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ABSTRACT 
 
Video contains multiple types of audio and visual information, which are difficult to extract, combine or trade-off in 
general video information retrieval. This paper provides an evaluation on the effects of different types of information used 
for video retrieval from a video collection. A number of different sources of information are present in most typical 
broadcast video collections and can be exploited for information retrieval.  We will discuss the contributions of 
automatically recognized speech transcripts, image similarity matching, face detection and video OCR in the contexts of 
experiments performed as part of 2001 TREC Video Retrieval Track evaluation performed by the National Institute of 
Standards and Technology. For the queries used in this evaluation, image matching and video OCR proved to be the 
deciding aspects of video information retrieval. 
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1. INTRODUCTION: INFORMATION RETRIEVAL FROM VIDEO CONTENT 
 
Video is a rich source of information, with aspects of content available both visually and acoustically. Until now, there has 
never been a large-scale, standardized evaluation of video information retrieval. This paper tries to carefully analyze and 
contrastively evaluate and compare different types of video and audio information as used in a video information retrieval 
task. While there have been no serious studies of automatic video information retrieval to date, some components of video 
information have been examined in the context of information retrieval, most notably spoken document retrieval, image 
retrieval and OCR.  
 
Spoken Document Retrieval: A textual representation of the audio content from a video can be obtained through 
automatic speech recognition. Information retrieval from speech recognition transcripts has received quite a bit of attention 
in recent years in the spoken document retrieval track at TREC7, TREC 8 and TREC 9. The current ‘consensus’ from a 
number of published experiments in this area is that as long as speech recognition has a word error rate better than 35% 
word error, then information retrieval from the transcripts of spoken documents is only 3-10% worse than information 
retrieval on perfect text transcriptions of the same documents. 
 
Image Similarity Matching. Example-based image retrieval task has been studied for many years. The task requires the 
image search engine to find the set of images from a given image collection that is similar to the given query image. 
Traditional methods for content-based image retrieval are based on a vector model [1, 11]. These methods represent an 
image as a set of features and the difference between two images is measured through a (usually Euclidean) distance 
between their feature vectors. While there have been no large-scale, standardized evaluations of image retrieval systems, 
most image retrieval systems are based on features such as color, texture, and shape that are extracted from the image 
pixels [10]. 
 
OCR document retrieval: A different, textual, representation is derived by reading the text that present in the video 
images using optical character recognition (OCR). At TREC 5, experiments have shown that information retrieval on 
documents recognized through OCR with a character error rate of 5% and 20% degrades IR effectiveness by 10 % to 50 % 
depending on the metric, when compared to perfect text retrieval [2].  
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In contrast, video information retrieval much more complex and combines elements of spoken documents, OCR 
documents, image similarity as well as other audio and image features. In this paper we will examine the effects of multi-
modal information retrieval from video documents.  There are only area of audio analysis that we examined was automatic 
speech recognition. While analyzing the video imagery, we considered the color similarity of images, and the presence of 
faces and text that was readable on the screen. We explored these dimensions of audio analysis and image analysis 
separately and in combination in our video retrieval experiments.  We will present experiments with each different types of 
extracted metadata performed separately and also combined together in the context of the TREC Video Retrieval 
evaluation performed by the National Institute of Standards and Technology.  
 
The remainder of the paper is structured as follows: Section 2 describes the video retrieval evaluation task in more detail 
and section 3 introduces the Informedia Digital Video Library System and its methods to extract and retrieve metadata, 
namely speech transcripts, video OCR, as well as image-based metadata extraction and retrieval used for face detection 
and image similarity matching. The results are presented in section 4 for individual and combined metadata. Finally, 
section 5 concludes with an analysis of the implications of these results. 
 

2. THE TREC VIDEO RETRIEVAL EVALUATION 
 
The Text REtrieval Conference (TREC) has sponsored contrastive evaluations of information retrieval systems for the last 
10 years.  While most of the evaluations were concerned with text retrieval, there have also been evaluations of document 
collections with OCR errors and spoken document collections that include speech recognition errors. In 2001 the first 
video information retrieval evaluation was performed. The 2001 TREC Video Retrieval evaluation made a corpus of 11 
hours of MPEG-1 encoded broadcast video available to all participants.  The data consisted of NIST project and 
promotional videos, documentary material from NASA and the Bureau of Reclamation and Land Management, a series of 
lectures, as well as BBC stock footage. While both an interactive and an automatic version of the evaluation was 
performed, we will only report experiments with a fully automatic system, since the user influence in the interactive 
systems could not easily be factored out. 
 
