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AbstractÐThis paper addresses the problem of spatio-temporal segmentation of

video sequences. An initial intensity segmentation method (watershed

segmentation) provides a number of initial segments which are subsequently

labeled, with a known number of labels, according to motion information. The label

field is modeled as a Markov Random Field where the statistical spatial and

temporal interactions are expressed on the basis of the initial watershed

segments. The labeling criterion is the maximization of the conditional a posteriori

probability of the label field given the motion hypotheses, the estimate of the label

field of the previous frame, and the image intensities. For the optimization, an

iterative motion estimation-labeling algorithm is proposed and experimental results

are presented.

Index TermsÐMarkov Random Fields, motion-based segmentation, region

labeling, watershed segmentation, motion estimation.
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1 INTRODUCTION

ONE of the key issues in the design of many vision systems is their
ability to decompose image sequences into the ªobjectsº that are
depicted in them. Motion information is one of the main elements
that are used for segmenting video sequences. However, extracting
and coupling motion information with the segmentation process is
by no means a trivial task. For the estimation of motion, spatial
constraints need to be imposed in a form of a support region where
the motion is assumed either to be smooth or to follow a
parametric model. In general, if the region of support is arbitrarily
chosen then the motion estimate will be deteriorated either because
the single motion assumption within the region is violated or
because the texture pattern is too low to constrain enough the
estimation. Furthermore, in the motion-based segmentation frame-
work issues like the occlusions and the temporal coherency of the
segmentation mask need to be addressed.

In this paper, we present an approach in which spatial and
temporal constraints are incorporated into a single framework to
allow the joint estimation of the segmentation field and of the
motion information. The method operates in two levels (Fig. 1). At
the lower level (LEVEL 1 in Fig. 1), a segmentation algorithm
operating on the current frame's intensities provides a set of
segments with relatively small intensity variation. At the next level,
(LEVEL 2 in Fig.1) these segments are grouped into regions that
move with the same motion parameters by assigning an ªobjectº
label to each segment. We use the well-known notion of Markov
Random Fields (MRF) in order to express spatial and temporal
constraints at the level of the ªintensityº segments. The labeling
criterion is the maximization of the conditional a posteriori
probability (MAP) of the label field given the motion hypotheses,
the label field of the previous frame, and the image intensities. For
the optimization procedure, we propose a method which mini-
mizes the corresponding objective function in an iterative way with
respect to the motion parameters and the label field. A three frame
approach is adopted in order to deal with occlusions.

In comparison to other works in the area of motion-based

segmentation, our method is mostly related to two categories. To

the first category belong methods which simultaneously estimate

the motion information and its region of support. Depending on if

the label field is explicitly defined, temporal and spatial constraints

are imposed either on motion [1], [2], [3], [4] and/or on the label

field itself [5], [6], [7]. Our work can be regarded as an extension of

methods of this category that define cliques at pixel level in the

Markovian framework and jointly estimate the motion and the

label field. We exploit the ability of such approaches to incorporate

the spatial and temporal constraints in the optimization procedure.

However, by defining cliques on segment level, we provide tighter

constraints for the labeling and reduce the dimensionality of the

problem. The initial intensity segmentation groups together pixels

in which the low degree of texture implies inadequate information

about their temporal behavior. These segments are more reliable

entities than pixels used as primary elements for the labeling

problem. The relation of our approach with existing pixel-based

methods will become more apparent once the modeling and the

optimization procedure are described. It can be shown [8] that in

the degenerate case where the segments that result from the initial

segmentation contain a single pixel, our method reduces to an

approach that falls in this category.
To the second category belong methods that combine an initial

intensity segmentation with motion information. From the prism

of our method, we distinguish between the following four general

directions: To the first one belong the top-down approaches [9],

[10]. To the second one, methods in which a region merging

process is driven by motion-based distance measures [11], [12],

[13], [14], [15]. To the third direction belong methods that utilize an

initial intensity segmentation in order to incorporate spatial

constraints in the Expectation Maximization framework [16], [17].

