation set

are densely sampled from an input video and cut into

blocks (R5×128×128×3) with half-length overlapping. Aug-

mentations are removed and only center crop is used. The



softmax probabilities are averaged to give the final classifi-

cation result.

4.1. Performance Analysis

4.1.1 Ablation Study on Architecture

In this section, we present an ablation study by gradually

removing components from the DPC model (see Table 1).

For efficiency, all the self-supervised learning experiments

refer to the 5pred3 setting, i.e. 5 video blocks (2.5 second)

are used as input to predict the future 3 steps (1.5 second).

Network
Self-Sup. (UCF) Sup. (UCF)

setting method top1 acc top1 acc

R-18 - - (rand. init.) - 46.5

R-18 5pred3 DPC 53.6 60.6

R-18 5pred3 remove Seq. 51.3 56.9

R-18 5pred3 remove Map 36.5 44.9

Table 1: Ablation study of DPC. remove Seq means removing the sequen-

tial prediction mechanism in DPC, and replacing by parallel prediction.

remove Map means removing the dense feature map design in DPC, and

use a feature vector instead. Self-supervised tasks are trained on UCF101

using 5pred3 setting. Representation learned from each self-supervised

task is evaluated by training a supervised action classifier on UCF101.

Compared with the baseline model trained with random

initialization and fully supervised learning, our DPC model

pre-trained with self-supervised learning has a significant

boost (top1 acc: 46.5% vs. 60.6%). When removing the

sequential prediction, i.e. all 3 future steps are predicted

in parallel with three different fully-connected layers, the

accuracy for both self-supervised learning and supervised

learning start to drop. Lastly, we further replace the dense

feature map by the average-pooled feature vector, i.e. it be-

comes a CPC-like model, we are not able to train this model

either on self-supervised learning task or supervised learn-

ing. This demonstrates that dense predictive coding is es-

sential to our success, and sequential prediction also helps

to boost the model performance.

4.1.2 Benefits of Large Datasets

In this section, we investigate the benefits of pre-training

on a large-scale dataset (UCF101 vs. K400), we keep the

5pred3 setting and evaluate the effectiveness for down-

stream task on UCF101. Results are shown in Table 2.

Network
Self-Sup. Sup. (UCF)

setting dataset top1 acc top1 acc

R-18 5pred3 UCF101 53.6 60.6

R-18 5pred3 K400 61.1 65.9

Table 2: Results of DPC on UCF101 and K400 respectively. Both ex-

periments use 5pred3 setting. Representations are evaluated by training a

supervised action classifier on UCF101 (right column).

Training the model on K400 increases the self-

supervised accuracy to 61.1%, and supervised accuracy

from 60.6% to 65.9%, suggesting the model has cap-

tured more regularities than a smaller dataset like UCF101.

It is clear that DPC will benefit from large-scale video

dataset (infinite supply available), which naturally provides

more diverse negative Pred-GT pairs.

4.1.3 Self-Supervised vs. Classification Accuracy

In this section, we investigate the correlation between the

accuracy of self-supervised learning and downstream super-

vised learning. While training DPC (5pred3 task on K400),

we evaluate the representation at different training stages

(number of epochs) on the downstream task (on UCF101).

The results are shown in Figure 3.
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Figure 3: Relation between self-supervised accuracy and classifica-

tion accuracy. Self-supervised model (DPC) is trained on K400

and the weights at epoch {13, 48, 81, 109} are saved, which achieve

{50.7%, 57.4%, 59.1%, 61.1%} self-supervised accuracy respectively.

The checkpoints are evaluated by finetuning on UCF101.

It can be seen that a higher accuracy in self-supervised

task always leads to a higher accuracy in downstream clas-

sification. The result indicates that DPC has actually learnt

visual representations that are not only specific to self-

supervised task, but are also generic enough to be beneficial

for the downstream task.

4.1.4 Benefits of Predicting Further into the Future

Due to the increase of uncertainty, predicting further into

the future in video sequences gets more difficult, therefore

more abstract (semantic) understanding is required. We hy-

pothesize that if we can train the model to predict further,

the learnt representation should be even better. In this sec-

tion, we employ curriculum learning to gradually train the

model to predict further with progressively less temporal

context, i.e. from 5pred3 to 4pred4 (4 video blocks as input

and predict the future 4 steps).