In the following we will elaborate only on the known item query set, because comprehensive relevance judgments were 
available for this set allowing automatic estimation of precision and recall for variations of our video retrieval system. We 
used 34 known item queries that are distinguished from the remaining ‘general search’ queries in that the information need 
tends to be more focused and all instances of query-relevant items in the corpus are known.  This allows an experimental 
comparison of systems without the need for further human evaluations.  An automatic known-item query had, on average, 
just over 2 relevant video clips as answers, with the largest answer set containing 10 relevant items. Three queries 
contained only text descriptions (suitable for speech or OCR analysis), 19 known-item queries had example still images, 
and 3 queries listed audio as a specific source of information. 16 of the known-item queries included at least 1 example 

video clip. Many queries provided a combination of video examples, still images and/or audio. 

Figure 1. A sample Video TREC query asking for a general scene containing water skiers 

<videoTopic num="005" interactive="N-I" automatic="Y-A" knownItems="Y-K"> 
  <textDescription text="Scenes that show water skiing"/> 
  <videoExample src="BOR17.MPG" start="0h01m08s" stop="0h01m18s"/> 
</videoTopic> 

 … 

 

 …  …  

 



The TREC video queries might be classified into the following types, based on what the query was looking for:  
• Specific scenes or objects. Some queries searched for specific objects or scenes, such as the statue of liberty, a 

space shuttle or a rocket launch, a lunar vehicle, corn on the cob, etc. 
• Less specific scenes. These include queries that look for a pink flower, a waterskiier, people on a beach, a yellow 

boat, traffic scenes, water, etc. 
• Shots of specific people: Queries of this type would look for a person by name e.g. Harry Hertz, Lynn Bondurant, 

Ronald Reagan, or a specific unnamed person by example, such as a query looking for other instances of the 
person provided in the sample video clip or still image) 

• Camera operation: Queries would specify a camera operation (pan, tilt and/or zoom), often in addition to a scene 
such as a zoom-in of canyons, or a pan over grasslands. 

 
Queries sometimes combined elements of several query types, e.g. looking for a person standing in front of the X-29 
experimental plane. Queries could also be classified by type of example data or by the feature class, which would be able 
to find the query: 

• The text spoken during the clip (‘space shuttle’) 
• The OCR on the screen during the clip (“Harry Hertz”) 
• By similarity to the non-text audio characteristics to the samples given in video or audio (‘male speaker’, water 

sounds, specific speaker) 
• By similarity to the whole example still image 
• By similarity to whole still images extracted from the example video clip 
• By similarity to the motion in the sample video clip 
• By similarity to specific objects somewhere in the example video or still images (lunar rover, corn on the cob). 
 

While the latter classification seems most desirable, it is frequently not possible prior to retrieval to know which aspects of 
the query might be appropriate for retrieval. Sometimes the text description gave a hint to the human reader, but parsing 
the query accurately proved to be beyond the scope of our system.  
 
Since the evaluation could be done automatically, the top 100 search results were scored for all systems. The general unit 
of retrieval was a ‘shot’, in other words a time range between two shot changes, for example editing cuts and fades. 
Systems had to determine shot changes automatically. An item was considered relevant if at least 33% of the length of the 
returned item overlapped with the target item in the list of shots relevant to this query and less than 33% of the time range 
for the returned item was outside the target range. This requirement ensured a reasonable overlap of the returned shot with 
the target shot [13]. An example of a typical query is shown in Figure 1. This query is to be used for automatic systems, 
but not for interactive evaluations. It is a known item query, indicating that all results are known inside the video 
collection. According to the text description, the query is looking for video scenes of water skiing, and gives an example of 
the type of video that is desired. A few frames from the example video are extracted and also shown in Figure 1.  