Finally, to the last one belong methods that combine the MRF

modeling with an initial segmentation [18], [19], [20]. From the

above mentioned approaches, the work of Fablet et al. [9], and

Gelgon and Bouthemy [20], [19] is the most related to our proposal.

However, their way of combining the motion information with the

labeling is quite different. The dominant motion estimation/outlier

detection paradigm which is adopted in [9] has the shortcomings

of the hierarchical approaches. Such top-down approaches are

faced with the problem of estimating the dominant motion in the

presence of multiple independent motion patterns and, further-

more, they impose an artificial hierarchy in determining the

motion characteristics of the objects which may lead in situations

where outlier segments do not belong to any object [14]. In [20],

[19], motion is estimated independently per segment. Estimating

motion parameters per segment requires sufficient local intensity

structure which often implies that the size of segment should be

rather large. In search for sufficient texture, the initial intensity

segmentation method might violate significant borders. In our

approach, where a region-based motion estimation is employed, it

is not crucial if some of the segments do not provide sufficient

constraints. The ensemble of the constraints in the whole region is

what determines the accuracy of the motion estimation. Further-

more, in both [20] and [19], the temporal constraints are introduced

only in the initialization phase for the prediction of the initial label

field. In comparison, in our approach, the temporal constraints are

incorporated in the optimization procedure itself.
The remainder of the paper is organized as follows: Section 2

briefly discusses the initial intensity segmentation method. Sec-

tions 3 and 4 contain the formulation of the labeling problem in the

MAP framework and the optimization procedure, respectively. In

Section 5, experimental results are presented and, finally, conclu-

sions are drawn in Section 6.
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2 INTENSITY SEGMENTATION

At the lower level of the proposed method (Fig. 1), a segmentation
algorithm is applied on the intensities in the current frame. We aim
for a conservative partitioning of the current frame, such that
significant boundaries, that is object boundaries, are not violated.
That is, we favor an oversegmentation since the proposed method
is not able to recover from an initial undersegmentation by
splitting a segment that does not belong entirely to a single object.
Although the choice of the segmentation method is not restrictive
to the generality of our approach, we favor methods which
consider the intensity gradient rather than clustering approaches.
For its low-computational complexity and good edge localization
accuracy, we use the watershed segmentation algorithm [21]. A
filtering with morphological operators [22] with a small (3� 3)
structuring element is used for a nonlinear smoothing of the
current frame. Once the noise level is reduced, the morphological
gradient is estimated and segment markers are extracted as areas
where the gradient is lower than a threshold. The flooding
procedure described by Vincent and Soille [23] provides the final
partition (Fig. 2).

The threshold for the marker extraction is a user-specified
prediction of the smallest gradient magnitude of the significant
edges. Edges with smaller gradient magnitude are not preserved. It
should be noted that the threshold is not directly related with the
amount of texture within a segment. During the flooding
procedure, a segment will encapsulate some of the pixels which
lie between its marker and the marker of the neighboring segment
and have higher gradient magnitude than the threshold (Fig. 2).

Once the intensity segments are extracted, a Region Adjacency
Graph (RAG) can be built to express neighborhood relations
between them. We denote fs : s 2 1 . . .K� �g as the set of the
watershed segments, Gs as the set of the pixels in the watershed
segment s, and Ns � fs0g as the set of neighbors of segment s as
they are defined on the Region Adjacency Graph.

3 PROBLEM MODELING

We consider the supervised framework where the number of
independently moving objects in the scene, denoted by N , is
considered as known. We assume that the 2D apparent motion
field induced by them can be approximated by 6-parameter
affine models. We seek for the unknown label field L �
ls : ls 2 1 . . .N� �; s 2 1 . . .K� �f g and the motion hypotheses � �
�n : n 2 1 . . .N� �f g at time instant t, considering as known the

estimate L̂ÿ of the label field at the previous time instant. We
consider the Bayesian framework and, more specifically, we
adopt, as the labeling criterion, the maximization of the a
posteriori probability (MAP) of the label field. The conditional

probability distributions to which the MAP criterion decomposes
are modeled as Gibbs distributions. This MAP-MRF framework
has been used extensively for regularization and for expressing
contextual constraints in numerous problems in computer vision
[3], [24].