Network
Self-Sup. (K400) Sup. (UCF)

setting curr. top1 acc top1 acc

R-18 5pred3 ✗ 61.1 65.9

R-18 4pred4 ✗ 48.3 64.9

R-18 5pred3+4pred4 ✓ 50.8 68.2

Table 3: Results of DPC with different prediction steps. All models are

trained on K400 with same number of 320k iterations. Note that for

5pred3 and 4pred4, the model is trained from scratch. ‘5pred3+4pred4’ de-

notes that curriculum learning strategy, i.e. initialized with the pre-trained

weights from 5pred3 task. The representation is evaluated by training an

action classifier on UCF101 (right column).

The result shows that the 4pred4 setting gives a substan-

tially lower accuracy on the self-supervised learning than

5pred3. This is actually not surprising, as 4pred4 naturally

introduces 33% more hard negative pairs than predicting fu-

ture 3 steps, making the self-supervised learning more dif-

ficult (explained in Section 3.2).

Interestingly, despite a lower accuracy on self-supervised

learning task, when comparing with 5pred3, curriculum

learning on 4pred4 provides 2.3% performance boost on the

downstream supervised task (top1 acc: 68.2% vs. 65.9%).

The experiment also shows that curriculum learning is

effective as it achieves higher performance than training

4pred4 task from scratch (top1 acc: 68.2% vs. 64.9%).

Similar effect is also observed in [18].

4.1.5 Summary

Through the experiments above, we have demonstrated the

keys to the success of DPC. First, it is critical to do dense

predictive coding, i.e. predicting both temporal and spatial

representation in the future blocks, and sequential predic-

tion enables a further boost in the quality of the learnt rep-

resentation. Second, a large-scale dataset helps to improve

the self-supervised learning, as it naturally contains more

world patterns and provides more diverse negative sample

pairs. Third, the representation learnt from DPC is generic,

as a higher accuracy in the self-supervised task also yield

a higher accuracy in the downstream classification task.

Fourth, predicting further into the future is also beneficial,

as the model is forced to encode the high-level semantic

representations, and ignore the low-level information.

5. Comparison with State-of-the-art Methods

The results are given in Table 4, four phenomena can

be observed: First, when self-supervised training with

only UCF101, our DPC (60.6%) outperforms all previous

methods under similar settings. Note that OPN [21] per-

forms worse when input resolution increases, which in-

dicates a simple self-supervised task like order prediction

may not capture the rich semantics from videos. Second,

when using Kinetics-400 for self-supervised pre-training,

our DPC (68.2%) outperforms all the previous methods by

a large margin. Note that, in the work [14, 16], the authors

use a full-scale 3D-ResNet18 architecture (33.6M param-

eters), i.e. all convolutions are 3D, however our modified

3D-ResNet18 has fewer parameters (only the last 2 blocks

are 3D convolutions). The authors of [16] obtain 65.8%

accuracy by combing the rotation classification [14] with

their Space-Time Cubic Puzzles method, essentially multi-

task learning. When only considering their Space-Time Cu-

bic Puzzles method, they obtain 63.9% top1 accuracy. On

HMDB51, our method also outperforms the previous state

of the art result by 0.8% (34.5% vs. 33.7%). Third, when

applying on larger input resolution (224 × 224) and using

model with more capacity (3D-ResNet34), our DPC clearly

dominate all self-supervised learning methods (75.7% on

UCF101 and 35.7% on HMDB51), further demonstrating

that DPC is able to take advantage from networks with more

capacity and today’s large-scale datasets. Fourth, ImageNet

pretrained weights have been a golden baseline for action

recognition [32], our self-supervised DPC is the first model

that surpasses the performance of models (VGG-M) pre-

trained with ImageNet (75.7% vs. 73.0% on UCF101).

5.1. Visualization

We visualize the Nearest Neighbour (NN) of the video

segments in the spatio-temporal feature space in Figure 4

and Figure 1. In detail, one video segment is randomly

sampled from each video, then the spatio-temporal feature

zi = f(xi) is extracted and pooled into a vector. Then

the feature vector is used to compute the cosine similarity

score. In all figures, Figure 4a includes the video clips re-

trieved using our DPC model from self-supervised learning,

note that the network does not receive any class label infor-

mation during training. In comparison, Figure 4b uses the

inflated ImageNet pre-trained weights.