 

 
<videoTopic num="022"  interactive="Y-I" automatic="Y-A" knownItems="Y-K"> 
  <textDescription text="Find pictures of Harry Hertz, Director of the National Quality Program, NIST" /> 
  <!-- imageExample src="http://www.quality.nist.gov/nqpstaff/harry.jpg"-->  
</videoTopic> 
                                

 

Figure 2: A sample Video TREC query with a still image as example data asking for a specific person 



From the 11 hours of video, we extracted about 8000 shots, where a shotbreak was defined as an edited camera cut, fade or 
dissolve using standard color histogram measures. Instead of documents, the Video TREC track had defined shots as the 
unit of retrieval. We aggregated the MPEG I-frames for each shot to be alternative images for each shot. Whenever 
something matched to an image within a shot, the complete shot was returned as relevant. In total, there were about 80,000 
images to be searched.  
 

3. THE INFORMEDIA DIGITAL VIDEO LIBRARY SYSTEM. 
 
The Informedia Digital Video Library [19] was the only NSF DLI-1 project focusing specifically on information extraction 
from video and audio content.  Over a terabyte of online data was collected, with automatically generated metadata and 
indices for retrieving videos from this library.  The architecture for the project was based on the premise that real-time 
constraints on library and associated metadata creation could be relaxed in order to realize increased automation and 
deeper parsing and indexing for identifying the library contents and breaking it into segments.  Library creation was an 
offline activity, with library exploration by users occurring online and making use of the generated metadata and 
segmentation. The goal of the Informedia interface was to enable quick access to relevant information in a digital video 
library, leveraging from derived metadata and the partitioning of the video into small segments.   
 
The Informedia research challenge was how much can the video and audio be analyzed automatically and then made to be 
useful to a user. Broadly speaking, the Informedia project wants to enable search and discovery in the video medium, 
similar to what is widely available for text. One prerequisite for achieving this goal is the automated information extraction 
and metadata creation from digitized video. Once the metadata has been extracted, the system enables full-content search 
and retrieval from spoken language and visual documents. The approach that was ultimately successful was the integration 
of speech, image and natural language understanding for library creation and exploration. While much of the Informedia 
project has focused on interactive tools and techniques [18] for finding relevant video clips in a large digital video 
collection, this paper will discuss the automated processing and retrieval techniques implemented in Informedia. 
 

Table 1 A summary of different TREC Video Queries for both Known-Item and General Search Queries 
Topic 3, 14 & 19: Lunar rover on moon 
Topic 4: Mountains as prominent scenery 
Topic 5, 9 & 31: Water skiing 
Topic 6: Yellow boat 
Topic 7: Pink flower 
Topic 8: Planet Jupiter 
Topic 10: Swimming pools 
Topic 11: People on beach 
Topic 12: Surface of planet Mars 
Topic 13: Speaker in front of U.S. flag 
Topic 15: Corn on the cob 
Topic 16: Deer with antlers 
Topic 17: Airliner landing 
Topic 20: Pictures of Ron Vaughn 
Topic 21: Ronald Reagan speaking 
Topic 22: Harry Hertz 
Topic 23: Lou Gossett, Jr. 
Topic 24 & 58: Pictures of R. Lynn Bondurant  
Topic 25: R2D2 and 3CPO from Star Wars 
Topic 26: Victim location system  
Topic 27: A biplane over a field 
Topic 32: Helicopter landing 
Topic 35 & 36: Where else does this person appear  
Topic 2, 37, 56, 72: Rocket and shuttle launches 
Topic 41: Shots with crowds of 8+ people 
Topic 42: Scenes with David J. Nash 
Topic 44: Pan and tilt camera action 
Topic 50: Natural outdoor scenes with birds 

Topic 51: Splashing water 
Topic 52: Space shuttle on launch pad 
Topic 57 & 60: Explosions and blasting 
Topic 59: Space Shuttle “Discovery” 
Topic 64: Male interviewees 
Topic 67: Research aircraft X-29 
Topic 69: Logo of Northwest Airlines 
Topic 70: Who is the producer of the video 
Topic 71: Street Traffic 



 

3.2 Methods for Extracting Textual Metadata 

3.2.4 Speech Recognition 
The audio processing component of our video retrieval system splits the audio track from the MPEG-1 encoded video file, 
and decodes the audio and downsamples it to 16kHz, 16bit samples.  These samples are then passed to a speech 
recognizer. The speech recognition system we used for these experiments is a state-of-the-art large vocabulary, speaker 
independent speech recognizer [9].  For the purposes of this evaluation, a 64000-word language model derived from a 
large corpus of broadcast news transcripts was used. Previous experiments had shown the word error rate on this type of 
mixed documentary-style data with frequent overlap of music and speech to be just over 30%. 