More specifically, we aim for the maximization of the a
posteriori probability:

P LjI;�; L̂ÿ; Iÿ; I�ÿ � /
P IjL;�; L̂ÿ; Iÿ; I�ÿ �

P L̂ÿjL;�ÿ �
P Lj�� �

�1�

with respect to L and �. With Iÿ; I, and I�, we denote the image
intensities in the previous, current, and next frame, respectively.

The first term on the right-hand side of (1) is the conditional
probability distribution P �IjL;�; L̂ÿ; Iÿ; I��, which expresses how
well the current motion and label field conform with the image
intensities. We model it as a Gibbs distribution where the energy
term, denoted with Ed I; L;�; I

ÿ; I�� �, is defined as the sum of
local Gibbs potentials Vds I; s; �ls ; I

ÿ; I�� �. The local Gibbs potentials
Vds I; s; �ls ; I

ÿ; I�� � are defined over single-site(segment) cliques as
follows:

Vds I; s; �ls ; I
ÿ; I�� � �

min
X
i2Gs

fÿi �ls� �
ÿ �2

;
X
i2Gs

f�i �ls� �
ÿ �2

 !
;

�2�

where f�i �ls� � and fÿi �ls� �, respectively, are the forward and
backward motion compensated intensity differences at pixel i

(i 2 Gs).
Note that we are using a three frame approach, where the

motion compensated intensity differences are defined on the basis
of segments either in the previous or in the next frame using the
min operator. By doing so, we are dealing in a simple and efficient
way with appearing and disappearing areas. The underlying
assumption is that these areas are visible in at least two
consecutive frames, that is each watershed segment has a
correspondence either in the next or in the previous frame. A
similar approach, where a visibility set for each pixel is defined in
a forward/backward way, is presented by Dubois and Konrad
[25]. In their work, the direction in which the motion estimation is
constrained is determined by an occlusion field. In our segment
based approach, the direct association of an occlusion field with
the direction of the motion is not trivial since it may be the case
that segments are only partially occluded. However, our assump-
tion that each segment has a correspondence either in the next or in
the previous frame, is violated only when a segment is large
enough to partially appear and partially disappear from the scene.
In this case, the relative size and texture structure of the visible
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Fig. 1. Outline of the approach.

Fig. 2. Initial intensity segmentation in the 1D case.



area will determine the accuracy of the temporal evidence for the
segment in question. In such cases, the spatial constraints need to
provide the additional cues for the correct labeling.

The second term on the right-hand side of (1) expresses the
temporal constraints in terms of how well the estimate of the label
field in the previous frame L̂ÿ conforms with the motion
hypotheses � and the label field L in the current frame. The
conditional probability P L̂ÿjL;�ÿ �

is modeled as a Gibbs dis-
tribution. The corresponding energy term Et�L;�; L̂ÿ� is defined
as the sum of local energy terms Vts L̂

ÿ; s; �ls
ÿ �

. The local energy
terms are defined over single-site(segment) cliques as follows:

Vts L̂
ÿ; s; �ls

ÿ � �X
i2Gs

Oÿls �iÿ vi��ls ��
� �2

; �3�

where vi��ls � is the motion vector at pixel i that is generated under
the motion hypothesis �ls . An object field Oÿn is defined for each
object n. Oÿn is equal to 0 at all the points that belonged to object n
at the previous frame and equal to

����
zt
p

at all other points. Each
pixel of the watershed segment s is projected in the object field Oÿls
of the previous frame using the motion parameters �ls . It is easy to
verify that Vts � ztQs, where the number Qs is the number of pixels
of segment s whose motion-based projections in the previous
frame have a label different than ls (Fig. 3). The term zt is a constant
that controls the temporal consistency of the label field. From a
global point of view, an optimization with respect to the spatial
energy term results in a label field L and a set of motion
hypotheses � such that each region n in the current frame is
projected entirely within a region with the same label in the
previous frame.