It can be seen, that the ImageNet model is able to encode

the scene semantics, e.g. human faces, crowds, but does not

capture any semantics about the human actions. In con-

trast, our DPC model has actually learnt the video semantics

without using any manual annotation, for instance, despite

the background change in running, DPC can still correctly

retrieve the video block.

5.2. Discussion

Why should the DPC model succeed in learning a rep-

resentation suitable for action recognition, given the prob-

lem of a non-deterministic future? There are three rea-

sons: First, the use of the softmax function and multi-way

classification loss enables multi-modal, skewed, peaked or

long tailed distributions; the model can therefore handle the

task of predicting the non-deterministic future. Second, by

avoiding the shortcuts, the model has been prevented from

learning simple smooth extrapolation of the embeddings;

it is forced to learn semantic embeddings to succeed in its



Self-Supervised Method (RGB stream only) Supervised Accuracy (top1 acc)

Method Architecture (#param) Dataset UCF101 HMDB51

Random Initialization 3D-ResNet18 (14.2M) - 46.5 17.1

ImageNet Pretrained [32] VGG-M-2048 (25.4M) - 73.0 40.5

Shuffle & Learn [26] (227× 227) CaffeNet (58.3M) UCF101/HMDB51 50.2 18.1

OPN [21] (80× 80) VGG-M-2048 (8.6M) UCF101/HMDB51 59.8 23.8

OPN [21] (120× 120) VGG-M-2048 (11.2M) UCF101/HMDB51 55.4 -

OPN [21] (224× 224) VGG-M-2048 (25.4M) UCF101/HMDB51 51.9 -

Ours (128× 128) 3D-ResNet18 (14.2M) UCF101 60.6 -

3D-RotNet [14] (112× 112) 3D-ResNet18-full (33.6M) Kinetics-400 62.9 33.7

3D-ST-Puzzle [16] (224× 224) 3D-ResNet18-full (33.6M) Kinetics-400 63.9 (65.8⋆) 33.7⋆

Ours (128× 128) 3D-ResNet18 (14.2M) Kinetics-400 68.2 34.5

Ours (224× 224) 3D-ResNet34 (32.6M) Kinetics-400 75.7 35.7

Table 4: Comparison with other self-supervised methods, results are reported as an average over three training-testing splits. Note that, previous works [14,

16] use full-scale 3D-ResNet18, i.e. all convolutions are 3D, and the input sizes for different models have been shown. ⋆indicates the results from the

multi-task self-supervised learning, i.e. Rotation + 3D Puzzle.

(a)

(b)

Figure 4: More examples of video retrieval with nearest neighbour (same setting as Figure 1). Fig. 4a is the NN retrieval with DPC pre-trained f(.) on

UCF101 (performance reported in Sec. 4.1.2). Fig. 4b is the NN retrieval with ImageNet inflated f(.). Retrieval is performed on UCF101 validation set.

learning task. Third, in essense, DPC is trained by predict-

ing future representations, and use them as a “query” to pick

the correct “key” from lots of distractors. In order to suc-

ceed in this task, the model has to learn the shared semantics

of the multiple possible future states, as this is the only way

to always solve the multiple choice problem, no matter what

future state appears along with the distractors. This com-

mon/shared representation is the invariance we are wishing

for, i.e. higher level semantics. In other words, the repre-

sentation of all these possible future states will be mapped

to a space that their embeddings are close.

6. Conclusion

In this paper, we have introduced the Dense Predic-

tive Coding (DPC) framework for self-supervised represen-

tation learning on videos, and outperformed the previous

state-of-the-art by a large margin on the downstream tasks

of action classification on UCF101 and HMDB51. As for

future work, one straightforward extension of this idea is

to employ different methods for aggregating the tempo-

ral information – instead of using a ConvGRU for tem-

poral aggregation (g(.) in the paper), other methods like

masked CNN and attention based methods are also promis-

ing. In addition, empirical evidence shows that optical flow

is able to boost the performance for action recognition sig-

nificantly; it will be interesting to explore how optical flow

can be trained jointly with DPC with self-supervised learn-

ing to further enhance the representation quality.
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