3.2.5 Video OCR 
A different, textual, representation is derived by reading the text that present in the video images using optical character 
recognition (OCR).  OCR technology has been commercially available for many years. However, reading the text present 
in the video stream requires a number of processing steps in addition to the actual character recognition. Our video optical 
character recognition system [5] uses the following approach to identify and recognize captioned text that appears on the 
video. Given the number of frames contained in typical broadcast news, it is not computationally feasible to process each 
and every video frame for text. For this reason a rough or quick text region detection is performed first. Then the text must 
be extracted from the image, and converted into a binary black and white representation, since the commercially available 
OCR engines do not recognize colored text on a variably colored background. Unlike text printed on white paper, the 
background of the image tends to be complex, with the character hue and brightness very near the background values.  
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rea detection is often referred to as text segmentation. This is done in our system by detecting vertical edges and 
hing them. The regions where edges were detected are grouped into clusters and bounding boxes are applied. A 
r of heuristics then identify text boxes based on their aspect ratio, absolute size and the fill factor of the bounding 

. 

Figure 3. Sample keyframe from a relevant video clip for the query in Figure 2, where the speech transcripts was not 
useful but the result could be found through Video OCR  

 

OCR Recognition 
H,arry Hertz a Director aro 7 ,i,,ty 
,Harry Hertz a Director 

Automatic Speech Transcription: 

:  

W e’re looking for people that have a broad range of expertise that have business 
k l d hhave knowledge on quality management on quality improvement and in particular …  

a text box is detected, enhancement takes place. Individual text areas are combined into region. Multi-frame 
ation looks at the potential bounding boxes over several frames and finds the minimal (white) pixel values across 
nge. This uses an assumption that the text is stable in the image, i.e. overlaid, while the background may be moving 
 the image. Only text that is on the screen for at least 1 second is readable by humans.  



The next step before OCR is character detection through filter integration. Different filters looking for horizontal, vertical, 
left diagonal, and right diagonal lines are combined and blurred to a gray scale.  Adaptive thresholding on the gray-scale 
histogram is then used to create binarized black on white text.  Character segmentation occurs at the troughs on the 
histogram. 
 
The OCR is further complicated by the fact that the text has very low resolution, frequently only about 10 pixels of height 
per character. This resolution is due to the NTSC television standard of 325x248 pixels per image. To overcome the 
resolution problem, the detected text is magnified and sub-pixel interpolation performed to increase resolution without 
incurring jagged edges as artifacts of the magnification. 
 
The potential text region is then extracted as a tiff image and submitted to a commercial optical character recognition 
package for the final stage of recognizing the text. Since the extraction and binarization steps are quite noisy and do not 
produce perfect results, our system runs the OCR engine on every 3rd frame where text was detected. Thus we obtain over 
100 OCR results for a single occurrence of text on the screen that might last for just over 10 seconds. Frequently many of 
the results would be only slightly different from each other. On this video collection, the word accuracy for detected text 
was estimated to be 27%. 

3.2.5.1 Correcting OCR errors 
We explored two different methods for correcting errors in the OCR transcriptions, both applied only to unmatched query 
words. The first method generates a new set of n-gram strings to match the unedited the OCR transcriptions.  These n-
gram strings include strings with an edit distance of 1 character (1 deletion, insertion or substitution) and all possible n-
gram substrings with at least 3 characters. 
 
Our second method for OCR correction involved the dictionary spelling correction method provided in MS Word.  
Through an application program interface to the features of MS Word 2000, an OCR recognized string was expanded into 
its possible “corrected” spellings. We proceeded in a very conservative fashion, only expanding words that MS Word had 
flagged as incorrectly spelled. This dramatically reduced the number of spurious word candidates and avoided false 
matches. 

3.2.6 Information Retrieval with Text Material 
All retrieval of textual material was done using the OKAPI formula [3]. The exact formula for the Okapi method is shown 
in Equation (1) 

∑
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where tf(qw,D) is  the term frequency of  word qw in document D, df(qw) is the document frequency for the word qw and 
avg_dl is the average document length for all the documents in the collection. 
 