Finally, the third term on the right hand side of (1) models the
probability of the label field. We model it as a Gibbs distribution
whose energy term Ec�L� is the sum of spatial clique potentials
Vc s; s

0� �which are defined over pair-site(segment) cliques as follows:

Vc s; s
0� � � ÿzcb s; s0� � if ls � ls0

zcb s; s
0� � if ls 6� ls0 ;

�
�4�

where the segments s and s0 are neighbors in the neighborhood
system Ns defined on the Region Adjacency Graph. The term zc is a
constant that controls the weight of the spatial constraints relative
to the temporal constraints and to the constraints that the intensity
preservation principle imposes. The term b s; s0� � denotes the length
of the common border between s and s0. It is estimated as the
number of pairs of pixels �i; i0� which are neighbors in the image
grid and belong to the borders of s and s0, respectively. From a
global point of view, an optimization with respect to the spatial
energy term Ec�L� tends to minimize the total border length
between neighboring objects.

The parameters zc and zt control the relative weights that the
spatial and the temporal constraints have in the estimation of the
label field with respect to the data energy term Ed. So far as the
parameter zt is concerned, our formulation implies that a balance
in the relative influence of the data energy in correspondence with
the temporal energy is achieved when zt is set according to the

expected variance of the motion compensated intensity differences.
However, the correctness of the influence of the temporal
constraints depends on the degree of the accuracy of the estimated
label field L̂ÿ in the previous frame. In order to insure that the
algorithm is flexible enough to correct errors in L̂ÿ, the value of zt
should be chosen rather conservatively. In all of our experiments,
the value of zt was chosen in the range between 1 and 2.

So far as the spatial energy term is concerned, we note that at
segment level the spatial energy term is proportional to the
perimeter of the segment s while the data energy term and the
temporal energy term is proportional to the number of pixels of s.
In general, this implies that the larger a segment is, the larger the
ratio between the relative contribution of the local data and
temporal energy terms with respect to the local spatial energy
term. Thus, for larger segments, the emphasis is placed on the
evidence that the segments themselves provide about their
temporal behavior, while for smaller segments the emphasis is
placed on the evidence provided by the label field in their
neighborhood. For the manual setting of the value of zc, a rule of
thumb can be provided by an analysis of the ratio between the size
and the perimeter of the segments. Taking into consideration that
the data energy term has the characteristics of the variance of the
motion compensated intensity differences and that the temporal
energy term is scaled by the factor zt, we chose values of zc in the
range between 3 and 10 for our experiments. In that range of
values, the different energy terms are roughly normalized for
segments with around 100 pixels size.

4 MAP ESTIMATION

Once the energy functions are defined, the MAP estimation is
equivalent to the minimization of the quantity

E�L;�; I;L̂ÿ; Iÿ; I�� �
Ed�I; L;�; Iÿ; I�� � Et�L;�; L̂ÿ� � Ec�L�:

�5�

In order to solve the nonlinear optimization problem of (5), we
propose a method which iterates between a minimization with
respect to the label field L (labeling phase) and a minimization
with respect to the motion parameters � (motion estimation
phase). In the labeling phase, a relaxation algorithm is employed to
solve the combinatorial problem of assigning object labels to
watershed segments. In the motion estimation phase, (5) is
linearized with respect to � and a gradient-based approach is
adopted. More specifically, the MAP estimation iterates between
the following phases:

Lm�1 � arg min
L
E�L;�m; I; L̂

ÿ; Iÿ; I�� �6�

�m�1 � arg min
�
E�Lm�1;�; I; L̂

ÿ; Iÿ; I��; �7�

where m denotes the iteration index. For the first iteration (i.e., for
m � 0), the motion hypotheses are initialized with the motion
parameters estimated for the previous frame.