3.2 IMAGE-BASED INFORMATION EXTRACTION AND RETRIEVAL 

3.2.1 Face Detection 
Face detection is one of a class of object detection tasks that are useful for image and video analysis. At the core is a 
simple recognition problem: does this image or region contain a face or not. There are more subtle aspects to faces, such as 
the facial activities, expressions and emotions, which are currently beyond the scope of automatic analysis on general 
broadcast video. What we really want to know is whose face is in the picture, and knowing that a face is there is only a 
partial step towards the true goal. This holds true for many other object recognition tasks, however as humans we are 
predisposed to finding faces as a general class more interesting than trees, rocket launches clouds, or buildings. 
 
Extensive work in face detection has been done at CMU by Rowley [4].  This approach modeled the statistics of 
appearance implicitly using an artificial neural network. The neural network was trained on multiple ‘face’ windows 
templates, each 20x20 pixels. Images that might contain larger faces were subsamples to reduce their size. Training was 



done on a large set of rotated, scaled, translated and mirrored faces. The training also incorporated negative examples from 
false alarms in training. To increase confidence, overlapping detected faces were merge. rbitration between multiple neural 
networks that were trained from different initializations. 
 
Currently we use Schneiderman’s approach [8], which applies statistical modeling to capture the variation in facial 
appearance. This approach tries to learn the statistics of both object appearance and "non-object" appearance using a 
product of histograms. Each histogram represents the joint statistics of a subset of wavelet coefficients and their position 
on the object. Schneiderman’s approach is to use many such histograms representing a wide variety of visual attributes. 
The detector then applies a set of models that describe the statistical behavior of a group of wavelet coefficients.  
 
The logical next step after face detection is to recognize or match similar faces.  Eigenfaces treat a face image as a two-
dimensional N by N array of intensity values. From a set of training images, a set of eigenvectors can be derived that 
constitute the Eigenfaces. Every unknown new face is mapped into this eigenvector subspace and we can calculate the 
distance between faces through corresponding points within the subspace [20]. While we experimented with face 
recognition using a commercial system [15] as well as an implementation of Eigenfaces [6], the accuracy of face 
recognition in this type of video collection was so poor, that it proved useless. Therefore, we only present results using a 
face detector that reported the presence of faces in each key frame. 

3.2.2 Image Retrieval for Video Clips 
To obtain the similarity between the query image IQ and any image I’ in the collection, our model computes the probability 
of generating the image I’ given the observation of the query image IQ. The model assumes that images are generated 
through some stochastic process. Given the observation of an image I, we can find the underlying probabilistic model M 
that generated this image. The optimal probabilistic model for an image I should maximize the generation probability 
P(I|M). By assuming that if two images are similar, their underlying generation models should also be similar, we can 
compute the similarity of image I1 to image I2 as P(I1 | M2), i.e. the probability of generating image I1 from the statistical 
model M2.  
 
To accomplish the video retrieval task using still image retrieval methods, we need to compute the similarity between 
video shots by using the similarity between images. Let VQ be a query video example and be represented as a set of I-frame 
images, i.e. V . Let V},...,,{ 21 n

QQQQ VVV=

},...,,{ 21 m
SSSS VVVV =

S be a video shot from the collection and be represented as another set of I-frame 

images, i.e. . The similarity of video shot VS with respect to query video example VQ is defined as  
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where Sim(VS
i, VQ

j) is the similarity of image VS
i with respect to image VQ

j. 
 
Using the TREC video collection and the automatic known-item queries, we compared our probabilistic image retrieval 
model against two other vector-based image retrieval algorithms, namely the well-known QBIC image search engine [1] 
and a Munsell-color histogram based image retrieval algorithm [21]. Both of these two algorithms represent an image as a 
vector of features and compute the similarity between images based on the Euclidean distance between their representation 
vectors.  
 

3.3 COMBINING METADATA 
 
When the various sources of data were combined for information retrieval, we used a linear interpolation with very high 
weights on the binary features such as face detection or speaker identification. This allowed these features to function as 
almost binary filters instead of being considered more or less equal to OCR, speech transcripts or image retrieval.  
 

4. EXPERIMENTAL RESULTS 
 

4.1 EVALUATION METRICS 
 



There are two aspects involved in any retrieval evaluation:  
• Recall. A good retrieval system should retrieve as many relevant items as possible.  
• Precision. A good retrieval system should only retrieve relevant items.  