The optimization procedure described by (6) and (7) bears
similarities with the Expectation-Maximization method where a
hard classification is employed. Indeed, it can be shown [8] that
our method can be formulated as an EM algorithm with hard
decisions and that with a minor modification can incorporate soft
decisions too.

4.1 Labeling Phase

In the labeling phase, (6), the minimization of (5) with respect to L
takes place, keeping the motion parameters � ªfrozenº (� � �m).
We consider an iterative deterministic relaxation algorithm known
as Iterative Conditional Modes (ICM). Proposed by Besag [26], ICM
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Fig. 3. The temporal projection of watershed segment s (gray polygon in Frame t).

The shaded area in frame tÿ 1 represents a region labeled with label ls.



maximizes the conditional probability of a label at each site
iteratively, given the labeling at all other sites. In the original
algorithm at each iteration, each site is visited and is assigned the
label that maximizes that conditional probability. This can be
regarded as a scheme in which approximations of the conditional
probabilities of the labels are estimated and hard decisions are
employed.

As stated in [26], the order in which the sites are visited is
important for the final configuration. Furthermore, a site can
contribute to the reduction of the energy only if the local labeling
configuration has changed, that is, at each iteration not all of the sites
should be visited. In order to cope with the latter, we maintain a set
of candidate segments ck for each iteration k within the labeling
phase. In order to avoid the influence of a predetermined ordering,
we adopt a random visit schedule on the elements of the candidate
set. The steps of the algorithm are summarized in Table 1.

An initialization of the label L is estimated by an optimization
of the data and temporal energy terms �Ed � Et� with respect to L.
Since no spatial constraints are introduced at this point, the
labeling is performed independently for each segment.

4.2 Motion Estimation Phase

In the motion estimation phase, the minimization of (5) with
respect to � takes place, keeping the label field L ªfrozenº
(L � Lm). This minimization is a nonlinear optimization problem
since neither Ed nor Et are linear with respect to the motion
parameters. For Ed this is because: first, the image intensities are
nonlinear with respect to � and, second, because of the nonlinear
minimum operator in (2). In order to overcome the latter, we turn
the minimization of (5) into an equivalent optimization problem by
introducing a binary direction field fds : ds 2 �0; 1�; s 2 1 . . .K� �g.
This field determines the direction, backward or forward, in which
the temporal intensity variation constrains the motion estimation.
Let us define Ce d;�� � as:

Ce d;�� � � Et�L;�; L̂ÿ��XK
s�1

ds
X
i2Gs

f�i �ls� �
ÿ �2��1ÿ ds�

X
i2Gs

fÿi �ls� �
ÿ �2

 !
;

�8�

where the functional dependence of Ce d;�� � on the label fields and
on the image intensities is omitted for notational simplicity. The
new energy term Ce d;�� � is derived from the terms of (5) that
depend on �. It is almost straightforward to show [8] that if ��̂; d̂�

are the arguments which minimize (8), then �̂ is the argument
which minimizes (5).

We minimize (8) with a method which iterates between a
minimization with respect to � and with respect to d. More
specifically,

dk�1 � arg min
d
Ce d;�

k
ÿ � �9�

�k�1 � arg min
�
Ce d

k�1;�
ÿ �

; �10�

where k is the iteration index within the motion estimation phase.
�0 are the motion hypotheses obtained at convergence in the
previous motion estimation phase. For the first motion estimation
phase in the current frame, �0 are the motion hypotheses
estimated for the previous frame.

Clearly, the minimization of Ce d;�
k

ÿ �
with respect to d yields

ds �
1 if

X
i2Gs

f�i �kls

� �� �2
�
X
i2Gs

fÿi �kls

� �� �2
�forw:�

0 otherwise �back:�

8<: �11�

For the minimization of Ce d
k�1;�

ÿ �
with respect to �, we use

first order Taylor approximations of fÿi �� � (or f�i �� �) and
Oÿn �iÿ vi��kn�� after smoothing with a Gaussian filter with a small
variance. This results in a well-known form of the optical flow
constraint. In order to solve for the motion parameters in an
incremental way [27], we first express the motion parameters as
� � �k ���. At iteration k� 1, we solve for the �� for which the
gradient of Ce with respect to the motion parameters is zero.

rCe dk;�k ���
ÿ � � 0: �12�

Equation 12 results in N linear systems with six unknowns, one for
each of the N sets of motion parameters �n.

5 RESULTS

We have applied the proposed algorithm in a number of sequences
in order to test the validity of our approach. We present results for
three sequences in each of which different challenges arise. In the
first one, the apparent motions of the objects are quite small in
magnitude which makes the distinction between them rather
difficult. In the second one, the motions are large, a fact which
generates large occlusions and even blurs the edges of one of the
objects. Finally, in the third sequence, difficulties arise on the one
hand because of small deformations in the shape of the moving
object and on the other because of the large rotational components
which are present in the motion pattern. Extended results for these
sequences can be found in [8].

5.1 ªCoastguardº Sequence

For the MPEG validation sequence ªCoastguard,º Fig. 4a and
Fig. 4b depict an original frame and the corresponding validation
labeling mask which is used only for illustrative purposes. Given
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TABLE 1
Modified ICM for Segment Labeling

Fig. 4. The 14th frame of ªCoastguardº sequence, the corresponding validation

label field, and the watershed segmentation.



this labeling mask, four different objects are present. The camera

follows the ship in the middle, while another ship is entering the

scene. The water of the river globally appears to move to the right,

but deviations from the dominant motion pattern occur locally.

The motion behavior of the different objects is quite similar; a

distinction between the ªShoreº and the ªWaterº is possible only at

subpixel level.
The result of the watershed segmentation is depicted in Fig. 4c,

where an area with constant intensity represents a watershed

segment. Our primary goal of obtaining a well-localized, edge

preserving segmentation is achieved. Each watershed segment

belongs entirely to a single object, a result which validates our

choice of a small structuring element.
In Fig. 5, we present results obtained at convergence for N � 4.

The algorithm is capable of distinguishing the different objects in

the scene by successfully grouping the watershed segments into

regions that move in the same way and produces temporally

coherent label fields. Both of the ships are well-localized and the

ªWaterº is well-separated from the ªShore.º The main difference

with the ªground truthº segmentation of Fig. 4b remains the trail

of the ship in the water. However, it is questionable if it is possible,

without any semantic reasoning, to classify with the same label the

ship and a trail whose apparent movement is quite arbitrary.

Finally, we have applied our method assuming that only three

objects are present in the scene. In Fig. 6a, we present the label field

obtained at convergence for the 10th frame of the sequence when

both temporal and spatial constraints are disabled. In the absence

of temporal and spatial constraints, we could not obtain a good

localization of the two ships. In comparison, in Fig. 6b, we present

the label field obtained at convergence at frame 11, with both the

temporal and spatial constraints enabled.

5.2 ªTrainº Sequence

The algorithm has been also tested on the even field of the

interlaced ªtrainº sequence. The original fields for frames 10 and

26 are presented in the left column of Fig. 7. The movement of the

camera is generating an apparent motion of the background of

about 4 to 8 pixels per frame (depending on the relative depth), one

train is moving with 6 pixels per frame and the other train with

about 45 pixels per frame. Due to the large apparent motion, there

are large areas that appear and disappear from the scene, namely,

the areas in front and in the back of the second train and the areas

that border the image. For the same reason, there are even areas

that appear only for one frame; for example, the area between the

wagons of the train in the foreground (ªtrain twoº).
In Fig. 7, we present the original frames 10 and 26, the