Many evaluation metrics have been used in information retrieval [12] to balance these two aspects. In the video retrieval 
track at TREC, a simple measure of precision at 100 items retrieved was used for scoring the systems. However, since 
there were only an average of 5.5 items relevant for each query, a perfect retrieval system that returned all relevant items at 
the top and filled the rest of the top 100 result slots with irrelevant items would only achieve a precision of 5.5 %.  
 
Because our collection contains only small numbers of relevant items, we adopted the average reciprocal rank (ARR) [15] 
as our evaluation metric, similar the TREC Question Answering Track. ARR is defined as follows: 
For a given query, there are a total of Nr items in the collection that are relevant to this query. Assume that the system only 
retrieves k relevant items and they are ranked as r1, r2, …, rk. Then, the average reciprocal rank is computed as 
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As shown in Equation (1), there are two interesting aspects of the metric: first, it rewards the systems that put the relevant 
items near the top of the retrieval list and punish those that add relevant items near the bottom of the list. Secondly, the 
score is divided by the total number of relevant items for a given query. Since queries with more answer items are much 
easier than those with only a few answer items, this factor will balance the difficulty of queries and avoid the 
predominance of easy queries. 

Table 2. Results of video retrieval for each type of extracted data and combinations. 

Retrieval using: Average Reciprocal 
Rank 

Recall 

Speech Recognition Transcripts only 1.84 % 13.2 % 
Raw Video OCR only 5.21 % 6.10 % 
Raw Video OCR + Speech Transcripts 6.36 % 19.30 % 
VOCR with n-gram post-processing 5.89 % 11.81 % 
Enhanced VOCR with dictionary post-processing 5.93 %% 7.52 % 
Speech Transcripts + VOCR with n-gram post-processing 5.11 % 16.07 % 
Speech Transcripts + dictionary enhanced Video OCR  7.07 % 20.74 % 
Image Retrieval using QBIC ‘Histogram’ mode 6.65 % 12.31 % 
Image Retrieval using QBIC ‘Draw’ mode 10.12 % 17.62 % 
Image Retrieval using Munsell Color Space histograms 8.60 % 13.56 % 
Image Retrieval only using a probabilistic Model 14.99 % 24.45 % 
Probabilistic Image Retrieval + Speech Transcripts 14.99 % 24.45 % 
Probabilistic Image Retrieval + Face Detection 15.04 % 25.08 % 
Probabilistic Image Retrieval + Raw VOCR 17.34 % 26.95 % 
Probabilistic Image Retrieval + dictionary enhanced VOCR 18.90 % 28.52 % 
Probabilistic Image Retrieval + Face Detection + dictionary enhanced VOCR 18.90 % 28.52 % 
Probabilistic Image Retrieval + Speech Transcripts + dictionary enhanced VOCR 18.90 % 28.52 % 
Probabilistic Image Retrieval + Face Detection + Speech Transcripts +Enhanced 
VOCR 

18.90 % 28.52 % 

 
4.2 RESULTS FOR INDIVIDUAL TYPES OF METADATA 

 
The results are shown in Table 2. The average reciprocal rank (ARR) and recall for retrieval using only the speech 
recognition transcripts was 1.84% with a recall of 13.2%. Since the queries were designed for video documents, it is 
perhaps not too surprising that information retrieval using only the OCR transcripts show much higher retrieval 
effectiveness to an ARR of 5.21% (6.10% recall). The n-gram post-processing improved the OCR output to 5.89% ARR 
(11.81% recall). The effects of dictionary post-processing on the OCR data were beneficial, the dictionary-based OCR 
post-processing gave a more than 10% boost to 5.93 % ARR and 7.52 % recall. Again, perhaps not too surprisingly, the 
probabilistic image retrieval component obtained the best individual result with an ARR of 14.99 % and recall of 24.45 %. 



Since the face detection could only provide a binary score in the results, we only evaluated its effect in combination with 
other metadata. The main findings from the results on individual features are: 

• Probabilistic image retrieval provided the best result for any single metadata type. 
• Speech recognition was surprisingly ineffective, especially when compared to OCR.  
 