corresponding label fields, and the mask for the train in the

foreground. The algorithm exhibits good temporal stability, good

localization properties, and the areas that appear and disappear

are also classified successfully due to the bidirectional way in

which we validate the motion hypotheses. However, problems

occur for the areas between the wagons of the train in the

foreground, that appear only for one frame. Since there is no

correspondence neither in the previous or in the next frame and

the temporal constraint is also invalid, they are likely to be

misclassified. Rough manual initializations were used for the

horizontal motion components of the three different objects. For

the 10th frame, the temporal constraints were disabled.
In order to illustrate the internals of the iterative procedures, we

have applied the algorithm at the 10th frame of the sequence with a

bad initialization for the motion parameters and the temporal

constraints disabled. In Fig. 8, we present the label fields obtained
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Fig. 5. The ªCoastguardº sequence: (a) The label field at the 10th frame. (b) The

label field at the 20th frame. (c) Object mask for the left ship at the 20th frame.

(d) Object mask for the middle boat at the 20th frame (zc � 3; zt � 1).

Fig. 6. Label fields under the assumption that three objects are present in the

scene. (a) Label field for the 10th frame without spatial and temporal constraints.

(b) Label field for the 10th frame with spatial and temporal constraints

(zc � 3; zt � 1).

Fig. 7. Original frames 10 and 26 of the ªtrainº sequence, the corresponding label

masks, and the mask for the train in the foreground. (zc � 4:5; zt � 2).

Fig. 8. Label masks at external iterations 0, 3, and 12 with a bad initialization of the

motion parameters and disabled temporal constraints.



at the end of the different labeling phases and, in Fig. 9, we present

the horizontal motion components obtained at the subsequent

iterations within the motion estimation phases.

Finally, in order to demonstrate the influence of the bidirec-

tional way in which the motion hypotheses are estimated and

validated, we present experimental results which were obtained by

setting fds � 1; s 2 1 . . .K� �g. This way, only the forward direction

is considered. In Fig. 10, we present the label field and the

corresponding object masks for the 10th frame of the sequence

which are to be compared with the results presented in the first

column of Fig. 7. Misclassifications occur in the areas that are

covered in the next frame (frame 11), namely, the areas in front of

the two trains as well as at the right edge of the field of view.

5.3 ªPigº Sequence

In the ªpigº sequence, which was obtained for the needs of a

project for monitoring animal behavior, a pig is moving against a

static background, with slowly changing illumination conditions.

There is strong rotation in some of the frames of the sequence and

deformations of the body of the pig. Moreover, the assumption of

rigid motion is violated in areas like the pig's ears and legs. In

Fig. 11 the label fields at frames 411, 416, 421, and 426 are

presented. The localization accuracy and the temporal stability are

preserved, even though the motion of the pig changes quite fast

and in a strong rotational sense. However, the motion of the ears

and the leg, in some cases, deviate significantly from the estimated

parametric model and merge with the background.

6 CONCLUSIONS

In this paper, we have proposed a method for segmentation of

video sequences in which spatial and temporal consistency is

expressed in terms of interactions between segments that result

from an initial intensity segmentation. We express the solution in

terms of the MAP criterion and propose an optimization strategy

which iteratively maximizes the conditional a posteriori probability

of the label field with respect to the motion and the label field.

We have presented results for various image sequences, that

show that with the proposed modeling it is possible to group

segments that result from a ªfineº initial segmentation, based on

motion information. The proposed method exhibits good

localization properties, temporal stability and deals successfully

with motion occlusions.
For future work, an explicit treatment of the occlusions and,

more specifically, of occlusions in the previous frame could be

beneficial. This implies the identification of segments that have just

appeared in the scene and the relaxation of the assumption of the

temporal continuity of the label map in such cases. Finally, the

automatic determination of the number of the objects using the

Minimum Description Length principle [28], [29] might be an

interesting extension.
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