4.3 RESULTS WHEN COMBINING METADATA 
 
Combining the OCR and the speech transcripts gave an increase in ARR and recall at 6.36 % and 19.30 % respectively. 
Again post-processing of the OCR improved performance to 7.07 % ARR and 20.74 % recall. Combining speech 
transcripts and image retrieval showed no gain over video retrieval with just images (14.88 % ARR, 24.45 % recall). 
However, when face detection was combined with image retrieval, a slight improvement was observed (15.04 % ARR, 
25.08 % recall).  
 
Interestingly enough, combining the n-gram post-processed OCR with the speech transcripts (ARR of 5.11% and recall of 
16.07%) did not improve the retrieval effectiveness. But the dictionary-based post-processing method, which on its own 
had about the same precision and 40% lower recall than the n-gram method, provided a more effective combination with 
the speech transcripts at 7.07% ARR and 20.74% recall. This is about a 10% increase over the previous best combination. 
N-gram OCR correction initially appeared as good as the dictionary method, but much worse in combination with speech 
transcripts, possibly due to over-generation of word candidates. Combining OCR and image retrieval thus yielded the 
biggest jump in accuracy to an ARR of 17.34 % and recall of 26.95 % for raw VOCR and to an ARR of 18.90 % and recall 
of 28.52 % for enhanced VOCR. Further combinations of image retrieval and enhanced OCR with faces, and speech 
transcripts yielded no additional improvement. The probably cause for this lack of improvement is the redundancy to the 
other extracted metadata. 
 
To understand the low success rate of the speech transcription, we looked at the distribution of the query keywords with 
respect to relevant shots. Figure 4 shows that in this collection, the query words found in the speech transcript did not 
correspond to relevant shots, nor were there many relevant shots near the query words. For VOCR, the hit rate was 
somewhat better, as expected from the higher ARR and precision scores. 
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Figure 4. Number of relevant shots at a given distance to a query keyword for words from Video OCR and speech transcription. Infinite 

denotes the case where no relevant shot was found within the same video file which contained the matched query word. 

The main findings for combined metadata retrieval are: 
• OCR and Image retrieval provide good complementary information 
• Query words found in the speech transcript do not correlate well to relevant shots  
• All other combinations have negligible impact on retrieval results. 
 

4. DISCUSSION 
 
What have we learned from this first evaluation of video information retrieval? Perhaps it is not too surprising that the 
results indicate that image retrieval was the single biggest factor in video retrieval for this evaluation. Good image retrieval 
was the key to good performance in this evaluation, which is consistent with the intuition that video retrieval depends on 
finding good video images when given queries that include images or video. 
 
One somewhat surprising finding was that the speech recognition transcripts played a relatively minimal role in video 
retrieval for the known-item queries in our task. This may be explained by the fact that discussions among the track 
organizers and participants prior to the evaluation emphasized the importance of a video retrieval task as opposed to 
‘spoken document retrieval with pictures’.  
 
There was a strong contribution of the OCR data to the final results. The results also underscore the fact that video 
contains information not available in the audio track. As a previous study noted, only about 50% of the words that appear 
as written text in the video are also spoken in the audio track [5], so the information contained in the text of the pictures is 
not redundant to the spoken words in the transcripts. Our most surprising finding is the dominating importance of OCR 
over speech recognition in this video retrieval task. This surprise was perhaps due to queries that were designed for video 
documents and not merely text transcripts. Another possible explanation is that OCR text appears directly inside a relevant 
image, while relevant words can be spoken in the vicinity near the relevant video clip, but not directly during the target 
shot. 



Overall, the queries presented a very challenging task for an automatic system. While the overall ARR and recall numbers 
seem small it should be noted that about one third of the queries were unanswerable by any of the automatic systems 
participating in the Video Retrieval Track. Thus for these queries nothing relevant was returned by any method or system. 
 
We would like to caution that the known-item queries do not represent a complete sample of video queries. Video retrieval 
on general search queries, with less specific information needs, might result in a somewhat different conclusion about the 
combination of information sources. A preliminary analysis showed that ‘general search’ queries in the video track tended 
to be much more ‘speech oriented’, which is why the best performing system on that set of queries was entirely based on 
speech recognition transcripts.  
 
Clearly, we can think of a number of improvements to the speech recognition component, using a parallel corpus for 
document and query expansion, and relevance feedback. However, the same techniques could be used to improve the OCR 
transcriptions as well. In the future we also plan to evaluate speaker identification [7] and sound classification as an 
additional source of extracted data for retrieval. 
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